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Overview 2/41

Hierarchical Graph Rewriting
Expressive formalism that subsumes term rewriting, process calculus, etc.

! Designing a practical high-level declarative language based on

hierarchical graph rewriting is still a challenge.
The “right” construct for graph cloning and deletion is highly non-trivial.

𝑎
𝑏 → 𝑎

𝑏

LMNtal1

Concrete PL for hierarchical graphs
We proposewell-motivated graph
cloning and deletion constructs

1. pronounced ”elemental”

+

MELL2 proof nets
Hierarchical graph rewriting

for Linear Logic proofs

involving cloning and deletion

2. Multiplicative Exponential Linear Logic
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Hierarchical graphs 3/41

Supports two structuring mechanisms: connectivity and hierarchy

Hierarchical Graphs (Nodes + Edges + Boxes) can represent all these.
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LMNtal (https://bit.ly/lmntal-portal) 4/41

A hierarchical graph rewriting language inspired by concurrent
logic languages and Constraint Handling Rules [Ued09]
– graph nodes as atom(ic formula)s (no constants/functors)
– links as (zero-assignment) logical variables
Comes with a parallelmodel checkerwith state space visualizer

A
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b g
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G2

G1

LMNtal graph State space visualization of LTL model checking

Membrane (Box)Atom

Link
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MELL proof nets 5/41

Graph representation of MELL (Multiplicative Exponential LL) proofs [Gir87]

Cut elimination expressed as hierarchical graph rewriting rules

Some rules clone or delete hierarchical graphs

⊢ ?Γ,𝐴
!⊢ ?Γ, !𝐴

⊢ Δ, ?𝐴⊥, ?𝐴⊥
?𝑐⊢ Δ, ?𝐴⊥

𝑐𝑢𝑡⊢ ?Γ,Δ

→ ⊢ ?Γ,𝐴
!⊢ ?Γ, !𝐴

⊢ ?Γ,𝐴
!⊢ ?Γ, !𝐴 ⊢ Δ, ?𝐴⊥, ?𝐴⊥

𝑐𝑢𝑡
⊢ ?Γ,Δ, ?𝐴⊥

𝑐𝑢𝑡⊢ ?Γ, ?Γ,Δ
?𝑐∗⊢ ?Γ,Δ

↧ ↧

?𝐴⊥ ?𝐴⊥

?𝑐

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

→
𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

?𝑐

?𝑐

?𝑐

Cut elimination of MELL proof nets could provide a useful design

guideline
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Contributions 6/41

1. We extended LMNtal with process context aggregates, and designed
and implemented the mell API for graph cloning and deletion.

2. We showed thatMELL proof nets and their cut elimination rules can
be directly encoded into LMNtal.

3. We encoded several process calculi and demonstrated the generality of
LMNtal with the proposed constructs.

$p ⋮
*Z

$a
A3 A2 A1

$b
B2

B1

C1 C2

Xcopy

$b

$b

X'

X''

C1

C2

$p
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⋮

⋮
⋮
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$a
⋮
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1. Overview

2. Hierarchical Graph Rewriting Systems and LMNtal

3. MELL and Proof Nets

4. Design and Implementation of the mell API

5. Encoding MELL proof nets and process calculus
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Formulation of hierarchical graph rewriting systems 8/41

Two approaches:

(1) (traditional) Algebraic approach (e.g., using pushout in category theory)

(2) PL-style approach with abstract syntax and small-step semantics, where
graphs are represented by terms subject to structural congruence

Hierarchical Graph Rewriting System Model or
Language?

Definition Style

CHAM(Chemical Abstract Machine) [BB92] model (2)

BRS(Bigraphical Reactive System) [Mil01] model (1)

AHP(Attributed Hierarchical Portgraph) [EFP18] model (1)

LMNtal [Ued09] language (2)
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Syntax of LMNtal 9/41

(process) 𝑃 ∶∶= 0 ∣ 𝑝(𝑋1,… ,𝑋𝑛) ∣ 𝑃,𝑃 ∣ 𝑚{𝑃} ∣ 𝑇 :- 𝑇

(process template) 𝑇 ∶∶= 0 ∣ 𝑝(𝑋1,… ,𝑋𝑛) ∣ 𝑇,𝑇 ∣ 𝑚{𝑇} ∣ 𝑇 :- 𝑇
∣ @𝑝 ∣ $𝑝[𝑋1,… ,𝑋𝑛|𝐴] ∣ 𝑝(*𝑋1,… ,*𝑋𝑛)

(residual) 𝐴 ∶∶= [] ∣ *𝑋

Example:

Ai
a

b g

g
B

G2

G1

g(G1),g(G2),
{i(A,B),a(A,G1),b(G2)}.

