
Encoding MELL Cut Elimination into a Hierarchical
Graph Rewriting Language

Kento Takyu
Waseda University

Tokyo, Japan
takyu@ueda.info.waseda.ac.jp

Kazunori Ueda
Waseda University

Tokyo, Japan
ueda@ueda.info.waseda.ac.jp

Abstract
We show that several key language constructs of the hierar-
chical graph rewriting language LMNtal correspond directly
to the operations required for the cut elimination of MELL
(Multiplicative Exponential Linear Logic) Proof Nets, and
that cut elimination of MELL can be succinctly encoded into
LMNtal. We encoded and ran the cut elimination rules in
LMNtal and demonstrated that the implementation serves
as a workbench of MELL proof reduction.

Keywords: Linear Logic, Proof Nets, Cut Elimination, Hier-
archical Graph Rewriting, LMNtal

1 Introduction
1.1 LMNtal: a hierarchical graph rewriting language
LMNtal [10], a hierarchical graph rewriting language, is a
programming and modeling language that simultaneously
supports two structuring mechanisms, connectivity and hi-
erarchy. Its implementation, SLIM [4], provides model check-
ing and ordinary program execution in a single framework.
One of the key features of LMNtal is its ability to manipulate
hierarchical structures using membranes and accompany-
ing language constructs. This allows us to express what are
difficult to achieve with ordinary graphs. For example, the
ambient calculus, a model of concurrency with mobility and
hierarchy, can be easily encoded into LMNtal [8].

1.2 Contribution
In this study, we show that Multiplicative Exponential Linear
Logic (MELL) Proof Nets and proof reduction by cut elimina-
tion [2, 3] can be encoded in LMNtal in a concise manner. In
addition to their general graph structure, MELL Proof Nets
come with a hierarchical structure (called a promotion box) to
properly handle exponential operators, and the latter turns
out to allow straightforward encoding into LMNtal which
can handle hierarchical structures along with general graph
transformation.
The model checking functionality of the LMNtal system

makes it possible to construct state spaces of cut elimination
procedures. Since MELL Proof Nets can encode simply-typed
𝜆-calculus, and cut elimination corresponds to 𝛽-reduction
[6] (Curry-Howard isomorphism), LMNtal is expected to
serve as a workbench for understanding and analyzing these
concepts.

𝐴 𝐵

𝐴 ⊗ 𝐵

⊗

𝐴 𝐵

𝐴

&

𝐵

&

𝐴� 𝐴

𝑎𝑥

𝐴 𝐴�

𝑐𝑢𝑡

?𝐴 ?𝐴

?𝐴

?𝑐

?𝐴

?𝑤

𝐴

?𝐴

?𝑑

𝐴

!𝐴

!

Figure 1. Components of MELL proof structure.

𝐴

!

?Γ
⋯

!𝐴

Figure 2. Promotion box.

tensor(A,B,C), par(A,B,C), ax{+A,+B}, cut{+A,+B}.

'?c'({+A,+B},C), '?w'(A), '?d'(A,B), '!'(A,B).

Figure 3. The LMNtal encoding of Fig. 1.

2 Proof Nets
2.1 Multiplicative Exponential Linear Logic
This study focuses on Multiplicative Exponential Linear
Logic (MELL). MELL is an extension of Multiplicative Linear
Logic (MLL), which is a fundamental fragment of linear logic.
MELL adds two exponential operators ‘!’ and ‘?’ to MLL to
allow non-linear, “classical” handling of resources.

Figure 1 shows the components of MELL Proof Structure,
a directed, acyclic multigraph consisting of (i) cells (nodes)
labelled with inference rules of MELL and (ii) wires (edges)
labelled with MELL formulas. Only the cells ⊗ and &have
two ordered inputs, while the inputs of other cells are un-
ordered. MELL Proof Nets combine these components to
form a proof structure.
The inference rule for the bottom-right component of

Fig. 1, called promotion, is actually a contextual rule; the rest
of the formulas of the sequent containing the !𝐴 must come

Kento Takyu and Kazunori Ueda

𝐴

!

?Γ
⋯

!𝐴 ?𝐴�
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵

↧

𝐴

!

