Strong Moding in
Concurrent Logic/Constraint
Programming

Kazunori Ueda

Dept. of Information and
Computer Science
Waseda University

Main source:
Ueda, K. and Morita, M., Moded Flat GHC
and Its Message-Oriented Implementation Tech-
nique. New Generation Computing, Vol. 13,
No. 1 (1994).

Introductory paper:

Ueda, K., I/O Mode Analysis in Concurrent
Logic Programming. In Theory and Practice
of Parallel Programming, LNCS 907, Springer,
1995.

Two Different Notions of Modes I

1. Modes for reasoning about temporal prop-
erties (time-of-call/exit instantiation states)

of variables

[e.g., Is X unbound when p(X) is called?]

— dependent on “computation rules”

2. Modes for reasoning about non-temporal
properties

/e.g., Which occurrence of X in the config-\
uration p(X), qX), r(X) may instantiate X
\eventuaHy?)

— independent of computation rules
— closer to a language construct

Abstract interpretation (mainly) deals with 1.
Strong moding deals with 2.

Logical Variables and Communication I

Observation: Logical variables are used for:

1. blackboard (competitive) communication
(many writers, many readers), or

2. cooperative communication under estab-
lished protocols:

(a) point-to-point communication
(one writer, one reader),

(b) multicasting or broadcasting
(one writer, many readers).

— Failure is regarded as exception.

In both LP and Concurrent LP, it seems impor-
tant to

1. distinguish between the two uses, and to

2. be able to infer the communication protocols
for cooperative communication.

Strong moding provides compile-time support
for ‘“structured” communication.

Linear and Non-linear Clauses I

A clauses is linear iff each variable occurs exactly
twice in it.

Observation: Many clauses are linear in both LP
and Concurrent LP —

append([],Y,Y).
append ([A[X],Y,[AlZ]) :- append(X,Y,Z).

— though (of course) this is not always the case:

e Shared ground data
pC...,%X,...):—r(X),pC...,X,...).

e Wildcards
p(.).

e Receive, check, and use
p(...,X,...):=X>0,pC...,X,...).

e Nonlinear math
p(X,Y) :-Y is Xx*X.

Concurrent Logic/Constraint
Programming

Relational Language, Concurrent Prolog, Par-
log, (Flat) GHC, KL1, FCP, Oc, Doc, Strand,
Janus, AKL, Oz, ...

Communication mechanism: two interpretations

algebraic logical
fe presen’g NG | o pstitutions Consz:“ra/n ts
information (equality etc.)
L : ask
receiving matching (entailment)
, e . tell
ndin nif n . .
sending unificatio (publication)

Basic constructs for reactive concurrent pro-
gramming seem to be converging to

ask + (eventual) tell| .

Logical Variables as Communication
Channels

Pros:

e Natural — virtually no synchronization bugs.

e Simple and expressive
— data- and demand-driven computation
— incomplete messages with reply boxes
— evolving process structures
— (streams of)* streams
— difference lists, ...

e A message sequence is a first-class object,
not a special language construct.

cons:

e Bidirectionality may lead to inefficiency.

e Variables are inadvertently used for non-
cooperative communication.
— “Unification failure” means that the store
collapses.

Modes: An Electric Device Metaphor I

Signal cables may have various structures (ar-
rays of wires/pins). However,

e the two ends of a cable, viewed from outside,
should have opposite polarity structures, and

e a plug and a socket should have opposite po-
larity structures when viewed from outside.

(£ AL

hhf flfj

Goal <— Device
Variable <«— C(Cable

Strong Moding I

Deals with the dynamic (but implementation-
independent) properties of programs statically:

e dataflow aspect (protocols)

e resource aspect

Shares advantages with strong typing:

1. helps programmers understand their pro-
grams better

2. compile-time detection of mode/type errors

3. compile-time establishment of fundamental
properties

4. basic information for program optimization

5. encourages modular programming
Possible problems:

e explicit moding is burdensome

e monomorphism is too restrictive

Mode Inference: The Idea I

/merge([],Y,Z) - Z=Y.
merge (X, [],Z) :- Z=X.
merge([A|X],Y,Z20) :- Z0=[A|Z] , merge(X,Y,Z).
\merge(X, [A]Y],Z0) :- Z0=[A|Z], merge(X,Y,Z).

