
Strong Moding in

Concurrent Logic/Constraint

Programming

Kazunori Ueda

Dept. of Information and

Computer Science

Waseda University

Main source:
Ueda, K. and Morita, M., Moded Flat GHC
and Its Message-Oriented Implementation Tech-
nique. New Generation Computing, Vol. 13,
No. 1 (1994).

Introductory paper :
Ueda, K., I/O Mode Analysis in Concurrent
Logic Programming. In Theory and Practice
of Parallel Programming, LNCS 907, Springer,
1995.

1

Two Different Notions of Modes

1. Modes for reasoning about temporal prop-
erties (time-of-call/exit instantiation states)
of variables� �
e.g., Is X unbound when p(X) is called?�

– dependent on “computation rules”

2. Modes for reasoning about non-temporal
properties
� �
e.g., Which occurrence of X in the config-

uration p(X), q(X), r(X) may instantiate X

eventually?�

– independent of computation rules
– closer to a language construct

Abstract interpretation (mainly) deals with 1.
Strong moding deals with 2.

2

Logical Variables and Communication

Observation: Logical variables are used for:

1. blackboard (competitive) communication
(many writers, many readers), or

2. cooperative communication under estab-
lished protocols:

(a) point-to-point communication
(one writer, one reader),

(b) multicasting or broadcasting
(one writer, many readers).

— Failure is regarded as exception.

In both LP and Concurrent LP, it seems impor-
tant to

1. distinguish between the two uses, and to

2. be able to infer the communication protocols
for cooperative communication.

Strong moding provides compile-time support
for “structured” communication.

3

Linear and Non-linear Clauses

A clauses is linear iff each variable occurs exactly
twice in it.

Observation: Many clauses are linear in both LP
and Concurrent LP —
� �
append([],Y,Y).

append([A|X],Y,[A|Z]):- append(X,Y,Z).�

— though (of course) this is not always the case:

• Shared ground data
p(...,X,...):- r(X), p(...,X,...).

• Wildcards
p(-).

• Receive, check, and use
p(...,X,...):- X>0, p(...,X,...).

• Nonlinear math
p(X,Y):- Y is X*X.

4

Concurrent Logic/Constraint

Programming

Relational Language, Concurrent Prolog, Par-
log, (Flat) GHC, KL1, FCP, Oc, Doc, Strand,
Janus, AKL, Oz, . . .

Communication mechanism: two interpretations

algebraic logical

representing
information

substitutions
constraints

(equality etc.)

receiving matching
ask

(entailment)

sending unification
tell

(publication)

Basic constructs for reactive concurrent pro-
gramming seem to be converging to

ask+ (eventual) tell .

5

Logical Variables as Communication

Channels

Pros:

• Natural — virtually no synchronization bugs.

• Simple and expressive
– data- and demand-driven computation
– incomplete messages with reply boxes
– evolving process structures
– (streams of)* streams
– difference lists, . . .

• A message sequence is a first-class object,
not a special language construct.

Cons:

• Bidirectionality may lead to inefficiency.

• Variables are inadvertently used for non-
cooperative communication.
— “Unification failure” means that the store
collapses.

6

Modes: An Electric Device Metaphor

Signal cables may have various structures (ar-
rays of wires/pins). However,

• the two ends of a cable, viewed from outside,
should have opposite polarity structures, and

• a plug and a socket should have opposite po-
larity structures when viewed from outside.

