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Overview

Hierarchical Graph Rewriting —

+« Expressive formalism that subsumes term rewriting, process calculus, etc.
! Designing a practical high-level declarative language based on

hierarchical graph rewriting is still a challenge.
e The “right” construct for graph cloning and deletion is highly non-trivial.

LMNtal! MELL? proof nets
v Concrete PL for hierarchical graphs v Hierarchical graph rewriting
+« We propose well-motivated graph <= for Linear Logic proofs
cloning and deletion constructs + involving cloning and deletion

1. pronounced “elemental” 2. Multiplicative Exponential Linear Logic
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Hierarchical graphs

Supports two structuring mechanisms: connectivity and hierarchy
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Hierarchical Graphs (Nodes + Edges + Boxes) can represent all these.




Overview LMNtal ~ MELL Proof Nets  the mell API Encoding  References

LMNtal (https://bit.ly/imntal-portal)

e Ahierarchical graph rewriting language inspired by concurrent
logic languages and Constraint Handling Rules [Ued09]
—graph nodes as atom(ic formula)s (no constants/functors)
—links as (zero-assignment) logical variables

e Comes with a parallel model checker with state space visualizer
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LMNtal graph State space visualization of LTL model checking
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MELL proof nets

Graph representation of MELL (Multiplicative Exponential LL) proofs [Gir87]
e Cutelimination expressed as hierarchical graph rewriting rules

e Some rules clone or delete hierarchical graphs

LA
FT, A FA,7AL 744 — Lo
) —————7c — For, A F 7T, 1A FA7AL?A
1A A, 7AL 2 ! cut
. = . cut -7, 1A F0, A 7A
F7T, A ETETIWN cut
—————— 7cx
FT, A

=» Cut elimination of MELL proof nets could provide a useful design
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Contributions

1. We extended LMNtal with process context aggregates, and designed
and implemented the mell API for graph cloning and deletion.

2. We showed that MELL proof nets and their cut elimination rules can
be directly encoded into LMNtal.

3. We encoded several process calculi and demonstrated the generality of
LMNtal with the proposed constructs.

a sy
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1. Overview

2. Hierarchical Graph Rewriting Systems and LMNtal
3. MELL and Proof Nets

4. Design and Implementation of the mell API

5. Encoding MELL proof nets and process calculus
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Formulation of hierarchical graph rewriting systems

Two approaches:

(1) (traditional) Algebraic approach (e.g., using pushout in category theory)

(2) PL-style approach with abstract syntax and small-step semantics, where
graphs are represented by terms subject to structural congruence

Hierarchical Graph Rewriting System Ll;ﬂr?;jégé? Definition Style
CHAM(Chemical Abstract Machine) [BB92] model (2)
BRS(Bigraphical Reactive System) [Mil01] model (1)
AHP (Attributed Hierarchical Portgraph) [EFP18] model (1)
LMNtal [Ued09] language (2)
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Syntax of LMNtal
(process) P == 0 | p(Xy,..,X,) | P,P | m{P} | T:-T
(process template) T == 0 | p(Xy,..,X,) | 7,7 | m{T} | T:-T
| @ | SplXy, .., X,|A] | p(*Xy, ..., X))
(residual) A == [] ’ *X

Example:

P O @R

G2
J/GPAo 50 B,
MkO==>r0, -

subgraph matching and rewriting

[

0G0 | G(AB),SPIAI"XI} i- n(A,B)Sp[AIX]. | | P(62)8(62),
{i(A,B),a(A,61),b(G2)}. n(A,B),a(A,G1),g(61).
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Syntax of LMNtal

Atom (Node) with ordered links (edges)

(process) P == 0 |“p(Xy,..,X,) | P,P | m{P} |

(process template) T == 0 | p(Xy,...,X,) | T,7 | m{T}

Process Context (Wildcard) $19[X1"-~’Xn|f4] | p(" Xy, ...