*X

⋮$pA
i :- B A

n $p
*X

⋮B

.{i(A,B),$p[A|*X]} :- n(A,B),$p[A|*X].

subgraphmatching and rewriting
AB n

b

a g

g
G2

G1

b(G2),g(G2),
n(A,B),a(A,G1),g(G1).
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Syntax of LMNtal 9/41

(process) 𝑃 ∶∶= 0 ∣ 𝑝(𝑋1,… ,𝑋𝑛) ∣ 𝑃,𝑃 ∣ 𝑚{𝑃} ∣ 𝑇 :- 𝑇

(process template) 𝑇 ∶∶= 0 ∣ 𝑝(𝑋1,… ,𝑋𝑛) ∣ 𝑇,𝑇 ∣ 𝑚{𝑇} ∣ 𝑇 :- 𝑇
∣ @𝑝 ∣ $𝑝[𝑋1,… ,𝑋𝑛|𝐴] ∣ 𝑝(*𝑋1,… ,*𝑋𝑛)

(residual) 𝐴 ∶∶= [] ∣ *𝑋

Example:

Ai
a

b g

g
B

G2

G1

g(G1),g(G2),
{i(A,B),a(A,G1),b(G2)}.

*X

⋮$pA
i :- B A

n $p
*X

⋮B

.{i(A,B),$p[A|*X]} :- n(A,B),$p[A|*X].

subgraphmatching and rewriting
AB n

b

a g

g
G2

G1

b(G2),g(G2),
n(A,B),a(A,G1),g(G1).

– Graphs with fixed-arity nodes are often called port graphs;
– Free links (half edges) play key roles in subgraphmatching and rewriting

Atom (Node) with ordered links (edges) Membrane (Box)

Process Context (Wildcard)
Rule (Subgraph rewriting rule)

Bundle (Unspecified number of free links)

Free link
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Subgraph cloning (1) 10/41

Cloning of subgraphs is a highly expected feature of high-level graph rewriting

languages, but how to handle edges of the clones is not obvious. For example,

𝑎

𝑐

𝑏

𝑎

𝑐

?

?

𝑏𝑏

Copy 𝑏

In LMNtal which handles port graphs, 𝑎 and 𝑐 have fixed arities.

Wemust somehow splice two clones of the subraph into the context of the

original subgraph.
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Subgraph cloning (2): nlmem 11/41

LMNtal’s nlmem (nonlinear membrane) API [Inu+08] provides subgraph (box)

cloning. For instance, nlmem.copy clones $p ⋮
*X

as:

$p ⋮
*X

AB
copy

n

B
An

n

n

⋮

⋮

$p

$p

⋮ ⋮
*X

example: 𝑎

𝑐

𝑏

𝑎

𝑐
n

𝑏

copy

𝑎

n

n

𝑐

𝑏𝑏

Can this design be supported by mathematical/logical background?
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Subgraph cloning (3) 12/41

Design of graph cloning constructs is highly non-trivial even in

(traditional) algebraic approaches.

Graph Rewriting Systemwith cloning Definition Style Background

SePO [Cor+06], PBPO+[OER21] Category Theory ✓

DLGRS [BES18] Description Logic ✓

LMNtal with nlmem PL standard ?

Present Work PL standard ✓

Research Question:

Can we justify our language design based on somemathematical/logical

system as a design guideline?
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1. Overview

2. Hierarchical Graph Rewriting Systems and LMNtal

3. MELL and Proof Nets

4. Design and Implementation of the mell API

5. Encoding MELL proof nets and process calculus
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Multiplicative Exponential Linear Logic (MELL) 14/41

Definition (MELL Formula)

(formula) 𝐹 ∶∶= 𝑋 (atomic) | 𝑋⊥ | 𝐹 ⊗ 𝐹 | 𝐹 &𝐹 | !𝐹 | ?𝐹
(Binding strength: {⊥} > {!, ?} > {⊗, &} )

Negation ⊥ is moved/removed by:
𝐴⊥⊥ ∶= 𝐴 (𝐴 ⊗ 𝐵)⊥ ∶= 𝐴⊥ &𝐵⊥ (𝐴 &𝐵)⊥ ∶= 𝐴⊥ ⊗𝐵⊥

(!𝐴)⊥ ∶= ?(𝐴⊥) (?𝐴)⊥ ∶= !(𝐴⊥)