Goal ⇐⇒ Device

Variable ⇐⇒ Cable

7

Strong Moding

Deals with the dynamic (but implementation-
independent) properties of programs statically :

• dataflow aspect (protocols)

• resource aspect

Shares advantages with strong typing:

1. helps programmers understand their pro-
grams better

2. compile-time detection of mode/type errors

3. compile-time establishment of fundamental
properties

4. basic information for program optimization

5. encourages modular programming

Possible problems:

• explicit moding is burdensome

• monomorphism is too restrictive

8

Mode Inference: The Idea

� �
merge([],Y,Z):- Z=Y.

merge(X,[],Z):- Z=X.

merge([A|X],Y,Z0):- Z0=[A|Z], merge(X,Y,Z).

merge(X,[A|Y],Z0):- Z0=[A|Z], merge(X,Y,Z).�

We want to design a simple set of rules that
allows us to infer properties such as:

• the 1st and 2nd arguments are input streams,

• the 3rd argument is an output stream, and

• the communication protocols used by these
streams are identical.

Requirements:

• Retain the expressive power of the language.

• Allow efficient analysis.

• Allow separate analysis.

9

Syntax of a Subset of Flat GHC (or Oc)

(program) P ::= set of R’s

(program clause) R ::= A :- B

(body) B ::= multiset of G’s

(goal) G ::= T1 = T2 | A

(atom) A ::= p(T1, . . . ,Tn), p ̸= ‘=’

(term) T ::= (as in first-order logic)

(goal clause) Q ::= :- B

For simplicity, we ignore

• guard goals and

• non-linear heads (i.e., non-left-linear clauses).

10

Operational Semantics

Configuration: ⟨B,C, V ⟩ such that VB ∪ VC ⊆ V

(VF : set of all variables in F)

The execution of :- B0 starts with ⟨B0, ∅,VB0
⟩.

P ⊢ ⟨B1, C, V ⟩ −→ ⟨B′
1, C

′, V ′⟩
P ⊢ ⟨B1 ∪B2, C, V ⟩ −→ ⟨B′

1 ∪B2, C′, V ′⟩

P ⊢ ⟨{t1= t2}, C, V ⟩ −→ ⟨∅, C ∪ {t1= t2}, V ⟩

{h:- B} ∪ P ⊢
⟨{b}, C, V ⟩ −→ ⟨B,C ∪ {b=h}, (V ∪ Vh:-B)⟩(

if E |= ∀(C ⇒ ∃Vh(b=h))

and Vh:-B ∩ V = ∅

)

11

The Mode System of Moded Flat GHC

• The mode system assigns polarity structures
to predicate arguments

— so that each part of data structures will
be determined cooperatively, namely by ex-
actly one process.

• Admits mode inference as well as mode dec-
laration + mode checking.

• Constraint-based.

• Decidable and efficient — constraints can be
solved (mostly) as unification over feature
graphs.

12

The Mode System of Moded Flat GHC

A mode tells which process will determine which
parts of data structures, or the dataflow aspect
of communication protocols.

The ‘parts’ are specified by paths (= string of
⟨symbol,arg⟩ pairs).

� �
db([update(3,a),search(5,X)|...])

↑
→ X occurs at the path

⟨db,1⟩⟨.,2⟩⟨.,1⟩⟨search,2⟩.�

A set of program/goal clauses is well-moded if
it satisfies all the mode constraints imposed by
individual clauses.

→ Mode analysis

= constraint solving (in general)

= unification over feature graphs
(in practice)

13

The Mode System: Definition

• Pred/Fun/Var : set of pred./func./variable
symbols

• Term/Atom: set of terms/atoms over Pred,
Fun, Var

• Np
def
= {1,2, . . . , np}, for each np-ary p ∈ Pred

• Nf
def
= {1,2, . . . , nf}, for each nf-ary f ∈ Fun

• PAtom
def
= (

∑
p∈Pred

Np)× (
∑

f∈Fun
Nf)

∗

� �
typical element: ⟨p, i⟩⟨f1, j1⟩ . . . ⟨fn, jn⟩�

• ã : PAtom → Var ∪Fun∪{⊥}, for each a∈Atom

returns the symbol at the given path (or ⊥).

• PTerm and t̃ (t ∈ Term) are defined similarly.

