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Abstract

Pool is a data management ulility Tor users of the concurrent logie programming lan-
gnage KL 1, providing an updatable table of data including variables. Logic programming
languages have single-assignment variables that make concurrent programming casice, On
the ather hand, npdatable tables have to be represented as processes, For programs with a
single large table running in a distributed parallel environment, access concentration and
delays become problematic. To solve this, we propose a new feature called a distributed
pood which enables data caching for increased access locality. A cache coherency mech-
anism implementing the same functionality as the non-distribnted version was designed.
The proposed mechanism uses split-transactions for higher parallelism and the number of
cache states is reduced by a loose data location management policy. The distributed pool
has been implemented on the Parallel Inference Machine (PIM). Performance results for
its primitives and speed gain with a MGTP (Maodel Generation Theorem Prover) simula-
tor are reported. Preliminary results of a further optimized implementation on the KLIC
implementation of KL1 are also given, which utilizes the object-oricuted forcign langnage
interface framework of KLIC, generic objecis.

Keywords: a concurrent logic programming, cache coherent protocol, distributed pool,
split-transactions, loose location management

1 Introduction

Poolis a data management utility which offers nsers of & concurrent logie programming language KIL1
[Ueda 1990] an updatable table of data including variables.

Unlike in procedural languages, variables in logie programming langnages have a single-assignment
properly, This makes writing concurrent programs easier by removing the fear of destroying the
contents of variables.

On the other hand, to realize updates without side-ellects, updatable tables have to be represented
as processes. Pools are represented in this way.

In KLL, a user can write a program to share data between physical processing nodes without
explicitly specifying physical data locations. A program with many processes located on different
nodes accessing a single pool can be written easily. However, when many processes access a pool
managing a single large table at the same time, we will find the following problems,

o Access congestion
When many processes access a pool at the same time, access performance declines becanse a
pool handles requests sequentially.

o Access delays when transmitting data belween nodes
When proceasses nsing a pool are distributed over different nodes and the pool is not located at
the same node, a delay in data access becomes apparent,



& llata concentration at one particular node

When a large amount of data is stored on one node in which a pool is located, a memory shortage
may oceur on that node,

A good example is MGTP (Model Generation Theorem Prover) [Hasegawa 1992], a parallel
theorem prover based on model-generation. In ils current Lplementation, all the processing
nodes have copies of all the data for rapid access, Ilowever such a data management policy
restricts the size of the model which can be handled by MCTP according to the size of the
memory of each node.

There are two ways Lo solve the problems. One is distributing the data to some predefined nodes.
Daka locations are soimehow maintained and access requests are forwarded by the data location man-
ager. The other method is to manage data distribution more dynamically. Data are cached on local
nodes where accesses are made [requently, and may migrate when access patterus change.

The former method must access a remote process each time data are needed. The latter mnst
guarantee that cached data are up-to-date. Taking the communication load info consideration, we
chose the latter method, We extended the concept of pool with the caching method and call it a
distributed pool. To distinguish a distributed pool from a conventional pool, the latter is called a
centralized pool here.

The next section proposes a new feature called disiributed pool which solves the problems, lollowed
by a section giving performance evaluation results of its prototyping. Section 4 presents performance
improvement ideas and results, Finally we conclude the paper by showing preliminary results when a
pool is implemented by a different implementation scheme, generic objects.

2 Distributed Pool

2.1  Basic Principles

To solve the problems described in the previous section, we propose a distributed pool. A distributed
pool allocates data among several caches processes located on physical processing nodes Lo maximise
the data access locality. As copies of the same data can be cached where they are needed, access
comgestion and access delays ave alleviated.

However, if data between caches becomes inconsistent, concurrent programming will be very dii-
ficult, if not impessible. It is important for the distributed pool to behave in the same way as the
centralized pool.

When data copies are made withont any restrictions, memary shortage may become problematic.
To avoid this, a limit on the amount of data cached in a physical node has to be set.

The distributed pool extends the centralized pool with the following two new functions.

L. To cache daia distributed 1o nodes requiring them for decreased access latency and to maintain
consistency

Data npdates have the same seimanbics as a centralized pool with the consistency management
mechanism. Any data can be accessed with the same overhead once the data is cached in the
local node. T'his function works very effective where the diference in access speed bhetween the
local memory and a remote node is large.