Linear implication⊸ is defined by:
𝐴 ⊸ 𝐵 ∶= 𝐴⊥ &𝐵

Classical implication→ can be translated by using linear implication⊸ :

𝐴 → 𝐵 ↦ !𝐴 ⊸ 𝐵
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MELL inference rules (one-sided) 15/41

𝐴,𝐵: formulae, Γ,Δ: multisets of formulae

𝑎𝑥
⊢ 𝐴,𝐴⊥

⊢ Γ,𝐴,𝐵 &
⊢ Γ,𝐴 &𝐵

⊢ Γ,𝐴 ⊢ Δ,𝐴⊥
𝑐𝑢𝑡⊢ Γ,Δ

⊢ Γ,𝐴 ⊢ Δ,𝐵 ⊗⊢ Γ,Δ,𝐴 ⊗ 𝐵

𝑚𝑖𝑥0⊢

⊢ Γ ⊢ Δ 𝑚𝑖𝑥2⊢ Γ,Δ

⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴
(promotion rule)
(Note: ‘?’ on the Γ)

⊢ Γ,𝐴 ?𝑑⊢ Γ, ?𝐴
⊢ Γ, ?𝐴, ?𝐴 ?𝑐⊢ Γ, ?𝐴

⊢ Γ ?𝑤⊢ Γ, ?𝐴

The cut elimination theorem holds [Gir87].
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MELL proof nets 16/41

MELL proof nets are graph representations of proofs of MELL sequents

with higher level of abstraction.
𝑎𝑥

⊢ 𝑛⊥, 𝑛
𝑎𝑥

⊢ 𝑛⊥, 𝑛 ⊗
⊢ 𝑛⊥, 𝑛⊥, (𝑛 ⊗ 𝑛)

𝑎𝑥
⊢ 𝑛⊥, 𝑛 ⊗

⊢ 𝑛⊥, 𝑛⊥, 𝑛⊥, (𝑛 ⊗ 𝑛) ⊗ 𝑛 &
⊢ (𝑛⊥ &𝑛⊥), 𝑛⊥, (𝑛 ⊗ 𝑛) ⊗ 𝑛 &

⊢ (𝑛⊥ &𝑛⊥) &𝑛⊥, (𝑛 ⊗ 𝑛) ⊗ 𝑛
𝑛𝑛⊥𝑛⊥ &𝑛⊥ 𝑛 ⊗ 𝑛

𝑛⊥ 𝑛 𝑛𝑛⊥

(𝑛⊥ &𝑛⊥) &𝑛⊥ (𝑛 ⊗ 𝑛) ⊗ 𝑛

& ⊗

𝑎𝑥& ⊗

𝑎𝑥 𝑎𝑥

↦ ↦
𝑎𝑥

⊢ 𝑛⊥, 𝑛
𝑎𝑥

⊢ 𝑛⊥, 𝑛 ⊗
⊢ 𝑛⊥, 𝑛⊥, (𝑛 ⊗ 𝑛) &

⊢ (𝑛⊥ &𝑛⊥), (𝑛 ⊗ 𝑛)
𝑎𝑥

⊢ 𝑛⊥, 𝑛 ⊗
⊢ (𝑛⊥ &𝑛⊥), 𝑛⊥, (𝑛 ⊗ 𝑛) ⊗ 𝑛 &

⊢ (𝑛⊥ &𝑛⊥) &𝑛⊥, (𝑛 ⊗ 𝑛) ⊗ 𝑛

MELL proof nets are defined in two steps:

1. graph structures (proof structures)

2. geometric constraints on proof structures (using switching graphs).
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MELL proof structures 17/41

Definition (MELL proof structures)

AnMELL proof structure is a directed acyclic multigraph that combines

the cells and wires and the promotion box.

𝐴 𝐵

𝐴⊗𝐵

⊗

𝐴 𝐵

𝐴 &𝐵

&

𝐴⊥ 𝐴

𝑎𝑥

𝐴 𝐴⊥

𝑐𝑢𝑡

?𝐴 ?𝐴

?𝐴

?𝑐

?𝐴

?𝑤

𝐴

?𝐴

?𝑑 '!'(A,B)

𝐴

!𝐴

!

Cells and wires

𝐴

!

?Γ
⋯

!𝐴

⊢ ?Γ,𝐴
⊢ ?Γ,!𝐴 !

Promotion box
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MELL proof nets 18/41

Definition (MELL proof nets)

A switching for a proof structure is a choice of left or right for &and ?𝑐.

A switching graph is obtained by rewriting all &and ?𝑐 cells according to
switching, and removing the outer frame of all promotion boxes.