?Γ
⋯

!𝐴 ?𝐴�
𝑐𝑢𝑡

?Δ
⋯

𝐵

!

!𝐵

Figure 4. Cut elimination rule for the connection of two
boxes.

box_cut_elimination_nested@@

{'!'(X1 ,X2),$g1[X1|*X]},{$g2[X3|*X]},cut{+X2 ,+X3}

:- {

{'!'(X1 ,X2),$g1[X1|*X]},$g2[X3|*X]

cut{+X2 ,+X3}

}.

Figure 5. The LMNtal encoding of Fig. 4.

with ‘?’s. In order to handle this constraint, a (promotion)
box (Fig. 2) is used as a standard mechanism to protect its
contents from transformation and to control the order of
proof reductions [2]. How to express the nested structure
of promotion boxes using only edges and nodes of ordinary
graphs is not obvious, if not impossible, and has been a topic
of active research.

2.2 Cut Elimination
Proof nets containing cuts can be reduced to simpler forms
by applying the cut elimination rules. In addition, proof
reduction by the cut elimination rules has confluence and
strong normalization properties [2, 3].

3 Encoding Cut Elimination into LMNtal
3.1 Hierarchical constructs of LMNtal
LMNtal provides various constructs for handling hierarchical
structures. The following is a list of constructs used in this
study.
● membrane: Encloses the elements of a graph with {}
to express hierarchical structure. This enables protec-
tion from transformation.

?𝑤

𝐴

!

?Γ
⋯

!𝐴 ?𝐴�
𝑐𝑢𝑡

↦

?𝑤?𝑤?𝑤

?Γ

⋯

⋯

Figure 6. Cut elimination rule for weakening.

box_cut_elimination_weakening_step1@@

{'!'(X1,X2),$g[X1|*X]}, '?w'(X3),

cut{+X2 ,+X3}

:- nlmem.kill({trash(X1),$g[X1|*X]},'?w').

Figure 7. The LMNtal encoding of Fig. 6.

● process context: Written in the form of $p[...]
within a membrane and matches all non-explicit ele-
ments in the membrane. The arguments [...] speci-
fies the free links (edges connected to the outside) of
the context.
● bundle: Written in the form *X specified as the fi-
nal argument of a process context. Matches all non-
explicit free links of the process context; e.g., $p[A|*X]
stands for a graphwith the free link A and zero ormore
free links represented by *X.

Rewrite rules of LMNtal allow the copying and remov-
ing of membranes and process contexts. Membranes with
process contexts that may be copied or removed are called
nonlinear membranes.

3.2 Encoding into LMNtal
Using these functionalities, the cut elimination rules of MELL
Proof Nets can be encoded on LMNtal. These features not
only enable the representation of nested structures, as han-
dled by promotion boxes, but also closely correspond to
the cut elimination rules, making the encoding in LMNtal
straightforward. We give a few examples below.
First, we show in Fig. 3 the LMNtal encoding of each of

the components of Fig. 1. We need to represent two types
of inputs: those with and without order. An atom n(A,B)

represents a node named n with two ordered links, while
a membrane n{+A,+B} represents a node named n (which is
optional) with two unordered links A and B (terminated by
unary atoms ‘+’). In Fig. 3, '?c'({+A,+B},C) is an abbrevia-
tion of '?c'(D,C),{+A,+B,+D}.
Figure 4 shows the cut-elimination rule for structures

where the !-cell of a box is connected (via a cut-cell) to its
dual inside another box, forming a nested structure of boxes
as shown in the figure. Figure 5 shows an LMNtal program
encoding Fig. 4. Such rules involving wire bundles and hier-
archical structures can be straightforwardly expressed using

Encoding MELL Cut Elimination into a Hierarchical Graph Rewriting Language

𝑛

?𝑑?𝑤

𝑛�

?𝑛�?(!𝑛 ⊗𝑛�)

𝑎𝑥

!