J

We want to design a simple set of rules that
allows us to infer properties such as:

e the 1st and 2nd arguments are input streams,
e the 3rd argument is an output stream, and

e the communication protocols used by these
streams are identical.

Requirements:

e Retain the expressive power of the language.
e Allow efficient analysis.

e Allow separate analysis.

Syntax of a Subset of Flat GHC (or Oc) I

(program) P ::= set of R's
(program clause) R ::= A :- B
(body) B ::= multiset of G's
(goal) G ::=Ty =T | A
(atom) A ::= p(Ty,...,Tn), pF'=
(term) T ::= (as in first-order logic)
(goal clause) Q ::= :- B

For simplicity, we ignore

e guard goals and

e non-linear heads (i.e., non-left-linear clauses).

10

Operational Semantics I

Configuration: (B,C,V) such that VguVs CV
(Vp: set of all variables in F)

The execution of :- By starts with (Bg, 0, Vg,).

PrF(B1,C,V) — (Bi,C’,V’}
P = <Bl UBQ,C,V> — <B/1 UBQ,C/,V/>

P = <{t1=t2},0, V> — <@,C U {t1=t2}, V)

{h:-B}UPF
{b},C, V) — (B,CU{b=h},(VUV}._p))

if £ = V(C = 3V, (b=h))
and V;,._.gNV =1

11

The Mode System of Moded Flat GHC I

e [he mode system assigns polarity structures
to predicate arguments

— so that each part of data structures will
be determined cooperatively, namely by ex-
actly one process.

e Admits mode inference as well as mode dec-
laration + mode checking.

e Constraint-based.

e Decidable and efficient — constraints can be
solved (mostly) as unification over feature
graphs.

12

The Mode System of Moded Flat GHC I

A mode tells which process will determine which
parts of data structures, or the dataflow aspect
of communication protocols.

The ‘parts’ are specified by paths (= string of
(symbol, arg) pairs).

/db([update(B,a),search(S,X)|...])

— X occurs at the path

(db, 1)(.,2)(., 1)(search, 2).

N /

A set of program/goal clauses is well-moded if
it satisfies all the mode constraints imposed by
individual clauses.

— Mode analysis

constraint solving (in general)

unification over feature graphs
(in practice)

13

The Mode System: Definition I

e Pred/Fun/Var: set of pred./func./variable

symbols
e Term/Atom: set of terms/atoms over Pred,
Fun, Var
o Np def {1,2,...,nyp}, for each np-ary p € Pred
e Ny def {1,2,...,ns}, for each ng-ary f € Fun
def
® Puiom = (Z Np) x (Z Nf>*
p€ Pred feFun

typical element: (p,i)(f1,51)- - (fnidn)

e a: Py — VarUFunU{ L}, for each a€ Atom
returns the symbol at the given path (or 1).

e P, and t (t € Term) are defined similarly.

Modes as functions
e ME Paiom — {in, out}

cf. definition of infinite trees

14

The Mode System (Continued) I

m : M (= Pysp, — {in, out})
P € Pptoms 4 € Prerm

Submodes

¢ m/p . Prepy — {in, O’U,t}, q‘— m(pQ>
def

o (m/p)/qg = m/(pq)

Mode inversion

— def —— def .
® 1N = out, out = n

3

. M, p—m(p)

e m/p = m/p
Constant submodes

e /[N : Pr,y, — {in,0ut}, q+>in

o« OUT & TN

15

Mode Analysis I

Purpose: To find a well-moding m . M which
satisfies all the mode constraints syntactically
imposed by the (program, goal) pair.

Constraints imposed by a clause h:- B:

(HF) h(p) € Fun = m(p) = in

(BU) (t1=xt2) € B = m/(=, 1) = m/(=,2)
(BF) a€ BAa(p) € Fun = m(p) = in

(BV) ve Var occurs n(> 1) times in h and B at

p1,...,pn, OFf which the occurrences in h

are at p1,...,pr (k>0)

N {R({m/pl,...,m/pn}>, k= 0;
R({m/plam/pk—Fla'"7m/pn})7 k > O;

where R is a ‘cooperativeness’ relation:

R(S) ¥ vge Pp,,,, 35 €S

(s(q) = out A Vs' € S\{s} (s'(q) = in))

16

Principles Behind the Constraints I

A Variable is a Cable ...