𝐴 𝐵

𝐴 &𝐵

&

𝐴

"

𝐵

𝐴 &𝐵

&

𝐴
𝐵

"

𝐴 &𝐵

&

?𝐴 ?𝐴

?𝐴

?𝑐 ?𝐴

"

?𝐴

?𝐴

?𝑐

?𝐴
?𝐴

"

?𝐴

?𝑐

𝐴

!

?Γ
⋯

!𝐴 ?Γ
⋯

!𝐴

AMELL proof net is a proof structure whose switching graphs have no undirected

cycles and such that the content of each box is a proof net, inductively.

MELL proof nets can be converted to MELL (+ mix rule) sequents.
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An example of MELL proof nets 19/41

𝑎𝑥
⊢!𝑛⊗𝑛⊥, ?𝑛⊥ &𝑛

?𝑑
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥ &𝑛

?𝑤
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥, ?𝑛⊥ &𝑛

𝑎𝑥
⊢ 𝑛⊥,𝑛

?𝑑
⊢ ?𝑛⊥,𝑛

?𝑤
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥,𝑛

!
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥, !𝑛

𝑎𝑥
⊢ 𝑛,𝑛⊥

⊗
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥,𝑛, !𝑛 ⊗𝑛⊥

𝑐𝑢𝑡
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥, ?𝑛⊥,𝑛

?𝑐
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥,𝑛

?𝑐
⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥,𝑛 &

⊢ ?(!𝑛 ⊗𝑛⊥ ), ?𝑛⊥ &𝑛 &

⊢ ?(!𝑛 ⊗𝑛⊥ ) &?𝑛⊥ &𝑛

𝑎𝑥
⊢ 𝑛⊥,𝑛

?𝑑
⊢ ?𝑛⊥,𝑛 &

⊢ ?𝑛⊥ &𝑛
!

⊢!(?𝑛⊥ &𝑛)
𝑎𝑥

⊢!𝑛⊗𝑛⊥, ?𝑛⊥ &𝑛
⊗

⊢!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗𝑛⊥ ), ?𝑛⊥ &𝑛
𝑐𝑢𝑡

⊢ ?𝑛⊥ &𝑛

↧
𝑛

?𝑑?𝑤

𝑛⊥

?𝑛⊥?(!𝑛 ⊗ 𝑛⊥)

𝑎𝑥

!

!𝑛

?𝑛⊥ &𝑛

?𝑑?𝑤

!𝑛 ⊗ 𝑛⊥

?(!𝑛 ⊗ 𝑛⊥)?𝑛⊥

𝑎𝑥

𝑛⊥ 𝑛
⊗

𝑎𝑥

!𝑛 ⊗ 𝑛⊥

𝑐𝑢𝑡

?𝑐
?𝑐

?(!𝑛 ⊗ 𝑛⊥)
?𝑛⊥

?𝑛⊥ &𝑛

?(!𝑛 ⊗ 𝑛⊥) &?𝑛⊥ &𝑛

&

&

𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&

(?𝑛⊥) &𝑛

!
!(?𝑛⊥ &𝑛) !𝑛 ⊗ 𝑛⊥ (?𝑛⊥) &𝑛

!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗ 𝑛⊥)

⊗

𝑎𝑥

𝑐𝑢𝑡

(Corresponds to the typing of (𝜆𝑓 ∶ 𝑛 → 𝑛 . 𝜆𝑥 ∶ 𝑛 . 𝑓 𝑥)(𝜆𝑥 ∶ 𝑛 . 𝑥), see later.)
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Some examples of cut elimination rules (1) (!-!) 20/41

The cut elimination rules for MELL proof nets are hierarchical graph rewriting

rules corresponding to those for MELL sequent calculus.

⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴
⊢ ?Δ,𝐵, ?𝐴⊥

!⊢ ?Δ, !𝐵, ?𝐴⊥
𝑐𝑢𝑡⊢ ?Γ, ?Δ, !𝐵

→(!-!)
⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴 ⊢ ?Δ,𝐵, ?𝐴⊥

𝑐𝑢𝑡⊢ ?Γ, ?Δ,𝐵 !⊢ ?Γ, ?Δ, !𝐵
↧ ↧

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵

→(!-!)
𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵This rule involves boxmigration.
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Some examples of cut elimination rules (2) (!-?𝑐) 21/41

⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴
⊢ Δ, ?𝐴⊥, ?𝐴⊥

?𝑐⊢ Δ, ?𝐴⊥
𝑐𝑢𝑡⊢ ?Γ,Δ

→(!-?𝑐) ⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴

⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴 ⊢ Δ, ?𝐴⊥, ?𝐴⊥
𝑐𝑢𝑡⊢ ?Γ,Δ, ?𝐴⊥