Modes as functions

• M
def
= PAtom → {in, out}

cf. definition of infinite trees

14

The Mode System (Continued)

m : M (= PAtom → {in, out})

p ∈ PAtom , q ∈ PTerm

Submodes

• m/p : PTerm → {in, out}, q 7→ m(pq)

• (m/p)/q
def
= m/(pq)

Mode inversion

• in
def
= out , out

def
= in

• m : M, p 7→ m(p)

• m/p
def
= m/p

Constant submodes

• IN : PTerm → {in, out}, q 7→ in

• OUT
def
= IN

15

Mode Analysis

Purpose: To find a well-moding m : M which
satisfies all the mode constraints syntactically
imposed by the (program, goal) pair.

Constraints imposed by a clause h:- B:

(HF) h̃(p) ∈ Fun ⇒ m(p) = in

(BU) (t1=kt2) ∈B ⇒ m/⟨=k,1⟩ = m/⟨=k,2⟩

(BF) a ∈B ∧ ã(p) ∈ Fun ⇒ m(p) = in

(BV) v ∈Var occurs n (≥ 1) times in h and B at
p1, . . . , pn, of which the occurrences in h

are at p1, . . . , pk (k ≥ 0)

⇒
{
R({m/p1, . . . ,m/pn}), k = 0;

R({m/p1,m/pk+1, . . . ,m/pn}), k > 0;

where R is a ‘cooperativeness’ relation:

R(S)
def
= ∀q ∈ PTerm ∃s ∈ S

(s(q) = out ∧ ∀s′ ∈ S\{s} (s′(q) = in))

16

Principles Behind the Constraints

A Variable is a Cable . . .

R({s1, s2}) ⇔ s1 = s2s1 s2

. . . Or a Hub.

R({s0, s1, s2, s3})

s1 = s2

Constraint for

Connection

17

Principles Behind the Constraints

Clause heads and body goals have inverse po-
larities, so do their arguments.

Goal-head connection

(HF) (BF) (BU)

sink

source

18

Resolution Principle

R({s} ∪ S1) ∧R({s} ∪ S2) ⇒ R(S1 ∪ S2)

19

How Mode Analysis Works

� �
merge([],Y,Z):- Z=1Y.

merge(X,[],Z):- Z=2X.

merge([A|X],Y,Z0):- Z0=3[A|Z], merge(X,Y,Z).

merge(X,[A|Y],Z0):- Z0=4[A|Z], merge(X,Y,Z).�

From the third clause:

m(⟨merge,1⟩) = in by (HF) applied to “.”
m/⟨=3,1⟩ = m/⟨=3,2⟩ by (BU) applied to =3
m(⟨=3,2⟩) = in by (BF) applied to “.”
m/⟨merge,1⟩⟨.,1⟩ = m/⟨=3,2⟩⟨.,1⟩

by (BV) applied to A

m/⟨merge,1⟩⟨.,2⟩ = m/⟨merge,1⟩
by (BV) applied to X

m/⟨merge,2⟩ = m/⟨merge,2⟩
by (BV) applied to Y

m/⟨merge,3⟩ = m/⟨=3,1⟩ by (BV) applied to Z0

m/⟨=3,2⟩⟨.,2⟩ = m/⟨merge,3⟩
by (BV) applied to Z

20

How Mode Analysis Works

� �
merge([],Y,Z):- Z=1Y.

merge(X,[],Z):- Z=2X.

merge([A|X],Y,Z0):- Z0=3[A|Z], merge(X,Y,Z).

merge(X,[A|Y],Z0):- Z0=4[A|Z], merge(X,Y,Z).�

Number of constraints generated: 24

(m(p) = in : 6, m/p1 = m/p2 : 12,
m/p1 = m/p2 : 6)

By eliminating constraints on =k, we obtain

m(⟨merge,1⟩) = in

m/⟨merge,1⟩⟨.,2⟩ = m/⟨merge,1⟩
m/⟨merge,2⟩ = m/⟨merge,1⟩
m/⟨merge,3⟩ = m/⟨merge,1⟩

How to deal with them efficiently?