(residual) A

Example:
Free link @
m: ®
&9- O ; — >
o subgraph matching and rewriting
B ), | GB),SPIAIXI} :- n(A,B),SPIAIN]. |

{i(A,B),a(A,61),b(G2)}.

- Graphs with fixed-arity nodes are often called port graphs;

%

b(62),g(62),
n(A,B),a(A,61),g(61).

- Free links (half edges) play key roles in subgraph matching and rewriting
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Subgraph cloning (1)

Cloning of subgraphs is a highly expected feature of high-level graph rewriting

languages, but how to handle edges of the clones is not obvious. For example,

e In LMNtal which handles port graphs, () and (¢) have fixed arities.

We must somehow splice two clones of the subraph into the context of the

original subgraph.
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Subgraph cloning (2): nlmem

LMNtal’s nlmem (nonlinear membrane) API [Inu+08] provides subgraph (box)

N “X
cloning. For instance, nlmem. copy clones as:

Can this design be supported by mathematical/logical background?
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Subgraph cloning (3)

Design of graph cloning constructs is highly non-trivial even in

(traditional) algebraic approaches.

Graph Rewriting System with cloning | Definition Style | Background
SePO [Cor+06], PBPO+[OER21] Category Theory v
DLGRS [BES18] Description Logic v
LMNtal with nlmem PL standard ?
Present Work PL standard v

Research Question:

Can we justify our language design based on some mathematical/logical

system as a design guideline?
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Multiplicative Exponential Linear Logic (MELL)

Definition (MELL Formula)

(formula) F ::= X (atomic) | X* | FQF | FB F |!F | ?F

(Binding strength: {+} > {7} > {®,%})

Negation + is moved/removed by:
Al :=A (A®B)':=A'%B* (AX®B)':=At@B*

(1AL = 2(AL) (24)L :=1(4t)
Linear implication — is defined by:
A—-oB:=A'%B
Classical implication — can be translated by using linear implication —:

A—-B — !A—-B
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MELL inference rules (one-sided) 15/41

A, B: formulae, T, A: multisets of formulae

FT,A FA, At

FA AL ax TA cut fmmo
F1,4, B FT,A +A,B FT A
) ) maix
~T,ASB ‘T.AA®B ° T, A ’
FA FT,A FT,74.7A ET
7T, 14 - A, A 0Aa, _rL
’ FT.74 @ T4 ¢ T4 W

(promotion rule)
(Note: ‘?’ ontheI)

The cut elimination theorem holds [Gir87].
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MELL proof nets

MELL proof nets are graph representations of proofs of MELL sequents

with higher level of abstraction.

——ar ————ax —ar ———
Fntn Fntn wr Fntn Fntn
Fnlnt (n®n) Fntn . nt Rt Fntnt (n®@n) o
S ax
Fntntnt (n®@n)en 3 /@\ (nt®nt), (nen) Fntn -
F(nt®nh),nt (n@n)®@n ., = it n®n pt < F(nt¥nt),nt (n®@n)®n ~
F(nt®n ) ¥nt,(n®@n)@n e @ Fnt®nt)Bat,(nen) ®@n
(n*N nt) ¥ nt (n®n)®n

MELL proof nets are defined in two steps:
1. graph structures (proof structures)

. geometric constraints on proof structures (using switching graphs).
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MELL proof structures

Definition (MELL proof structures)

An MELL proof structure is a directed acyclic multigraph that combines

17/a1

the cells and wires and the promotion box.

A B A B A At
A% B Al A

A®B

?7A 7A A A
7A ?7A ?7A %

Cells and wires Promotion box
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MELL proof nets 18/41

Definition (MELL proof nets)

e Aswitching for a proof structure is a choice of left or right for % and ?c.

e Aswitching graph is obtained by rewriting all %% and ?c cells according to
switching, and removing the outer frame of all promotion boxes.

A B 24 24

e Ty

e AMELL proof net is a proof structure whose switching graphs have no undirected

cycles and such that the content of each box is a proof net, inductively.