𝑐𝑢𝑡⊢ ?Γ, ?Γ,Δ
?𝑐∗⊢ ?Γ,Δ

↧ ↧

?𝐴⊥ ?𝐴⊥

?𝑐

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

→(!-?𝑐)
𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

?𝑐

?𝑐

?𝑐

This rule involves box cloning.
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An example of cut elimination 22/41

𝑎𝑥
⊢!𝑛⊗𝑛⊥, ?𝑛⊥ &𝑛

?𝑑
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥ &𝑛

?𝑤
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥, ?𝑛⊥ &𝑛

𝑎𝑥
⊢ 𝑛⊥,𝑛

?𝑑
⊢ ?𝑛⊥,𝑛

?𝑤
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥,𝑛

!
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥, !𝑛

𝑎𝑥
⊢ 𝑛,𝑛⊥

⊗
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥,𝑛, !𝑛 ⊗𝑛⊥

𝑐𝑢𝑡
⊢ ?(!𝑛 ⊗𝑛⊥), ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥, ?𝑛⊥,𝑛

?𝑐
⊢ ?(!𝑛 ⊗𝑛⊥), ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥,𝑛

?𝑐
⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥,𝑛 &

⊢ ?(!𝑛 ⊗𝑛⊥), ?𝑛⊥ &𝑛 &
⊢ ?(!𝑛 ⊗𝑛⊥) &?𝑛⊥ &𝑛

𝑎𝑥
⊢ 𝑛⊥,𝑛

?𝑑
⊢ ?𝑛⊥,𝑛 &

⊢ ?𝑛⊥ &𝑛
!

⊢!(?𝑛⊥ &𝑛)
𝑎𝑥

⊢!𝑛⊗𝑛⊥, ?𝑛⊥ &𝑛
⊗

⊢!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗𝑛⊥), ?𝑛⊥ &𝑛
𝑐𝑢𝑡

⊢ ?𝑛⊥ &𝑛

𝑎𝑥
⊢ 𝑛⊥,𝑛

?𝑑
⊢ ?𝑛⊥,𝑛

?𝑤
⊢ ?𝑛⊥, ?𝑛⊥,𝑛

?𝑐
⊢ ?𝑛⊥,𝑛 &

⊢ ?𝑛⊥ &𝑛

↧ ↧
𝑛

?𝑑?𝑤

𝑛⊥

?𝑛⊥?(!𝑛 ⊗ 𝑛⊥)

𝑎𝑥

!

!𝑛

?𝑛⊥ &𝑛

?𝑑?𝑤

!𝑛 ⊗ 𝑛⊥

?(!𝑛 ⊗ 𝑛⊥)?𝑛⊥

𝑎𝑥

𝑛⊥ 𝑛
⊗

𝑎𝑥

!𝑛 ⊗ 𝑛⊥

𝑐𝑢𝑡

?𝑐
?𝑐

?(!𝑛 ⊗ 𝑛⊥)
?𝑛⊥

?𝑛⊥ &𝑛

?(!𝑛 ⊗ 𝑛⊥) &?𝑛⊥ &𝑛

&

&

𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&

(?𝑛⊥) &𝑛

!
!(?𝑛⊥ &𝑛) !𝑛 ⊗ 𝑛⊥ (?𝑛⊥) &𝑛

!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗ 𝑛⊥)

⊗

𝑎𝑥

𝑐𝑢𝑡

𝑛

?𝑛⊥?𝑛⊥

?𝑐

?𝑤 ?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&

?𝑛⊥ &𝑛
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Some properties of cut elimination 23/41

The following hold for cut elimination of MELL proof nets [Gir87; Gir93; PF10]:

1. (Cut Elimination) All cuts of an MELL proof net can be eliminated.

2. (Stability) An MELL proof net is still a proof net after cut elimination.

3. (Confluence) Cut elimination is confluent on MELL proof nets.

4. (Strong Normalization) Cut elimination is strongly normalizing.
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Research question, recap 25/41

Wewish to establish a closer connection between

(1) LMNtal (concrete, general-purpose programming language based on

hierarchical graph rewriting) and

(2) MELL proof nets (hierarchical graph rewriting system for a logical system)

by providing (1) with well-motivated graph cloning and deletion constructs

inspired by (2).