21

Mode Graphs and Principal Mode

Schemes

A set of mode constraints forms a “principal
mode scheme” that can best be expressed as a
mode graph.

m(⟨merge,1⟩) = in

m/⟨merge,1⟩⟨.,2⟩ = m/⟨merge,1⟩
m/⟨merge,2⟩ = m/⟨merge,1⟩
m/⟨merge,3⟩ = m/⟨merge,1⟩

<m,1> <m,2> <m,3>

< . ,1> < . ,2>

22

A Stack & Driver Example

� �
drive(M,S):- M=:=0 | S=1[].

drive(M,S):- M=\=0 | S=2[push(M),pop(N)|S1],

subtract(N,1,N1), drive(N1,S1).

stack([], D):- terminate(D).

stack([push(X)|S],D):- stack(S,p(X,D)).

stack([pop(X)|S], p(Y,D1)):-

X=3Y, stack(S,D1).�

<d,1> <d,2>

< . ,1>
< . ,2>

<u,1>

<o,1>

< . ,1>
< . ,2>

<s,1> <s,2> <t,1>

<p,2>
<p,1>

< . ,2>
< . ,1>

<o,1> <u,1>

23

Unification of Mode Graphs

� �
. . . , stack(S,none), drive(10,S), . . .�

<d,1> <d,2> <s,1> <s,2> <t,1>

<p,2>
<p,1>

< . ,2>
< . ,1>

<o,1> <u,1>

� �
terminate(D).�

<d,1> <d,2> <s,1> <s,2> <t,1>

< . ,2>
< . ,1>

<o,1> <u,1>

24

Difference Lists

� �
qsort([], Ys0,Ys):- Ys=Ys0.

qsort([X|Xs],Ys0,Ys3):-

part(X,Xs,S,L),

qsort(S,Ys0,[X|Ys2]), qsort(L,Ys2,Ys3).

part(-,[], S, L):- S=[], L=[].

part(A,[X|Xs],S0,L):- A>=X |

S0=[X|S], part(A,Xs,S,L).

part(A,[X|Xs],S, L0):- A< X |

L0=[X|L], part(A,Xs,S,L).�

<q,1> <q,2> <q,3> <p,1> <p,2> <p,3>

<p,4>

< . ,1>
< . ,2>

< . ,2>

< . ,1>

25

Mutual Recursion

� �
driver(Fs,IOs0):-

IOs0=[gett(X)|IOs1], checkinput(Fs,IOs1,X).

checkinput(Fs, IOs, done):- Fs=[], IOs=[].

checkinput(Fs0,IOs0,more):-

Fs0=[N|Fs1], IOs0=[putt(N),nl|IOs1],

driver(Fs1,IOs1).�

<d,1> <d,2> <c,1> <c,2> <c,3>

< . ,2>

< . ,2>< . ,2>

< . ,1>

< . ,1>< . ,1>

< . ,1>
< . ,2>

<g,1>

<p,1>

26

Arrays

In Prolog, arg (and destructive set_arg) provides
array access functionalities.

Principle: For built-in predicates, consider the
mode constraints imposed by their virtual defi-
nitions.

Under the mode system, the basic access oper-
ation should be:
� �

set_arg(I, T0, X0, X, T)�

I-thI
T0

T X0

X

th <s,4><s,2> <s,3><s,1> <s,5>

<?,?>

Moral: Values are resources. Array elements
should be removed when accessed.

27

Arrays

In Prolog, functor(-,+,+) initializes the argu-
ments of the created structure with distinct
fresh variables, which are instantiated if neces-
sary.

Under the mode system, the arguments should
be initialized by constants, which are updated
by set_arg/5.

— The update is in-place if the array occurs at
a single-reference path.

Other generic array operations:
– swap
– split
– concatenate
– change-shape (for multidimensional arrays),
. . .