2. 'l'a distribute data among many nodes for increased dala capacity

In particular, when we use the Parallel Inference Machine (PIM) [Coto 1989 with 256 processing
nodes, Lhe available memory quantity increases by two orders of magnitude.



2.2 Protocol Design
2.2.1 Coherency Proilocol

Cache processes may have copies of the same data. If one process modifies its copy, other processes
run the risk of reading obsolete data.

To avoid this inconsistency, we have to keep the caclhies coherent, Generally cache coherent proto-
cols can be categorized into two,

Cne method allows oll the caches o modily daty directly, On modificalion, the new doata are
broadeast to all cache processes. “This method is called the wpdaie protocol,

The other method allows only one cache to modily data, making all the others read-only. When
a cache process is lo medily data, all copies of the data in other cache processes are invalidated Arst.
This method is called the invalidation protocol.

In the former method, updating messages must be broadeast every thme o cache process modifies
data. Tt is usually difficult to implement a system with that protocol efficiently on a large distributed
system, because small messages for updating data are sent frequently. The latter method is desirable
in our case.

2.2.2 Ownership

When a data item not existing in the local cache process is accessed, it must wait for the data to be
transferred from one of the remote cache processes with that specific data, The cache process that
Llakes the responsibility for sending the data is the owner of the data.

For data transfer, data location information is necessary., A process called the directory process
maintains the information keeping track of the data movements {called the data sharing information ).
The directory process forwards data transfer request messages from cache processes to the process
with the ownership of the data.

To prevent performance detecioration caused by congestion in aceess Lo Lhe direclory process, data
indices are distributed to directory processes through hashing.

2,23 Replacement

Receiving data from the owner cache process may make the amount of data in the cache exceed the
predefined capacity limit. In such o case, the cache process has to make room for the new data by
selecting and abandoning some copies.

Since a direclory process maintains the data sharing information, if replacement aceurs, the cache
process must inform the directory process about the data thrown away.

There are two possible ways that the directory process can be notilied.

® When the cache process abandons the data
This makes the cost of replacement itself higher. Thus, it i1s disadvantageous for applications
with [requent replacements.

» When the cache process receives an invalidale message
This lowers the replacement cost, but the directory process must send redundant invalidation
messages to cache processes no longer keeping the data.

We zelected the latler becanse many more replacements may take place than invalidations for data
items. The pool may be full of data which are swapped frequently because of the capacity limit, but
which are almost never apdated,

This means the data sharing information is managed loosely; cache processes with no data might
be registered in a directary process,



Tahble 1: The interface of a pool

TNEFRALE E deseription

carbon_copy({Key, O} Returns a value of clement with the key “Key® Lo s varable *0F. If
nn sich elements exist, the poal returs [].

put{Key, X, Statns) Avbelr an element "X with the key ‘Key'. If the such an element
already exigts, the pool returns ‘replaced’ to *Statns’; otherwise,
the pool returns “added” to "Status’

gl Al_any_and_put{Key, X. Y) Returns the value of an element with the key “Key' in the form
{Value} to "X and registers & new value 'Y in plaee of il IC no
such elements exist, returns {3 to "X and adds a new element 7Y

getand_putif any(Key, 3, Y, Y1) | Beturns the valie of an element with the key *Key™ in the form
{Valueh to *X', registers a new value *Y", and returns {3 to *¥1°,
I[ oo such elerpents exist, returns {3 to "X and returnsg {7Y7 to

Y1
get dlany( Kc:.-'-. X) Dicturns the valive of an element with the key “Key” in the form
{Valuel to X 1 no such elements cxist, returns {1 to X,
removel Koy, Status) Deletes the element with the ey Koy’ and returns “removed’ to

“Atatna’, T wo sneh elements exist, the pool eeturns nonexistent’
Lo ‘Status’,

Chuertes whether elements with a key “Iey™ are in the poal. T any
element with the key Koy’ exist, “YorM' is instantiated to an atom
fvies”, IF no such elements exist, *YoeN 15 instantinted to an atom
BITT

empty{ Key, YorM)

2.2.4  Split Transactions

When the requested data do not exist in the local cache process, it must wait for a response from a
directory process. T'here may be many succeeding requests that can be processed without interaction
with directory processes. If the cache process is suspended, waiting for the response to the request for
the first message, parallel execulion will be unnecessarily restricted.