SR _

51 5 R({s1,82}) & s1 =33

...Or a Hub.

_) 0

-

1 = 82
R({s0,51,52,53}) Constraint for

Connection

17

Principles Behind the Constraints I

Clause heads and body goals have inverse po-
larities, so do their arguments.

- -

Goal-head connection

(HF) (BF) (BU)

J < Uu

=)
= 7

18

Resolution Principle I

R({s}US1) AR({s} US2) = R(S1 U S2)

19

How Mode Analysis Works I

/merge([],Y,Z) - Z=1Y.
merge (X, []1,Z) :- Z=5X.
merge([A|X],Y,Z20) :- Z0=3[A|Z] , merge(X,Y,Z).
\merge(X, [A]Y],Z0) :- Z0=4[AlZ] , merge(X,Y,Z).)

From the third clause:

m({merge, 1)) = in by (HF) applied to “."
m/(=3,1) = m/(=3,2) by (BU) applied to =3
m({=3,2)) = in by (BF) applied to “.”
m/(merge,1)(.,1) =m/(=3,2)(., 1)

by (BV) applied to A
m/(merge, 1)(.,2) = m/(merge, 1)

by (BV) applied to X
m/(merge, 2) = m/(merge, 2)

by (BV) applied to Y
m/(merge,3) = m/(=3,1) by (BV) applied to Z0
m/(=3,2)(.,2) = m/(merge, 3)

by (BV) applied to Z

20

How Mode Analysis Works I

/merge([],Y,Z) - Z=1Y.
merge (X, []1,Z) :- Z=5X.
merge([A|X],Y,Z20) :- Z0=3[A|Z] , merge(X,Y,Z).
\merge(X, [A]Y],Z0) :- Z0=4[AlZ] , merge(X,Y,Z).)

Number of constraints generated: 24

(m(p) =1 :6, m/p1 =m/py: 12,
m/p1 = m/p2 : 6)

By eliminating constraints on =5, we obtain

m

m((merge, 1))
m/(merge, 1)(.,2)
m/{merge, 2)

m/(merge, 1)

m/({merge, 1)

m/{merge, 3) m/{merge, 1)

How to deal with them efficiently?

21

Mode Graphs and Principal Mode
Schemes

A set of mode constraints forms a “principal
mode scheme” that can best be expressed as a
mode graph.

m

m((merge, 1))
m (merge, 1)(.., 2)
)
)

m/(merge, 1)

m/(merge, 2 m/(merge, 1)

m/{merge, 3

<m, 1>L<m 2>L<m 3>

m/(merge, 1)

22

A Stack & Driver Example I

drive(M,S) :-M=:=0 | S=11[].
drive(M,S) :- M=\=0 | S=5[push(M),pop(N) |S1],
subtract(N,1,N1), drive(N1,S1).
stack([], D) :- terminate(D).
stack([push(X) |S],D) :- stack(S,p(X,D)).
stack([pop(X) 8], p(Y,D1)) :-
X=3Y, stack(S,D1).

<d,1>| <d,2> <t,1>

23

Unification of Mode Graphs I

[, stack(S,none), drive(10,S), ... J

<d,1>| <d,2>| <s,1> <t,1>

<0,1>

<o0,1>

24

Difference Lists I

gsort ([], Ys0,Ys) :- Ys=YsO.
gsort ([X|Xs],¥s0,Ys3) :-
part(X,Xs,S,L),
gsort(S,Ys0, [X|Ys2]), gsort(L,Ys2,Ys3).
part(_, [], S, L):-S=[],L=[].
part (A, [X|Xs],SO,L) :— A>=X |
SO0=[X|8S], part(A,Xs,S,L).
part (A, [X|Xs],S, LO) :- A< X |
LO=[X|L], part(A,Xs,S,L).

o J

<q,1>| <q,2>| <q,3> <p,1>| <p,2>| <p,3>

<p,4>

25

Mutual Recursion I

~

/driver(Fs,IOsO):—

I0s0=[gett (X) |I0s1], checkinput(Fs,I0s1,X).
checkinput (Fs, IOs, done) :- Fs=[], I0s=[].
checkinput (Fs0,I0s0,more) : -

FsO0=[N|Fs1], I0sO=[putt(N),nl|I0s1],

| driver(Fs1,I0s1).)
<d,1>| <d,2> <c,1j <c,2> <c,3j
/ /r————J/

26

Arrays I

In Prolog, arg (and destructive set_arg) provides
array access functionalities.