28

Singleton Variables

A singleton variable may well be a misspelled
variable.
cf. a “dangling” cable and an unplugged socket

� �
p(X0, ...):- . . . , p(XO, ...).

→ m/⟨p,1⟩ = IN ∧m/⟨p,1⟩ = OUT

→ mode error�

Note: Not all singleton variables indicate errors.

� �
length([], N0,N):- N:=N0.

length([-|L],N0,N):-

N1:=N0+1, length(L,N1,N).�

— length will be used as a “byway” process
without affecting the protocol of the rest of the
processes.

length

producer consumer

29

Well-Moded Programs Do Not Go

Wrong

P : a program
B: (body of) a goal clause
m: a mode

Lemma 1
If B : m and B contains t1 =k t2, at least one of
t1 and t2 is a variable.

Theorem 1*

If P : m, B : m and P ⊢ ⟨B, ∅, V ⟩ −→ ⟨B′, C′, V ′⟩,
then C′ is consistent and B′ · C′ : m.

(B′ · C′: B′ instantiated by C′)

Corollary 1*

If P : m, B : m and P ⊢ ⟨B, ∅, V ⟩ ∗−→ ⟨B′, C′, V ′⟩,
then C′ is consistent and B′ · C′ : m.

*Holds unless the extended occur check (which
excludes unification of the form v=v) fails.

30

Extended Occur Check

A goal of the form v = v creates a meaningless
short-circuit.

The pair

� �
G : :- p(A,A), q(A), r(A).

P : p(X,Y) :- X=Y.�

imposes m/⟨q,1⟩ = m/⟨r,1⟩ = IN ,
while the reduced goal

� �
G′ : :- q(A), r(A).�

imposes m/⟨q,1⟩ = m/⟨r,1⟩, which would violate
Theorem 1.

31

Groundness Property Follows from the

Termination Property

Theorem 2
Suppose P : m, B : m, and B has succeeded
under the extended occur check. Then for each

v in B, a unification goal
−
v =

+
t or

+
t =

−
v must

have been executed.

Corollary 2
The final store maps all the variables in B to
ground terms.

32

Cost of the Mode Analysis

• The number of constraints imposed: O(n)
(∀-quantified or non-quantified), where n is
the size of the program

• Adding one unary/binary constraint

≈ unification of a feature graph with an-
other small feature graph

≈ merging of top-level features + merging
of submode graphs

→ O(d·α(n)) time, where
d: size of the subgraph to be unified
(‘complexity’ of data structures),
α: inverse of the Ackermann function

• Total cost:

O(nd·α(n)) for all-at-once analysis
O(n logn+ nd·α(n)) for separate analysis

33

Non-Unary/Binary Constraints

• Imposed by non-linear clauses.

• Cannot be represented by mode graphs.

• Should be delayed — many of n(> 2)-ary
constraints will be reduced to unary/binary
ones by other constraints.
� �
p(X, . . .) :- r(X, . . .), p(X, . . .)

→ m/⟨r,1⟩ = IN ,

m/⟨p,1⟩ = (unconstrained)�

• Some constraints may remain unreduced,

whose satisfiability must be checked even-
tually.

• The practical solution is to let programmers
declare the modes of the paths where non-
linear variables occur.

34

Implications to Programming Style

1. Advocates the “programming as wiring”
paradigm, or (equivalently) programming
with linear clauses.

— leads to more generic mode schemes
— encourages “structured dataflow”
— less error-prone

2. Encourages graceful termination.

— A process cannot discard its arguments
upon termination if it contains variables to
instantiate. (cf. Corollary 2)
(e.g., an output stream must be terminated
by [].)

— All streams will be closed upon termina-
tion.

35

Path-Based Program Analysis

Path-based analysis can be used also for

• the distinction between one-to-one and pos-
sibly one-to-many communication
— which paths are ‘shared’ paths?

