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Abstract and Contributions
We show that several key language constructs of the hierarchical graph rewriting
language LMNtal correspond directly to the operations required for the cut
elimination of MELL (Multiplicative Exponential Linear Logic) Proof Nets.
This implies that LMNtal serves as a useful workbench for Proof Nets.

1. LMNtal: a Hierarchical Graph Rewriting Language
LMNtal is a programming language that simultaneously supports two structuring
mechanisms, Graphs (connectivity) and Membranes (hierarchy).
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Application of a Rewriting Rule: 　
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all non-explicit elements in the membranea(X),{o,$p} :- g(X),$p.

Operations on Membranes: 　
Protection (from rewriting), copy, remove, move hierarchy.
These operations should handle free links properly. ⋮

↓
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Non-determinism and Model Checking: 　

The LMNtal toolkit is publicly available: https://github.com/lmntal/
State space of graph rewriting can be constructed and visualized.
Furthermore, the toolkit provides an LTLmodel checker.

2. MELL Proof Nets
Multiplicative Exponential Linear Logic (MELL): 　
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Proof Nets: 　

Proofs represented as Graphs, which could be reduced to more concise forms
through cut elimination.

MELL Proof Nets is constructed by the following elements: 　
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Directed, acyclic, multigraph.
Cells are labelled with inference rules; wires are labelled with formulae.
Only cells ⊗， &have two ordered inputs (not cut and ?c).

Promotion Box:
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Corresponding to !-rule of the sequent calculus.
Must be either disjoint or nested.
Protects the inner items from reduction.

※ ?Γ is an unspecified number of formulas with ”?”.

Cut Elimination Rules: 　

Cut elimination is expressed as a set of rewrite rules of Proof Nets
that involves copying, removing ormoving Promotion Boxes.

? How can we express reduction rules for nested structures with unspecified
number of edges?

3. Encoding Cut Elimination into LMNtal
Bundle *X: Construct to handle an unspecified number of free links.
The args of a process context $p[...] describe the conditions on its free link.

e.g., $p[A|*X] includes the link A and zero or more free links represented by *X.
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With ?Γ represented as *X, Promotion Box can be handled directly!

Encoding Cut Elimination Rules:
① Structure wheremultiple boxes are connected via a cut

A

!

?Γ
⋯

!A ?A�
cut

?∆
⋯

B

!

!B

A

!

?Γ
⋯

!A ?A�
cut

?∆
⋯

B

!

!B

cut_elimination_nested@@
{'!'(A,B),$p1[A|*X]},{$p2[C|*X]},cut{+(B),+(C)}

:- {{'!'(A,B),$p1[A|*X]},$p2[C|*X],cut{+(A),+(B)}}.

② Structure where box is connected to weakening via a cut
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cut_elimination_weakening@@
{'!'(A,B),$p[A|*X]},'?w'(C).
cut{+(B),+(C)}

:- nlmem.kill(
{trash(A),$p[A|*X]},'?w'
).

All the other rules including contraction can be encoded in the same way.
Cut elimination can be encoded concisely as an LMNtal program.

Execution Example:
Proof Net:
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State Space Visualization
by LaViT (LMNtal Visual Tool):

The state space is confluent and
strongly normalizing.

4. Conclusion and Future Work
We have shown that Membranes, Process contexts, and Bundles of LMNtal
correspond directly to the operations required for the cut elimination of Proof
Nets.
We encoded the cut elimination rules in LMNtal concisely and tested themwith
various examples.

? Fine-grained encoding of cut elimination inspired by the scopemanagement of
[5] that uses membranes in a different manner.

? Adapting and extending the framework to a workbench for lambda calculus.
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