HydLa: A High-Level Language for
Hybrid Systems

April 2012

Kazunori Ueda, Waseda University and NI|
(with thanks to my students)

Computer Software, Vol.28, No.1 (2011), pp.306-311.

Research Groups and Their Relationship

/ Verification and Dependability \

Advanced Unifying
Programming Languages
Languages (LMNtal)

High-performance
Verification

v Three interrelated groups
v Three cross-cutting concerns

Hybrid systems

¢ Systems whose states can make both continuous and

discrete changes X o
Examples: y >§
® bouncing ball, billiard, . . . -
thermostat + air conditioner + room ~

|

m signal/crossing + roads/railroad + cars -

m (in general) Continuous systems with some
components whose properties are described using
case analysis

e physical, biological, control, cyber-physical, etc.
¢ Related to CS, control engineering and apps.
¢ Programming language aspects rather unexplored

Challenges from the PL perspective

¢ Establish a high-level language
® equipped with the notion of continuous time,

m discrete-time systems could be dealt as infinite
sequences

® equipped with the notion of continuous changes,
® in the true sense

e that “correctly” handles uncertainties and errors of
real values,

® interval computation with conditional jumps

® equipped with constructs for abstraction and
parallel composition.

cf. Edward A. Lee, Cyber-Physical Systems - Are Computing Foundations
Adequate? NSF Workshop on Cyber-physical Systems, 2006.

Constraint Programming

¢ A declarative paradigm in which a problem is described
using (in)equations over continuous or discrete domains

® requires no algorithms: constraint programming
languages are often called modeling languages

® the essence is computing with partial information

m while AI+OR communities are most interested in
constraint satisfaction

¢ Declarative description of hybrid systems
= constraint programming of functions over time

® |ogical implication (entailment) provides a
mechanism for conditionals and synchronization

Example: Ll(e-stop=1 = speed’ =—4.0)
(ask) (tell)

Existing Modeling Frameworks

¢ (more or less) procedural / state-based

e Hybrid {Automata, Petri nets, I/O automata, Process
Algebra} (models)

® KeYmaera (languages)
¢ Constraint-based (domain = functions over time)
e Hybrid CC (hybrid concurrent constraint language)

® CLP(F) (constraint logic programming over real-
valued functions)

® Kaleidoscope ’90 (discrete time)
e HydLa (constraint hierarchy)

L. P. Carloni et al, Languages and Tools for Hybrid Systems Design, Foundations
and Trends in Electronic Design Automation, Vol.1 (2006), pp.1-193.

HydLa : Overview and Features (1/2)

¢ Declarative (€ procedural)

® Minimizes new concepts and notations by
employing popular math and logical notations

® Describes systems using logic and hierarchy
¢ Constraint-based

® Basic idea: defines functions over time using
constraints including ODEs, and solves initial value
problems

m cf. streams and lists are defined by difference
equations

® Handles partial information properly
® interval constraints fit well within HydLa

HydLa : Overview and Features (2/2)

¢ Features constraint hierarchies

® |t’'s difficult to describe systems so that the
constraints are consistent and well-defined.

Example : bouncing ball, billiard, . . .

= A ball normally falls by gravity (default), while it

obeys the collision equation when it bounces
(exception).

m Frame problems occur in the description of
complex systems

® Want to define these properties concisely

Example 1 : Sawtooth function constraint
modules (rules) |

INIT <0< <. A
INCREASE < LI(f’ =1). —
DROP < H{f—=1 = 1=0).

J
INIT, (INCREASE &DROP)™~__
: _

guard

¢ Describes properties at time 0 | _Priority

¢ Time argument is implicit
(=1) means Vvt >0 (f(t)=1) ////4 ¢

¢ Family of sawtooth functions with O
the slope 1 and the range [0, 1)

¢ The value of f at a specific time point is just [0, 1)
but all functions reach all values [0, 1) and oscillate.

Example 2 : Bouncing Ball .

1, —

INIT < ht=10 A ht’=0. ><
PARAMS < [0(g=9.8 A c=0.5). \

FALL < O(ht” =—g).
BOUNCE « O(ht—=0 = ht'=—cx(ht'=)).

INIT, PARAMS, (FALL << BOUNCE).

¢ When the ball is not on the ground,
{INIT,PARAMS,FALL,BOUNCE} is maximally consistent

¢ When the ball is on the ground,
{INIT,PARAMS,BOUNCE} is maximally consistent

¢ Basic HydLa defines a program as the pair of (i) a poset
of rule sets and (ii) rule definitions.