?𝐴⊥ ?𝐴⊥

?𝑐
𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

?𝑐
?𝑐

?𝑐

→ ↦ ?
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Syntax extension for process contexts 26/41

We define a new syntactic construct, process context aggregates:

𝑇 ∶∶= ⋯ ∣ $𝑝[*𝑋1,*𝑋2,… ,*𝑋𝑛] (𝑛 > 0)

where each *𝑋𝑖 is a bundle which (i) appears in a process context with the same name

and (ii) has the same number of links, i.e., |*𝑋1| = |*𝑋2| = ⋯ = |*𝑋𝑛|

This construct represents (dynamically determined) |*𝑋| copies of 𝑛-ary $𝑝’s.

We can now represent an unspecified number of wildcards.

An example usage on the next page.
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API design and implementation 27/41

We can describe cloning and deletion using process context aggregates.

For instance, mell.copy clones $p ⋮
*X

as:

$p ⋮
*Z

$a
A3 A2 A1

$b
B2

B1

C1 C2

Xcopy

$b

$b

X'

X''

C1

C2

$p

$p

*Z'

*Z''

⋮

⋮
⋮
$a

$a
⋮

*Z

mell.copy(X,A1,A2,A3,B1,B2,C1,C2), {$p[X|*Z]}, {$a[A1,A2,A3]}, {$b[B1,B2]}

→ {$p[X'|*Z']}, {$p[X''|*Z'']}, $a[*Z',*Z'',*Z], $b[X',C1], $b[X'',C2].

We implemented it as API of SLIM runtime https://github.com/lmntal/slim/.

Deletion is also defined in the similar way. Please see the paper for details.

https://github.com/lmntal/slim/
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API design and implementation 27/41

We can describe cloning and deletion using process context aggregates.

For instance, mell.copy clones $p ⋮
*X

as:

$p ⋮
*Z

$a
A3 A2 A1

$b
B2

B1

C1 C2

Xcopy

$b

$b

X'

X''

C1

C2

$p

$p

*Z'

*Z''

⋮

⋮
⋮
$a

$a
⋮

*Z

mell.copy(X,A1,A2,A3,B1,B2,C1,C2), {$p[X|*Z]}, {$a[A1,A2,A3]}, {$b[B1,B2]}

→ {$p[X'|*Z']}, {$p[X''|*Z'']}, $a[*Z',*Z'',*Z], $b[X',C1], $b[X'',C2].

We implemented it as API of SLIM runtime https://github.com/lmntal/slim/.

deletion is also defined in the same way. Prease see the paper for details.

Represents an unspecified number (|*Z|) of $a

https://github.com/lmntal/slim/
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Encoding MELL proof nets in LMNtal, overview 29/41

We showed thatMELL proof nets and their cut elimination rules can be

directly encoded in LMNtal

(i.e., each cut elimination rule encoded into one LMNtal rule).

1. We encoded MELL proof structures.

2. We encoded cut elimination rules.

3. We constructed and visualized the state space of cut elimination.

4. We encoded some additional proposed rules and checked their

consequences.
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Encoding MELL proof structure (1): Cells and wires 30/41

tensor(A,B,C)

𝐴 𝐵

𝐴⊗𝐵

⊗

↧

𝐴 𝐵

𝐴 &𝐵

&

↧
𝐴⊥ 𝐴

𝑎𝑥

↧

𝐴 𝐴⊥

𝑐𝑢𝑡

↧

'?c'({+A,+B},C)

?𝐴 ?𝐴

?𝐴

?𝑐

↧
?𝐴

?𝑤

↧

𝐴

?𝐴

?𝑑

↧

'!'(A,B)

𝐴

!𝐴

!

↧
𝐴 𝐵

𝐴⊗𝐵

⊗

tensor(A,B,C)

𝐴 𝐵

𝐴 &𝐵

&

par(A,B,C)
𝐴⊥ 𝐴
ax{+A,+B}

𝐴 𝐴⊥

cut{+A,+B}

?𝐴 ?𝐴

?𝐴
?𝑐

'?c'({+A,+B},C)
?𝐴

?𝑤

'?w'(A)

𝐴

?𝐴

?𝑑

'?d'(A,B)

𝐴

!𝐴

!

'!'(A,B)

Non-commutativity of inputs to⊗ and &cells is represented by atoms,

while the commutativity of the arguments of ax and cut is represented

usingmembranes.

A ?𝑐 cell with commutative inputs and a single output is represented by

using both an atom and amembrane.
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Encoding MELL proof structure (2): Promotion box 31/41

⊢ ?Γ,𝐴 !⊢ ?Γ, !𝐴 𝐴

!

?Γ
⋯

!𝐴

↦
$p[X1|*X]

*X X2

X1

⋯

!