!𝑛

?𝑛� &

𝑛

?𝑑?𝑤

!𝑛 ⊗𝑛�

?(!𝑛 ⊗𝑛�)?𝑛�

𝑎𝑥

𝑛� 𝑛

⊗

𝑎𝑥

!𝑛 ⊗𝑛�

𝑐𝑢𝑡

?𝑐
?𝑐

?(!𝑛 ⊗𝑛�)
?𝑛�

?𝑛� &

𝑛

?(!𝑛 ⊗𝑛�) &?𝑛� &

𝑛

&

&

𝑛

?𝑑

𝑛�

?𝑛�

𝑎𝑥

&

(?𝑛�) &

𝑛

!

!(?𝑛� &

𝑛) !𝑛 ⊗𝑛� (?𝑛�) &

𝑛

!(?𝑛� &

𝑛) ⊗ (!𝑛 ⊗𝑛�)

⊗

𝑎𝑥

𝑐𝑢𝑡

𝑛

?𝑑

𝑛�

?𝑛�

𝑎𝑥

&

?𝑛� &

𝑛

Figure 8. An example of proof net and reduction of a 𝜆

calculus.

ax{+A1 ,+A2},'?d'(A1,A3),'?w'(A4).

{

ax{+B1 ,+B2},'?d'(B1,B3).

'?w'(B4) ,'!'(B2,B5).

}.

'?c'({+A3 ,+B4}+C1),'?c'({+A4 ,+B3},C2).

tensor(B5 ,T1 ,D2),ax{+T1 ,+T2}.

cut{+A2 ,+D2}.

par(C2 ,T2 ,P1),par(C1,P1,F).

{

ax{+E1 ,+E2},'?d'(E1,E3).

par(E3 ,E2 ,E4) ,'!'(E4,E5).

}.

tensor(E5 ,T3 ,D4),ax{+T3 ,+T4}.

cut{+F,+D4}.

formula(T4).

Figure 9. The LMNtal encoding of Fig. 8.

LMNtal’s bundles and membranes: the process contexts and
bundles concisely express the matching, while the formation
of nested structure is intuitively expressed with the braces.
Figure 6 shows the rule for a structure in which the !-

cell of a box and a ?w-cell (standing for weakening) out-
side a box are connected by a cut-cell. A multiset ?Γ =
{?𝐹1, ?𝐹2, . . . , ?𝐹𝑛}, where 𝐹𝑖 is a formula, is extracted from
the box, and each member is connected to a ?w-cell. Figure 7
shows an LMNtal program encoding Fig. 6. The structure

Figure 10. State Space of Fig 8.

of such a rule can be written in simple code by using the
nonlinear membrane feature of LMNtal.

Other cut elimination rules can be encoded in a similarly
concise manner. In particular, the rule for a ?c-cell (corre-
sponding to contraction) can be encoded by using the copy-
ing of non-linear membranes.

We implemented all these rules in the LMNtal implemen-
tation SLIM and demonstrated that the reduction of actual
proof structures could be performed. The six cut elimination
rules are written in about 30 lines of code. SLIM also enables
the construction of the state-space of cut elimination.

3.3 Example: Simply Typed Lambda Calculus
Figure 8 shows an encoding of simply-typed 𝜆-calculus in
Proof Nets. As is well known, the function type 𝐴 → 𝐵 can
be mapped to ?𝐴� &

𝐵, and cut elimination corresponds to
𝛽-reduction. Figure 8 shows the proof net representation of
the 𝜆-term (𝜆𝑓 ∶𝑛→𝑛 . 𝜆𝑥 ∶𝑛 . 𝑓 𝑥)(𝜆𝑥 ∶𝑛 . 𝑥) and the result of
cut-elimination, and Fig. 9 shows an example of the LMNtal
encoding of the initial proof net of Fig. 8. Figure 10 shows
the state space of Fig. 8, visualized by LaViT (the LMNtal
Visual Tool) [11]. It can be confirmed that the state transition
always reaches a unique (red) state.