Principle: For built-in predicates, consider the
mode constraints imposed by their virtual defi-
nitions.

Under the mode system, the basic access oper-
ation should be:

[set_arg(I, TO, X0, X, T)]
<s,1>| <s,2>| <s,3>| <5,4>| <S,5>
TO|
<?,7>
Tl

Moral: Values are resources. Array elements
should be removed when accessed.

27

Arrays I

In Prolog, functor(-,+,+) initializes the argu-
ments of the created structure with distinct
fresh variables, which are instantiated if neces-
sary.

Under the mode system, the arguments should
be initialized by constants, which are updated
by set_arg/5.

— The update is in-place if the array occurs at
a single-reference path.

Other generic array operations:

— swap

— split

— concatenate

— change-shape (for multidimensional arrays),

28

Singleton Variables I

A singleton variable may well be a misspelled
variable.

cf. a “dangling” cable and an unplugged socket

~

p(X0, ...):-...,p(X0, ...).
— m/{p,1) = IN Am/{p,1) = OUT
= mode error

)

Note: Not all singleton variables indicate errors.

~

p
length([], NO,N):- N:=NO.
length([_|L],NO,N) :-

N1:=NO+1, length(L,N1,N).

o /

— 1length will be used as a “byway” process
without affecting the protocol of the rest of the
Processes.

producer consumer

length

29

Well-Moded Programs Do Not Go
wWrong

P: a program
B: (body of) a goal clause
m. a mode

Lemma 1
If B:m and B contains t1=4 t>, at least one of
t1 and to is a variable.

Theorem 1%
If P:m, B:mand P+ (B,0,V) — (B, C", V'),
then C' is consistent and B’-C’ : m.

(B’ - C’": B’ instantiated by C’)

Corollary 1*
If P:m, B:m and P+ (B,0,V) — (B',C', V'),
then C’ is consistent and B’ - C’ : m.

*Holds unless the extended occur check (which
excludes unification of the form v=v) fails.

30

Extended Occur Check I

A goal of the form v=v creates a meaningless
short-circuit.

The pair

G - p(A,A),q(A), r(A).
P: p(X,Y) :-X=Y.

imposes m/(q,1) =m/(r,1) = IN,
while the reduced goal

{ G’ : :—=q(h), r(h). }

imposes m/{(q,1) = m/(r, 1), which would violate
Theorem 1.

31

Groundness Property Follows from the
Termination Property

Theorem 2

Suppose P : m, B : m, and B has succeeded

under the extended occur check. Then for each

_ o+ +
v in B, a unification goal v=¢ or t =v must

have been executed.

Corollary 2
The final store maps all the variables in B to
ground terms.

32

Cost of the Mode Analysis I

e The number of constraints imposed: O(n)
(V-quantified or non-quantified), where n is
the size of the program

e Adding one unary/binary constraint

~ unification of a feature graph with an-
other small feature graph

~ merging of top-level features 4+ merging
of submode graphs

— O(d-a(n)) time, where
d: size of the subgraph to be unified
(‘complexity’ of data structures),
o inverse of the Ackermann function

e [otal cost:

O(nd-a(n)) for all-at-once analysis
O(nlogn + nd-a(n)) for separate analysis

33

Non-Unary/Binary Constraints I

e Imposed by non-linear clauses.
e Cannot be represented by mode graphs.

e Should be delayed — many of n(> 2)-ary
constraints will be reduced to unary/binary
ones by other constraints.

p(X, ...) - r(X, ...), p(X, ...)
— m/(r,1) = IN,

m/(p,1) = (unconstrained)

/

e Some constraints may remain unreduced,
whose satisfiability must be checked even-
tually.

e [he practical solution is to let programmers
declare the modes of the paths where non-
linear variables occur.

34

Implications to Programming Style I

1.

Advocates the “programming as wiring”
paradigm, or (equivalently) programming
with linear clauses.