MELL proof nets can be converted to MELL (+ mix rule) sequents.
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LMNtal MELL Proof Nets

Overview

An example of MELL proof nets

F?nt,n

azx 7w
Hnen', ?n'%¥n F?2(n@nt), ?nt,n
7d I ax
F7(n@n'), ?nt¥n F7(n®nt), 7ot In b, nt
7w
F?2(n@n'), ?n', ?n' ¥n F?(n®n'),?nt n,Ingn
cut N
F?2(ln@n'),?(In@n"),?n",?n" ,n , Fnt,n
F?(nen'),?(ln®n'),?nt, n - 7nt,n
o
F?(n@nt),?nt,n L 2nt®n
! az
F?(n®@nt), 7nt®n F1(?7nt%n) Fnent, ?7n'¥n
x ®
F?7(n®nt )R ¥n FI(?ntFn) @ (In®@nt), 7n' Fn
cut
k7t ®n

I

m@nt WmtIn n n
?@ ® @
n n n

mt?(In@nt) (m@n')m

In®n*

(7n*)®n

(7' ¥n) Ime@nt

. A

(70" Fn) @ (n®@nt)

(n@nt) ¥

(Corresponds to the typing of (Af:n —n. z:n. fz)(\r:n.z), see later.)
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Some examples of cut elimination rules (1) (!-!)

The cut elimination rules for MELL proof nets are hierarchical graph rewriting

rules corresponding to those for MELL sequent calculus.

FT A
? 74+ S ey |
! . ! . ! Ccu
? COT A ‘é ’ cut [ 7F,7A7B |
T, 14,1 FT.7A1B
] ]

)

i !i A B

This rule involves box migration.
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Some examples of cut elimination rules (2) (!-7¢)

F,A
For, A FA?7AN?AY oy FMLA L FILIA L FA7AN?7AN
T4 Fa, 7A€ (-7¢) Tor,ra ! FT, A, 7AL .
BTN cut - 7T, 7T, A e
’ :?C*
Fer, A

This rule involves box cloning.
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Encoding

An example of cut elimination

References

ax
Fnt,
?d
F?nt,n
ax 2w
Fn®n', ?n'®n F?(ln®@nt), ?nt,
?d ! ax — az
F?(ln@nt), ?ntBn F?(ln@nt), ?nt, In Fn,nt Fnt,n
2w 55 ?d
F?2(ln®@nt), 7nt, TntBn F?2(ln®@nt),?nt, n,In@n F?nt,n
cut o
F?2(ln@nt),?(In®@nt),?nt, ?nt,n
Te 7d
F?(ln@nt), ?(ln®@nt), 7nt,n
?c
F?2(ln®nt), ?nt,n ?7nt%n F7nt®n
! ax
F?(ln@nt), 7nt ¥n Fl(?7n'7n) Fln@n', 7n'%n
z ®
F?2(ln®nt)B?7ntBn F(?n'*®n)® (In®@n'), 7ntBn
cut
F7nt%¥n

ln@n' Wmt¥n

2(In@nt)m

nt?(In@nt)

Q=X
2(tn®@ntY

n

(7n) ¥ n

("t Fn) m@nt (')3n
i3 n

n)® (In®nt)

™
.’Unmrr\!:%'n/._\/

ntNn

Tt Mt
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Some properties of cut elimination

The following hold for cut elimination of MELL proof nets [Gir87; Gir93; PF10]:
1. (Cut Elimination) All cuts of an MELL proof net can be eliminated.
2. (Stability) An MELL proof net is still a proof net after cut elimination.
3. (Confluence) Cut elimination is confluent on MELL proof nets.