{'!'(X1,X2),$p[X1|*X]}.

The outer frame of the box is represented by amembrane.

?Γ is represented by a bundle *X .

The blank space is represented by a process context $p[X1|*X] .

The MELL proof structure can be represented by a combination of

cells, wires and boxes.
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Encoding cut elimination rules 32/41

We showed that all six cut elimination rules of MELL proof nets can be

directly encoded into LMNtal with the mell API.

The following three rules involve non-trivial box operations:

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵

(!-!)

?𝑤

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

?𝑤?𝑤?𝑤

?Γ

⋯

⋯ ?𝐴⊥ ?𝐴⊥

?𝑐

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥
𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

𝐴

!

?Γ
⋯

!𝐴 ?𝐴⊥

𝑐𝑢𝑡

?𝑐

?𝑐

?𝑐

(!-?𝑤) (see the paper) (!-?𝑐)
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Encoding the cut elimination rule (!-!) 33/41

LMNtal encoding of (!-!):

$p $q
X1

!

*X
⋯

X2 X3cut *Y
⋯

X3

X4

!

$p $q
X1

!

*X
⋯

X2 X3cut

*Y
⋯

X3

!

X4

{'!'(X1,X2), $p[X1|*X]} , {$q[X3|*Y]}, cut{+X2,+X3}

:- { {'!'(X1,X2), $p[X1|*X]} , $q[X3|*Y], cut{+X2,+X3}}.

Themigration of the box can be represented by the movement of the braces.
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Encoding the cut elimination rule (!-?𝑐) 34/41

LMNtal encoding of (!-?𝑐):

$p
C1 C2

X1

!

*X
⋯

X2 X3

?c
cut

$p
X1

!

*X
⋯

X2

?c

cut
C2 C1

copy

$p
X1

!

*X
⋯

X2 C1
cut

$q
X3

!

*X
⋯

X4 C2
cut

?c?c?c

{'!'(X1,X2), $p[X1|*X]}, '?c'({+C1,+C2},X3), cut{+X2,+X3},

:- mell.copy(X2,A1,A2,A3,B1,B2,C1,C2), {'!'(X1,X2), $p[X1|*X]},

{'?c'({+A1,+A2},A3)}, {cut{+B1,+B2}}.
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Encoding the cut elimination rule (!-?𝑐) 34/41

Encoding of (!-?𝑐):

$p
C1 C2

X1

!

*X
⋯

X2 X3

?c
cut

$p
X1

!

*X
⋯

X2

?c

cut
C2 C1

copy

$p
X1

!

*X
⋯

X2 C1
cut

$q
X3

!

*X
⋯

X4 C2
cut

?c?c?c

{'!'(X1,X2), $p[X1|*X]}, '?c'({+C1,+C2},X3), cut{+X2,+X3},

:- mell.copy(X2,A1,A2,A3,B1,B2,C1,C2), {'!'(X1,X2), $p[X1|*X]},

{'?c'({+A1,+A2},A3)}, {cut{+B1,+B2}}.

Three rules were necessary with nlmem, but now it can be encoded with one rule.
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Encoding MELL proof nets: State space (1) 35/41

Example: 𝛽-reduction of the simply typed 𝜆-calculus
By the CH isomorphism, the type derivation tree has a corresponding net,

and its cut elimination corresponds to 𝛽-reduction [Gir87].

Initial State Normal Form
(𝜆𝑓 ∶ 𝑛 → 𝑛 . 𝜆𝑥 ∶ 𝑛 . 𝑓 𝑥)(𝜆𝑥 ∶ 𝑛 . 𝑥)

↧
𝜆𝑥 ∶ 𝑛 . 𝑥
↧

𝑛

?𝑑?𝑤

𝑛⊥

?𝑛⊥?(!𝑛 ⊗ 𝑛⊥)

𝑎𝑥

!

!𝑛

?𝑛⊥ &𝑛

?𝑑?𝑤

!𝑛 ⊗ 𝑛⊥

?(!𝑛 ⊗ 𝑛⊥)?𝑛⊥

𝑎𝑥

𝑛⊥ 𝑛
⊗

𝑎𝑥

!𝑛 ⊗ 𝑛⊥

𝑐𝑢𝑡

?𝑐
?𝑐

?(!𝑛 ⊗ 𝑛⊥)
?𝑛⊥

?𝑛⊥ &𝑛

?(!𝑛 ⊗ 𝑛⊥) &?𝑛⊥ &𝑛

&

&

𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&

(?𝑛⊥) &𝑛

!
!(?𝑛⊥ &𝑛) !𝑛 ⊗ 𝑛⊥ (?𝑛⊥) &𝑛

!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗ 𝑛⊥)

⊗

𝑎𝑥

𝑐𝑢𝑡

𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&

?𝑛⊥ &𝑛

𝜆𝑥 ∶ 𝑛 . (𝜆𝑥 ∶ 𝑛 . 𝑥) 𝑥

?