— |leads to more generic mode schemes
— encourages ‘structured dataflow”
— |less error-prone

. Encourages graceful termination.

— A process cannot discard its arguments
upon termination if it contains variables to
instantiate. (cf. Corollary 2)

(e.g., an output stream must be terminated
by [1.)

— All streams will be closed upon termina-
tion.

35

Path-Based Program Analysis I

Path-based analysis can be used also for

e the distinction between one-to-one and pos-
Sibly one-to-many communication
— which paths are ‘shared’ paths?

e type systems
— which paths are used for the data obeyed
by the constraint system C?
— what function symbols may appear at this
path?

Resources received at linear (non-shared) paths
in @ clause head can be

e reclaimed (compile-time garbage collection)
if not passed to the body, or

e |locally recycled to represent new data used
in the body,

without any run-time checking (e.g., reference
counting).

36

Resource-Conscious Programming I

Insertion sort example:

‘sort([1, S) :- s=[1.
sort ([X|LO],S) :-

sort (L0,S0), insert(X,S0,S).
insert (X, [1, R) :- R=[X].
insert (X, [YIL], R) :- X=<Y | R=[X,YI|L].
insert (X, [Y|LO],R) :- X>Y |

R=[Y|L], insert(X,LO,L).

-

J

By slight modification, becomes linear w.r.t.

data resources:

‘sort([1, S) :- s=[1.
sort ([X|LO],S) :-

sort (L0,S0), insert([X],S0,S).
insert ([X], [], R) :- R=[X].

insert ([X],[YIL], R) :- X=<Y | R=[X,Y|L].

insert ([X],[Y|ILO],R) :—= X>Y |
R=[Y|L], insert([X],LO,L).

37

Extension: Polymorphic Modes I

A polymorphic predicate is allowed to have dif-
ferent modes for each call.

Typical example: ‘=" (unification)

For polymorphic predicates,

e compute their principal mode schemes (i.e.,
mode graphs), and

e allow different calls to have different instan-
tiations of them. (e.g., mergeq, merge,, ...)

This can be implemented by making a copy of
the mode graph for each call, rather than the
original graph.

(cf. ML: (A\x.A)E vs. letx=FE in A)

38

Extension: Higher-Order I

call is just a predicate with the constraint
m/{call, 1) = m (by confusing pred. and func.
symbols).

apply needs extension.

[twice(P,X,Z) .- apply (P,X,Y), apply (P,Y,Z). }

Whether P is

— a predicate symbol,

— a list of clauses (ground representation), or
— a compiled code with mode information,

it is a ground term at the first-order, but must
have a predicate mode as well. The moding in
the monomorphic case would be:

<a,3>

39

Extension: Non-Herbrand Constraint
Systems

e Rational terms — Immediate.

e Numerical constraints — Can be moded if
dataflow can be determined statically.

e Equational theories
— Associativity and commutativity can be
included naturally (they preserve resources).
— Idempotency involves resource contrac-

tion/copying.

Example: Bags (= multisets) enjoy

t1Utr = to Uty and t1 U (to Utg) = (t1 Uto) Uts.
So the paths for bags should obey the con-
straint:

<U,1>
<U, 2>

<U,1>
<U,2>

40

Constraint-Based Program Analysis I

e ADbstract interpretation usually computes fix-
points by iteration, while constraint-based
analysis computes fixpoints by unification
(or constraint solving)

— on the assumption that a single iteration
should lead to a fixpoint.

e Constraint-based analysis provides unified
treatment of

e declaration — constraints provided by a
programmer,
e checking — consistency checking be-

tween constraints from the program and
those given by programmers,

e /nference — constraint solving.

e Incremental — inherently amenable to sep-
arate analysis.

41

Related Work and Future I

Languages

— Strand (Foster and Taylor)

— Doc (Hirata)

— A’UM (Yoshida et al.)

— Moded Flat GHC (Ueda et al.)
— Janus (Saraswat et al.)

Implementation of the Mode System

— MGTP-based (Koshimura et al.)
— Mode graph (Ueda)
— Another mode graph (Tick et al.)

Applications and Future Work

— Message-oriented Implementation (sequential
and parallel) (Ueda et al.)

— Optimized distributed unification

— Style checker

— High-performance computing

42