Hence, when a cache process has to wait for a responge from a directory process, we let the
process continie fransactions after marking the data as waiting for response, and suspending only the
iransaction on that data. Higher parallelism can be obtained by adopting this split transaction policy.

2.3 The Interface of a Pool

The interface that a pool provides [or users s summarized in Table 1. In this table, [] means the
atom NIL and {} means a nnll vectar,

2.4 State Transition Diagram

We have designed the cache coherent protocol according o guidelines described above.

Figure 1 shows the state transition of a cache process for operations ‘carbon_copy’ (for data re-
trieval) and ‘getifany and_put’ (for updates). Figure 2 shows the corresponding transition of the
directory process. A brief descriptions of ull the stales of cache processes and directory processes are
given in Tables 2 and 3,

3 Performance Evaluation of the Distributed pool

We implemeuted the prototyping system of a distributed pool described in the previous section, and
measured Lhe performance on the Parallel Inference Machine (PIM).
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. mlorm2  EXCLUSION_MADE
get 1 any_and pul DATA_FUUND get if any and_put
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Figure 1: The state transition diagram of a cache process
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MO DATA_FOUND Mi| | w2
_data
DATA_FOUND
el_exclusive_data
Mz = E--_— = M2 data purged
SEND_DATA_AND_INVALIDATE DALA FOUND  NO_DATA_FOUND
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Figure 2: The state transition diagrain of a directory process
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Table 2: 'The states of a cache process and their meaning

permancnt state

description

I Terwaeliad )

State in which the cache process doesn’t have data

E{ Exclusive)

Exclusive state in which oo cache processes except for oneself have

SO Shaved- Owined )

datn

bﬁm‘mi atate In which several processes are sharing data. This cache
procesz has to be responsilile for supplying the data ns reguested
by other cache processes.

ST Shared- Ui el )

Ehared slale m which several processes are shanng dafa. As re-
placement ocenrs in this cache process. the cache process may aban-
dow ddata

temporary statc |

description

WE(Waiting Exclusion)

] W'il,iliugl Loy v Ehe B or T state.

W=D
{ Waating-Shared-Data]

Waiting to move the SU or T stale.

WP Wailing Puarge)

Whaiting to move the I state,

Table 3: The states of a directory process and their meaning

permancnt slate

ileseription

I(Lnvalid)

State in which the cache process doesn't have data

Vi Walic )

Slale i wlich some cache processes ight have dafa At Teast the
cache process having ownership does contain dala.

Lo porary state

description

WD Waiting-Data)

State in which the directory process waits for data

WED{ Waiting Exclusive-Tiata)

State o which The direelory process walts for all cache processes
keoping the data to be invalidated, and then reevives the data if it
pxisis

WEDI
{ Waiting-Exclosive- Data-TFany )

State In which the diveciory process waiks for all caclie proccssis
keeping the data to be invalidated, and then might receive the data.

WE{ Walting- Exclusion)

Stafe tn which the directory process waits for a response o the™

WRD| Waiting-Removed-Data)

wvidielation message, and then woves the ¥ ostate.,
State i whicli the dircctory process waills [or a reaponse to the

invaliclation messaee and roceives the data if it exdsts.

WEP{Waiting-Furge)

state i which the dircelory process waits for a response to the
invaliclakion inessasa, awd then moves U T state,
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Figure 3: Access time when relerring to integer data
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Figure 4: Execution timme when aceess congestion occurs

Figure 3 shows access time for the distributed pool. T'he access time for referring to integer data
was measured. The vertical axis vepresents the access time, and the horizontal axis represents the hil
ratio when accessing data. Local and remote aceess time for a centralized pool is also shown. Local
access weans thal bolh a pool and a user process are located on the same node. This figure shows
that the performance of a distributed pool is equal to that of remote access of the centralized pool,
when the hit ratio is about 85 %.