4. (Strong Normalization) Cut elimination is strongly normalizing.
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Research question, recap

We wish to establish a closer connection between

(1) LMNtal (concrete, general-purpose programming language based on

hierarchical graph rewriting) and

(2) MELL proof nets (hierarchical graph rewriting system for a logical system)

by providing (1) with well-motivated graph cloning and deletion constructs

inspired by (2).
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Syntax extension for process contexts

We define a new syntactic construct, process context aggregates:

T = .. ’ $p[*X1,*X2, ,*Xn] (n > 0)
where each *X; is a bundle which (i) appears in a process context with the same name

and (i) has the same number of links, i.e., |*X;| = |*X,| = - = |*X,,|

This construct represents (dynamically determined) |* X| copies of n-ary $p’s.
-» We can now represent an unspecified number of wildcards.

e Anexample usage on the next page.
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API design and implementation

We can describe cloning and deletion using process context aggregates.
= X
For instance, mell.copy clones . as:

mell.copy(X,A1,A2,A3,B1,B2,C1,C2), {$p[X|*Z]}, {$a[A1,A2,A3]}, {$b[BL,B2]}
= {Sp[X"[*Z'1}, {$p[X" " [*Z" ']}, $a[*Z",*2"",*Z], $b[X",C1], $b[X" ", C2].

We implemented it as APl of SLIM runtime https://github.com/lmntal/slim/.

e Deletionis also defined in the similar way. Please see the paper for details.


https://github.com/lmntal/slim/
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API design and implementation

We can describe cloning and deletion using process context aggregates.

N X
For instance, mell.copy clones as:

(1 C2

d number (|*Z|) of $a

b b H H

— {Sp[X"[*Z'1}, {Sp[X"'[*Z" ']}, $al*2",*Z" ", 7], $b[X",C1], Sb[X"",C2].

We implemented it as API of SLIM runtime https://github.com/lmntal/slim/.

e deletionis also defined in the same way. Prease see the paper for details.


https://github.com/lmntal/slim/
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Encoding MELL proof nets in LMNtal, overview

We showed that MELL proof nets and their cut elimination rules can be
directly encoded in LMNtal

(i.e., each cut elimination rule encoded into one LMNtal rule).
1. We encoded MELL proof structures.
2. We encoded cut elimination rules.
3. We constructed and visualized the state space of cut elimination.

4. We encoded some additional proposed rules and checked their

consequences.
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Encoding MELL proof structure (1): Cells and wires

A B A B A At 7A 7A A
A®B A® B At A ?A 7A A

1A

!

A

A®B ¥ B , @ 1A
tensor(A,B,C) par( A B,C) ax{+A +B} cut{+A,+B} "72¢! ({+A +B},C) 7w (A) '2d! (A B) "I'"(A,B)

e Non-commutativity of inputs to ® and % cells is represented by atoms,

e while the commutativity of the arguments of ax and cut is represented
using membranes.

e A?ccell with commutative inputs and a single output is represented by

using both an atom and a membrane.
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Encoding MELL proof structure (2): Promotion box

X2
{'1"(X1,X2),$p[X1]*X]}.
e The outer frame of the boxD is represented by a membrane.

e T isrepresented by a bundle *X .

e The blank space :’ \: is represented by a process context Sp[X1|*X] .

s

v The MELL proof structure can be represented by a combination of

cells, wires and boxes.
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Encoding cut elimination rules

We showed that all six cut elimination rules of MELL proof nets can be
directly encoded into LMNtal with the mell API.

The following three rules involve non-trivial box operations:

¥
A
O
1A : TA

(I-?w) (see the paper)

s
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Encoding the cut elimination rule (!-!)

LMNtal encoding of (!-!):

{'1"(X1,X2), $p[X1|*X]}, {$q[X3|*Y]}, cut{+X2,+X3}
- {{(XL,X2), SpIXL[*XT}, $q[X3|*V], cut{+X2,+X3}}.