Syntax of Basic HydLa

(program)
(rule sets)
(definitions)

(definition)

(constraint)
(guard)

(atomic
constraint)

(expression)

P ::
RS ::
DS ::

> OO N O

m

(RS, DS)
poset of sets of R
set of D’s with different LHS

ReC T‘ function from R to C

A|CAC | G=C | OC|3x.C
A|lGAG
ErelopE

normal exp. | E’ | E—

11

Syntax of Basic HydLa: Comments

¢ A program is a pair of
® poset of “sets of rules” (RS) and
® rule definitions (DS).
Example: {INIT,PARAMS,BOUNCE}
< {INIT,PARAMS,FALL,BOUNCE}
® How to derive RS from << is beyond Basic HydLa

¢ HydLa / Basic HydLa is a language scheme in which the
underlying constraint system is left unspecified

¢ dx. C realizes dynamic creation of variables
® Example: creation and activation of new timers
e i is eliminated at runtime using Skolem functions

12

Semantics of Basic HydLa .

¢ Declarative semantics (Ueda, Hosobe, Ishii, 2011)
® What trajectories does a HydLa program denote?

¢ Operational semantics
(Shibuya, Takata, Ueda, Hosobe, 2011)
® How to compute the trajectories of a given HydLa
program?

¢ Unlike many other programming languages, declarative
semantics should come first since
® completeness of the operational semantics can’t be
expected and
® diverse execution methods could be explored

Declarative Semantics of Basic HydLa

¢ The purpose of a HydLa program is to define the
constraints on a family of trajectories.

X(t) ={x(t)}.,, (t=0)

¢ Declarative semantics, first attempt

X(t) |= (RS, DS)

® Works fine for programs not containing

in the consequents of conditional constraints
G = C [JSSST’08].

Example: Systems with a fixed number of
components and without delays

14

Declarative Semantics of Basic HydLa .

¢ Not only trajectories, but also constraint sets defining
the trajectories, change over time

® Reason 1: change of maximally consistent sets

® Reason 2: conditional constraints may discharge
consequents (history sensitive)

@ When the consequent of a constraint starts with
, whether it’s in effect or not depends on
whether the corresponding guard held in the
past

¢ Declarative semantics (refined)

_ Q(t) : module definitions
<X,Q> = (RS, DS) with dynamically added
consequents

Preliminary: Ll-closure

16

¢ We identify a conjunction of constraints with a set of

constraints.

¢ We regard a set of constraints as a function over time.
® A constraint Cin a program is regarded as a function

4

C(0)=C, C(t) ={} (t>0) .

-closure * : Unfolds the topmost

dynamically and recursively.
Example: C={f=0,LI{f'=1}}
C*(0) = {f=0,f'=1,LK{f'=1}}
C*(t) ={f'=1}(t>0)

-formulas

Declarative Semantics

17

(X,Q)|= (MS,DS) <> (i) A (ii) A (iii) A (iv)

() YM (Q(M)=Q(M)*) (-closure
(i) VM (DS(M)*<c Q(M)*) extensiveness

(iii) VtIE e MS (
(X(t) ={Q(M)(t) |[M € E}) satisfiability

A—3IX JE" € MS (
V' <t (X'(t) =x(t)) o
E<E maximality
AX (1) ={QM)(t) M e E})
AVdVeVM e E(
(X(t) = d) A ((d =€) e Q(M)(t)) =-closure
=ec Q(M)(t)))
(iv) Q(M)(t) at each tis the smallest set satisfying (i)-(iii)

Example 3 : Absence of back propagation 1

P = ((Powerset({D,E,F}), &), DS)
DS={D < y=0,
E<o LYy =1AXx=0),
Feo Uly=5=x=1)}

a. y(t)=t, x(t)=1 satisfies D, E, F at O<t.

b. y(t)=t, x(t)=2 satisfies D, E, F at 0<t<5 and D, E at t=5. It
again satisfies D, E, F at t>5.

c. y(t)=t, x(t)=2 (t<5), x(t)=1 (t=5) satisfies D, E, F at 0<t<5
and D, F at t=5. It again satisfies D, E, F at t>5.

All of a., b. and c. satisfy local maximality and
hence satisfy P.

Example 4 : Bouncing Ball, revisited P

P = (RS, DS)

= ({{I,Pa,B}, {I,Pa,F,B}}, {{I,Pa,B} <({l, PaFB}})
DS { | < ht=10 A ht’=0,

Pa < [0(g=9.8 A c=0.5), f\/xm\%
F < O(ht’'=—g), f \
B & L(ht—=0= ht'=—cx(ht’-))} L

¢ ht and ht” are not differentiable when bouncing

¢ However, to solve ODEs on ht and ht’, right continuity
of ht and ht’ at the bouncing must be assumed

¢ To determine ht at the bouncing, left continuity of ht
must be assumed as well. (cf. ht’ is determined from B.)

=>» Trajectories with differential constraints should assume
both right and left continuity with higher priority.