Figure 4 shows how the compnting load is alleviated by a distributed pool. The wvertical axis
represcnts the execution time referring to data, and the horizontal axis represents the number of
consumer processes. According to this figure, the execution time of a centralized pool increases in
direct proportion to the number of consumer processes, On the other hand, the execution time of
a distribnted pool inereases by the ratio of half the centralized pool. One reason for lowering the
performance of a distributed pool, is that the processing of sending data is concentrated in the cache
process having ownership, when o miss-hit occurs on the data.

Speed up of the mgip_bench program, which is an MGTP simulator, is shown in Figure 5. MGTP
is the parallel theorem prover based on model-generation. The task of model generation is to construct
a model for a given sel of clanses, starting with a null set as a model candidate. If the clause set is
satisfiable, & model should be found. The model consists of many atoms which are managed by using
a distributed pool in the simulator program.

Many atoms of a model candidate are distributed to many worker processes on each node. Worker
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Fignre 5: Speed up of the mgtp_bench program

Processes are connected with each others in a ring topology. Referring o all atoms of the model needs
to go around the ring.

The sample problems examplel, example?, erampled have the following model size and execution
time by processing in one node.

& examplel

N of atorns: about 20000, cxceution time: 1700 [ =ec )
o exam pled?

Mo, of atoms: about 10000, execution time: GO sec)

o cxmmpled
Mor ol atoms: aboul 5000, execulion tme: 140(sec)

4 Performance Improvement of the Distributed Pool

In this section, we will describe some approaches to performance improvement for a distributed poal.

4.1 Simplifying the Cache Coherent Protocol

It is possible tu reduce the pumber of slales of the cache process and the directory process by adopting
the following policy:

In the prototyping protocol, a cache process needn't inform the data abandonment to the directory
process managing Lhe data sharing information, when replacement ocenrs. Therefore the data sharing
information might contain some cache processes no longer keeping data. However we assumed the
cache process having ownership should hove dala atl least.

If we allow even cache process keeping ownership not to have data, we can combine the states of
WED, WET}T, WE, WRID, and WP inlo one state,

That is, we can cssentially categorize requests to a directory process into only two. These two
requests correspond to sharing data and having exclusive data. On receiving a request having exclusive
data, a directory process moves to the combined state.

In the protocol of the protolyping system, a directory process moves to the | (Invalid) state, after
the WRD or WP siales. ut in the case of the simplified protocal, it doesn’t move to the T (Invalid)
state, Il conlinues to incorrectly assume that a cache process has data even if data actually disappears
by a retracting operation like get if_any.

Table 6 summarizes how the simplified protocol decreases the number of states, Also, there was
litile performance deterioration by adopting this pratocol.



Table 4: The states of a cache process and their meaning

perrimend stale E description
IiTnvalid} State in which the cache process doesn’t have data
E{Exclusive) Exclusive state In which wo cacle processes excepl Tor vocsell Tiave

lat
Bhiared state in which several processes are sharing data. This
S0 shared-Owned) cache process has to be responsible for supplying the data being

reguested by other cache processes,
ahared state m which several processes arc sharing data. As re-

SU(Shared-TTnowned ) placement oecnrs in this cache process, the cache process may aban-
dlon data

L porary state desceriplion

W Waiting ) | Waiting for response from a directory procoss

Table 5: The states of a divectory process and their meaning

prermanent statse ileseriplion
I Dnvalid} State i which the esche process doesn’t have data
TV Valid) State in which some cache processes might have data.
temporary I deseription
—‘l.-"lu’l_l{ Waiting-Data) -;"'f-ﬂh‘- HII 1:'11"11! the directory process Walt.;i Iu-r .nlthu.. bk dleeres moaghit
pit Bhds (hACd
. . . . State i which il direclory process waits for all cache processes
WED Waiting-Exclusive-Dat . . . . .
| Waiting-Exclusive-Data) kerprinnge Ehiar dlakan Lo b invadiclabed , s then might receive the data.

4.2 Caching to the Directory Process

Ta improve performance in Figure 4, it is effective to divide the task of cache processes keeping
ownership. Fortunately for KL1, data movements between nodes is done by a demand-driven policy.
So the contents of data aren’t transmitted to the oode in a divectory process, even if we decide to
cache the pointer of data in the directory process, because the directory process doesn’t refer to the
content of the data.