State Space
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Encoding MELL proof nets: State space (2) 36/41

Initial State State Space (Reduction Paths) Normal Form

𝑛

?𝑑?𝑤

𝑛⊥

?𝑛⊥?(!𝑛 ⊗ 𝑛⊥)

𝑎𝑥

!

!𝑛

?𝑛⊥ &𝑛

?𝑑?𝑤

!𝑛 ⊗ 𝑛⊥

?(!𝑛 ⊗ 𝑛⊥)?𝑛⊥

𝑎𝑥

𝑛⊥ 𝑛
⊗

𝑎𝑥

!𝑛 ⊗ 𝑛⊥

𝑐𝑢𝑡

?𝑐
?𝑐

?(!𝑛 ⊗ 𝑛⊥)
?𝑛⊥

?𝑛⊥ &𝑛

?(!𝑛 ⊗ 𝑛⊥) &?𝑛⊥ &𝑛

&

&
𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥

&
(?𝑛⊥) &𝑛

!
!(?𝑛⊥ &𝑛) !𝑛 ⊗ 𝑛⊥ (?𝑛⊥) &𝑛

!(?𝑛⊥ &𝑛) ⊗ (!𝑛 ⊗ 𝑛⊥)

⊗

𝑎𝑥

𝑐𝑢𝑡

𝑛

?𝑑

𝑛⊥

?𝑛⊥

𝑎𝑥
&

?𝑛⊥ &𝑛

We confirmedwell-known properties such as CR and SN, as well as

non-trivial properties such as the existence of redundant paths.
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Encoding MELL proof nets: Addition of rules (1) 37/41

Additional rules have been proposed in the literature, and we can readily

observe changes in the state space. For example, the rule

𝐴

!

?Γ
⋯

!𝐴
?𝑤

𝐴

!

?Γ
⋯

!𝐴

?𝑤
→

{'!'(X1,X2), $p[X1|*X]}, '?w'(X3) :- {'!'(X1,X2), '?w'(X3), $p[X1|*X]}.

is used in the expression of substitution [Vau07], but confluence is lost by this

rule [Tra11] (next slide).
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Encoding MELL proof nets: Addition of rules (2) 38/41

Before (1 end state) After (4 end states)

The number of final states increased to 4, losing confluence.

Rules could be easily added.

Consequences of rule addition could be visually confirmed.

LMNtal with the mell API is useful as a workbench for proof nets.
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Encoding Process Calculi 39/41

We showed that several process calculi can be encoded in LMNtal.

Example: Replication rule of the Ambient Calculus, where ambients are box

structures that may be duplicated, migrated and deleted

!(open 𝑚.𝑃) ∣ 𝑚[𝑄] → 𝑃 ∣ 𝑄 ∣ !(open 𝑚.𝑃)

open_repl@@ open_repl(M,{$p}),{amb(M1),{id,+M1,-M2,$mm},$q,@q},{id,+M,+M2,$m}

:- mell.copy({$p},A1,A2,A3,B1,B2,remove,P),{cp(A1,A2,A3)},{B1=B2},

$q,{id,+M3,$m,$mm},open_repl(M3,P).

open_repl_aux@@ remove({$p}) :- $p.

Sufficiently general for modeling and computation.
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Other Related Work 40/41

Some hierarchical graph rewriting systems based on Proof Nets

[Mur20; AFM11] are useful as models of functional languages,

whereas LMNtal is desighned as general-purpose modeling language.

Linear Logic Programming languages [HM94; Hod+98] are based on LL,

but our work is based on proof nets.

Quantifiers in graph rewriting enables the handling of an indefinite

number of atoms [Gha+12; MU24], whereas our work is concerned also

with handling an unspecified number of free links in port graph rewriting.
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Conclusion 41/41

We introduced mell API, which is based on the cut elimination rules of MELL

proof nets, to perform cloning and deletion of hierarchical graphs in LMNtal.

Hierarchical graph rewriting
language acquired:

a PL-style, validated,
and general-purpose
cloning and deletion constructs

↔
Proof nets acquired:

a concrete PL that enables
concise encoding of proof nets

and a useful workbench.

Beneficial bridge to both sides
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