The migration of the box can be represented by the movement of the braces.
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Encoding the cut elimination rule (!-7¢)

LMNtal encoding of (!-?¢):

{'1'(X1,X2), Sp[X1|*X]}, "?c'({+C1,+C2},X3), cut{+X2,+X3},
:- mell.copy(X2,A1,A2,A3,B1,B2,C1,C2), {'!'(X1,X2), Sp[X1|*X]},
{"?2c' ({+A1,+A2},A3)}, {cut{+B1,+B2}}.
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Encoding the cut elimination rule (!-7¢)

Encoding of (!-?¢):

2

{"1"(X1,X2), $p[Xl|*X]}, '2¢" ({+C1,+C2},X3), cut{+X2,+X3},
:- mell.copy(X2,A1,A2,A3,B1,B2,C1,C2), {'!'(X1,X2), Sp[X1|*X]},
{"?2c" ({+A1,+A2}, {cut{+B1,+B2}}.

Three rules were necessary with nlmem, but now it can be encoded with one rule.
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Encoding MELL proof nets: State space (1)

Example: g-reduction of the simply typed X-calculus
e By the CHisomorphism, the type derivation tree has a corresponding net,

and its cut elimination corresponds to 3-reduction [Gir87].

Initial State Normal Form
Afin—=n. Xx:n. fo)dx:n.z) —>Ar:n.(Ar:in.z)z —> dz:n.x
I State Space J
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Encoding

References

Encoding MELL proof nets: State space (2)

Initial State

State Space (Reduction Paths)

Normal Form

&

it 3\

\. S <
LR
JIIN,

) ~"" N
7 ’N‘&W, /)

Ny @@)

v We confirmed well-known properties such as CR and SN, as well as

non-trivial properties such as the existence of redundant paths.
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Encoding MELL proof nets: Addition of rules (1)

Additional rules have been proposed in the literature, and we can readily

observe changes in the state space. For example, the rule

{17 (X1,X2), $p[XL|*X]}, '2w'(X3) :- {'!'(XL,X2), '7w’'(X3), $p[XL|*X]}.

is used in the expression of substitution [Vau07], but confluence is lost by this
rule [Trall] (next slide).



Encoding References
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Encoding MELL proof nets: Addition of rules (2)

TN
LR
\ IR
N\

iy

Gt

Before (1 end state) After (4 end states)

e The number of final states increased to 4, losing confluence.

+ Rules could be easily added.
v Consequences of rule addition could be visually confirmed.

-» LMNtal with the mell API is useful as a workbench for proof nets.
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Encoding Process Calculi

We showed that several process calculi can be encoded in LMNtal.
Example: Replication rule of the Ambient Calculus, where ambients are box

structures that may be duplicated, migrated and deleted

(open m.P) | m[Q] — P | Q | !(open m.P)

open_repl@@ open_repl(M,{Sp}),{amb(M1),{id,+M1,-M2,Smm},$q,@q},{id,+M,+M2,Sm}
- mell.copy({Sp},A1,A2,A3,B1,B2,remove,P),{cp(Al,A2,A3)},{B1=B2},
$q, {id,+M3,Sm, Smm} ,open_repl(M3,P).
open_repl_aux@@ remove({Sp}) :- Sp.

-» Sufficiently general for modeling and computation.
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Other Related Work

References

e Some hierarchical graph rewriting systems based on Proof Nets
[Mur20; AFM11] are useful as models of functional languages,
whereas LMNtal is desighned as general-purpose modeling language.

e Linear Logic Programming languages [HM94; Hod+98] are based on LL,
but our work is based on proof nets.

e Quantifiers in graph rewriting enables the handling of an indefinite
number of atoms [Gha+12; MU24], whereas our work is concerned also

with handling an unspecified number of free links in port graph rewriting.
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Conclusion

We introduced mell API, which is based on the cut elimination rules of MELL

proof nets, to perform cloning and deletion of hierarchical graphs in LMNtal.

Hierarchical graph rewriting
language acquired:

v aPL-style, validated, <>
and general-purpose

Proof nets acquired:
v aconcrete PL that enables
concise encoding of proof nets

. . v and a useful workbench.
cloning and deletion constructs

-» Beneficial bridge to both sides
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