A pointer to data is cached in the directory process only if requesting to refer to data and no
painter is cached. When a cache process requests exclusive data, the cached pointer is discarded.
Once a pointer is cached, requests referring to data are treated without interaction with the cache

process keeping ownership. Figure 6 shows the improvement in access concentration performance
without any degradation of access time.

4.3 Integrating the Centralized Pool

In the prototyping system, a cache process and a directory process nse a centralized pool as their data
management utility. Yet in this implemeniation, access time using the centralized pool via a stream
{a logical variable) is rather slow. Hence, we integrate the centralized pool within the cache process.
Both processes can use the centralized pool via function calls.

With this improvement, the access performance improves as shown in Figure 7. This figure shows

that the performance of the distributed pool is equal to that of remote access to the centralized pool,
when the hit ratio is about 80 %.
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T'able 7: I'he performance of a centralized pool using consumer objects

l rilio | cxeention time {msee)

consmner objects

. 1 26
(o suspension |
cousumer ohjects 14 a7
pe 1.8 99
[no auspension )
kL1 1.9 126

5 Preliminary Evaluation of Different Implementation Scheme

KLIC [(Chikayama 1994] is a portable implementation of the concurrent logic programming language
KLI by compiling into C. KLIC has a feature called generic abjects which allows easy modification
and extension of the system without changing the core implementation.

We plan to implement a distributed pool using this feature, Before this implementation, the
preliminary evaluation of a centralized pool using the [ealure was investigated,

3.1 Generic Objects

Generic objects provide an ohject-oriented foreign language interface framework for KLIC. A pro-
grammer defines a datla slructure and operating methods to allow use of generic objects.

KIIC has three kinds of generic objects, These cousisl of Data objecis, Consumer Objects and
Generator Qljects. Pool ulilizes Consumer Objects which are objects with time-dependent states, and
are invoked by instantiation of logical variables. They look like a goal process wailing for instanlialion.

5.2 Performance of a Centralized Pool

A centralized pool using consumer objects was implemented and its performance was measnred on a
SparcStation 10. Table 7 shows the results of a task that repeats registration and reference of 1000
integer dala. In the table there are items on a centralized pool using consnmer object and KL1, and
itemns indicating whether suspension ocenrs or not,

The table shows that a pool using consumer objects is abont 1 times as fast as a poal using KLL.
I'rom these resuils, when a distributed pool nsing consumer objects is implemented, we can gel a gain
in performance speed of hit access of 3 times. However, it is dillicult to confirm that a distributed
pool nsing conswiner objecls runs 3 Limes as {ast as one using KL1 in a miss-hit access. Becanse in
the miss-hit access there are several complicated conditions inchiding communication latency between
physical nodes.

6 Conclusion

The distributed pool was proposed in order to solve problems of & centralized pool when the appli-
cation manages a large amount of data using a peel and processes them in parallel in a distributed
environment,

Using a distributed pool, access contention can be eased, access latency between remote nodes is
shortened, and all of the memory can be used efficiently in distribuied computing systems, since data
are redistributed dynamically according to access patterns.

The cache coherent protocol was carefully designed. It has the following featnres.

o Adoption of split transactions which allow higher paralielism

11



e Reduction in the number of states of the protocol by loose management of the data sharing
information
s Caching a pointer to data in the directory processes

The performance of a distribnted pool implemented by this protocol was evaluated on the Parallel
Inference Machine (PIM]. We confirmed that the perlormance of the distributed pool equals that of
remote access to a centralized pool when the hit ratio is abont 80 % in spite of various overheads for
data coherence management. We also found that, with the increase in processes accessing the pool, the
execution lime with the distributed pool remains almost constants, while that of the centralized pool
increases in proportion to the number of accessing processes. An experiment that applies a distributed
pool to the MGTP simulator also showed its advantages.

We plan to implement a distributed pool in KLIC, which is & portable version of the concuarrent
logie programming language KL1. Moreover, we plan to apply the distributed pool to more practical
applicution programs, and evaluate it from the viewpoints of boll programming cose and performance,
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