4 Conclusion and Future Work
We have demonstrated that the language constructs of LM-
Ntal for representing hierarchies, i.e., membranes, process
contexts and bundles, provide exactly what are needed for
the concise encoding of cut elimination rules of MELL proof
nets. There are many variations of proof-net representation
of MELL, with and without boxes (e.g., [1, 5]), and LMNtal
is expected to serve as a workbench for understanding and
analyzing them. We note that several encodings of the 𝜆-
calculus in LMNtal have been proposed and implemented,
including a fine-grained one [9] (inspired by [7]) that uses
membranes in a different manner for scope management.
It is expected that the encoding of cut elimination inspired
by [9] provides another way towards the the connection of
proof nets, 𝜆-calculus, and graph rewriting.

Kento Takyu and Kazunori Ueda

References
[1] Beniamino Accattoli. 2015. Proof nets and the call-by-value 𝜆-calculus.

Theoretical Computer Science 606 (2015), 2–24. https://doi.org/10.1016/
j.tcs.2015.08.006

[2] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50,
1 (1987), 1–101. https://doi.org/10.1016/0304-3975(87)90045-4

[3] Jean-Yves Girard, Yves Lafont, and Paul Taylor. 1989. Proofs and
Types. Number 7 in Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press.

[4] Masato Gocho, Taisuke Hori, and Kazunori Ueda. 2011. Evolution of
the LMNtal runtime to a parallel model checker. Computer Software
28, 4 (2011), 137–157. https://doi.org/10.11309/jssst.28.4_137

[5] G. Gonthier, M. Abadi, and J.-J. Levy. 1992. Linear Logic Without
Boxes. In Proceedings of the Seventh Annual IEEE Symposium on Logic
in Computer Science (LICS 1992). 223–234. https://doi.org/10.1109/
LICS.1992.185535

[6] Stefano Guerrini, Simone Martini, and Andrea Masini. 2001. Proof
nets, garbage, and computations. Theoretical Computer Science 253, 2
(2001), 185–237. https://doi.org/10.1016/S0304-3975(00)00094-3

[7] François-Régis Sinot. 2005. Call-by-Name and Call-by-Value as Token-
Passing Interaction Nets. In Typed Lambda Calculi and Applications -
TLCA 2005, Paweł Urzyczyn (Ed.). Springer-Verlag, Berlin, Heidelberg,
386–400. https://doi.org/10.1007/11417170_28

[8] Kazunori Ueda. 2008. Encoding Distributed Process Calculi into LMN-
tal. Electronic Notes in Theoretical Computer Science 209 (2008), 187–200.
https://doi.org/10.1016/j.entcs.2008.04.012

[9] Kazunori Ueda. 2008. Encoding the Pure Lambda Calculus into Hier-
archical Graph Rewriting. In Rewriting Techniques and Applications -
RTA 2008, Andrei Voronkov (Ed.). Springer-Verlag, Berlin, Heidelberg,
392–408.

[10] Kazunori Ueda. 2009. LMNtal as a hierarchical logic programming
language. Theoretical Computer Science 410, 46 (2009), 4784–4800.
https://doi.org/10.1016/j.tcs.2009.07.043

[11] Kazunori Ueda, Takayuki Ayano, Taisuke Hori, Hiroki Iwasawa, and
Seiji Ogawa. 2009. Hierarchical Graph Rewriting as a Unifying Tool
for Analyzing and Understanding Nondeterministic Systems. In Theo-
retical Aspects of Computing - ICTAC 2009, Martin Leucker and Carroll
Morgan (Eds.). Springer-Verlag, Berlin, Heidelberg, 349–355.

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.11309/jssst.28.4_137
https://doi.org/10.1109/LICS.1992.185535
https://doi.org/10.1109/LICS.1992.185535
https://doi.org/10.1016/S0304-3975(00)00094-3
https://doi.org/10.1007/11417170_28
https://doi.org/10.1016/j.entcs.2008.04.012
https://doi.org/10.1016/j.tcs.2009.07.043

	Abstract
	1 Introduction
	1.1 LMNtal: a hierarchical graph rewriting language
	1.2 Contribution

	2 Proof Nets
	2.1 Multiplicative Exponential Linear Logic
	2.2 Cut Elimination

	3 Encoding Cut Elimination into LMNtal
	3.1 Hierarchical constructs of LMNtal
	3.2 Encoding into LMNtal
	3.3 Example: Simply Typed Lambda Calculus

	4 Conclusion and Future Work
	References