Example 5 : Behaviors defined without ODEs

P
RS
DS

Ce

= (RS, DS)

({{A.C}, {A,B,C}}, {{A.C} < {A,B,C}})

{A o f=0AO(F =1),
B < Li(g=0),

(f=5 = Ja.(a=0 A

(@'=1)

AU(@=2=g=1))) }

¢ gis an impulse function that fires at time 7 (= 5+2).
® an example of non-right-continuous functions

[1(0.9<a A a<1.1) A L(a’=b)

¢ ais a set of all differentiable trajectories whose ranges

are (0.9, 1.1) .

20

Example 6 : Zeno behavior =

P = (MS, DS)

= ({{1,Pa,B}, {I.PaF B}, {{l.Pa B} < {IPaF B}})
DS—{I<:>ht 10 A ht’=0, S

Pa < [1(g=9.8 A ¢c=0.5), . >?
F < O(ht’= —g), \

B < O(ht-=0 = ht'=—cx(ht'-))}

¢ This doesn’t define a trajectory after the Zeno time.
¢ A rule for defining the trajectory after Zeno:

O(ht==0 A ht'—==0 = O(ht=0))

® Checking of the guard condition would require a
technique not covered by the current operational
semantics.

Execution algorithm *

each phase updates

the maximal <
consistent set and
simulation time T

SS (store set) : set of compute
possible stores Point Phase (PP)

tries the top]
: = >1 [[
(failure: choose candidate first
the next
candidate set branch of trajectory:\
and redo PP or compute nondeterministically
\ IP Interval Phase (IP) choose one element
from SS and redo PP
an element of - S| or IP Y,
SS represents a =0 =1 >1
result of
execution of PP Endtime?
or IP no '

i J

Algorithm for Point Phase and Interval Phase

PP 1P

/ BRI & 15 B \
PEEEZRDS
Calculate Calculate

L EREERS | deductive deductive

_:m%ﬁ::, closure closure
2klE

J&ﬁﬁﬂ: ’é"f&‘)
ntervalPhase

Find the next
jump time

23

Closure calculation repeatedly checks the antecedents of
conditional constraints

IP computes the next jump time (minimum of the following):
1. a conditional constraint becomes effective
2. a conditional constraint becomes ineffective
3. a ruled-out constraint becomes consistent with effective ones
4. the set of effective constraints becomes inconsistent

Execution algorithm should handle:

1.

2.

3.

24

conditions that starts to hold “after” some time point
® need to compute the greatest lower bound of the

time interval

A & x=0.

B < U (y=1).

ColX=1 A (x=3 = y=2)).
A, (B << O).

initial values given as intervals

® could be divided into a subinterval
that entails a guard and another
that does not entail the guard

systems with parameters

® needs symbolic computation

X, Y
. O
3 t
ht=15
(ceiling)
ht=11
ht=10

ht=9

Hyrose: an implementation of HydLa

¢ implemented in C++

¢ 38,000 LOC
¢ Key features:

. . . Constraint Hierarchy Solver
® simulation with ekl

symbolic parameters | d-a Forward Simulator)|
L. Simulator "S-;/r-n-t;o-lfc_"
® nondeterministic o]

simulation . = =]
virtual Constraint Solver)
Symbolic VCS
e o e —
Mathematica REDUCE
. CS Jl CS |
- 5 AN Y,
~z h 4
Mathematica REDUCE

¢ http://www.ueda.info.waseda.ac.jp/hydla/

Example: Bouncing ball with 5<ht<15

Hmmmmmmm- Caserl-—----—-—

H----- 1---------

_________ o] = S

time : 0

ht . pht

ht' -0

ht" : (-49)/5

_________ [[GESS=SSat

time :0->
1/7*107™N(1/2)*pht™(1/2)

ht : pht+(-49)/10*t"2

ht' . (-49)/5*t

ht" : (-49)/5

26

e 2---------

_________ o] = S

time : 1/7*107™N(1/2)*pht™N(1/2)
ht : 0

ht' :
28/5*(2/5)™N(1/2)*pht™(1/2)

ht" : UNDEF

_________ [= I ——

Hommmmmeee parameter condition---------
pht : (5, 2205/338)

Hmommmm- Casel2-—-~----

Hommmmmeee parameter condition---------
pht : [2205/338, 15)

Conclusion ol

¢ Defined Basic HydLa and gave a declarative semantics
® now handles dynamically evolving systems
® obtained through a lot of preliminary study
(modeling examples, prototype implementation, etc.)

¢ Operational semantics is also developed
® and evolved into a nondeterministic algorithm that
allow uncertainties
® however, completeness doesn’t hold even for a very
small class of ODEs [Henzinger ’'96]

¢ Modeling languages must be given a declarative
semantics first to allow flexible execution

¢ Adopted simple notions of time and trajectory
® adopting hybrid time is a topic of future work