• type systems
— which paths are used for the data obeyed
by the constraint system C?
— what function symbols may appear at this
path?

Resources received at linear (non-shared) paths
in a clause head can be

• reclaimed (compile-time garbage collection)
if not passed to the body, or

• locally recycled to represent new data used
in the body,

without any run-time checking (e.g., reference
counting).

36

Resource-Conscious Programming

Insertion sort example:

� �
sort([], S) :- S=[].

sort([X|L0],S) :-

sort(L0,S0), insert(X,S0,S).

insert(X,[], R) :- R=[X].

insert(X,[Y|L], R) :- X=<Y | R=[X,Y|L].

insert(X,[Y|L0],R) :- X>Y |

R=[Y|L], insert(X,L0,L).�

By slight modification, becomes linear w.r.t.
data resources:
� �
sort([], S) :- S=[].

sort([X|L0],S) :-

sort(L0,S0), insert([X],S0,S).

insert([X],[], R) :- R=[X].

insert([X],[Y|L], R) :- X=<Y | R=[X,Y|L].

insert([X],[Y|L0],R) :- X>Y |

R=[Y|L], insert([X],L0,L).�

37

Extension: Polymorphic Modes

A polymorphic predicate is allowed to have dif-
ferent modes for each call.

Typical example: ‘=’ (unification)

For polymorphic predicates,

• compute their principal mode schemes (i.e.,
mode graphs), and

• allow different calls to have different instan-
tiations of them. (e.g., merge1, merge2, . . .)

This can be implemented by making a copy of
the mode graph for each call, rather than the
original graph.

(cf. ML: (λx.A)E vs. let x = E in A)

38

Extension: Higher-Order

call is just a predicate with the constraint
m/⟨call,1⟩ = m (by confusing pred. and func.
symbols).

apply needs extension.

� �
twice(P,X,Z):- apply(P,X,Y), apply(P,Y,Z).�

Whether P is
– a predicate symbol,
– a list of clauses (ground representation), or
– a compiled code with mode information,
it is a ground term at the first-order, but must
have a predicate mode as well. The moding in
the monomorphic case would be:

<a,1> <a,2> <a,3>

<1> <2>

<t,1> <t,2> <t,3>

<1> <2>

39

Extension: Non-Herbrand Constraint

Systems

• Rational terms — Immediate.

• Numerical constraints — Can be moded if
dataflow can be determined statically.

• Equational theories
— Associativity and commutativity can be
included naturally (they preserve resources).
— Idempotency involves resource contrac-
tion/copying.

Example: Bags (= multisets) enjoy
t1 ∪ t2 = t2 ∪ t1 and t1 ∪ (t2 ∪ t3) = (t1 ∪ t2) ∪ t3.
So the paths for bags should obey the con-
straint:

<U,1>
<U,2>

<U,2>
<U,1>

40

Constraint-Based Program Analysis

• Abstract interpretation usually computes fix-
points by iteration, while constraint-based
analysis computes fixpoints by unification
(or constraint solving)
— on the assumption that a single iteration
should lead to a fixpoint.

• Constraint-based analysis provides unified
treatment of

• declaration — constraints provided by a
programmer,

• checking — consistency checking be-
tween constraints from the program and
those given by programmers,

• inference — constraint solving.

• Incremental — inherently amenable to sep-
arate analysis.

41

Related Work and Future

Languages

– Strand (Foster and Taylor)
– Doc (Hirata)
– A’UM (Yoshida et al.)
– Moded Flat GHC (Ueda et al.)
– Janus (Saraswat et al.)

Implementation of the Mode System

– MGTP-based (Koshimura et al.)
– Mode graph (Ueda)
– Another mode graph (Tick et al.)

Applications and Future Work

– Message-oriented Implementation (sequential
and parallel) (Ueda et al.)
– Optimized distributed unification
– Style checker
– High-performance computing
. . .

42

