[COT Technical Report :TR-908

TR- 906

Paralell Inference Svetem Reseach in the

Tananese FGCS Project

T.Chikayama & k. Rokusawa

February, 19495

(C)Copyright 1995-2-17 I1COT, JAFAK ALL RIGHTS RESERVED

I (: () F1? Nita Kokusai Bldg. 21F Teld313456-3191~5
4-28 1-Chome
Hinato ku Tokyvo 108 JTAPAN

[nstitute for New Generation Computer Technology

Parallel Inference System Research
in the Japanese FGCS Project

Takashi Chikayama and Kazuaki Rokusawa

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108 JAPAN

Abstract

The FGCS project is a nalional project of Japan, that aims at establishing the basic
technology required for high performance knowledge information processing systems. The
research and development principle throughout the project has been to adopt logic as the
theoretical backbone of knowledge information processing and parallel processing as the
key technology for nbhtaining high performance,

This paper reports an outline of the results obtained in the parallel inference system
research in the FGCS project, and describes its implementation scheme of the concurrent
logic programming language KL1.

1 Introduction

The PGOS project is a national project of Japan, thal aims at establishing the basic
technology required for high performance knowledge information processing systems. The
research and development principle throughout the project has been to adopt logic as the
theoretical backhone of knowledge information processing and parallel processing as the
key technology for obtaining high performance.

Thus, one of the most important subprojects of the FGCS project has been research
and development of the parallel inference system, aiming at establishing both hardware
and software technologics for massive symbolic computation power through highly parallel
processing.

There are two most important sets of technologies for high-performance knowledge
processing systems. Ome is technologies providing problem-solving methods for knowl-
edge information processing; the other is technologies for actnally applying such methods,
thereby providing massive computational power and ease in programming., The parallel
inference system subproject aims to establish the latter, both in hardware and soliware,
through logic-based parallel processing,

Several problems that did not exist with sequential processing arise with parallel pro-
cessing. The most Lypical ones are the following.

Programming language, Traditionally, parallel processing software has been written
in sequential programming langnages angmented with features for parallel processing.
With this approach, parallel languages can be designed by modifying already existing
and well-established sequential languages, and parallel software can be built by “slightly”
modifying exisling software.

However, the modification snpposed to be “slight® and superficial often turned ount to
be large and fundamental. In this approach, parallel programs are structured as a set of
sequential processes, occasionally communicating one another. One of the most frequently
encountered problems with this erganization is synchronization failures between processes.
Synchronization failores are frequent source of bugs thal are hard to fix.

Another problem frequently observed after setiling the synchronization problems was
that parallelized programs just do not show the expected cfficiency. To solve the prob-
lews, assignment of computation among processes has to be chauged drastically, that
often reqnires comsiderable program revision. This rewriting may again introduce new
synchronization problems,

The above approach made a wrong starl. Since parallel processing is so diflferent from
sequential processing in many aspects, a “slight modification™ will not work, cspecially for
complicated problems in knowledge information processing.

To solve the problem, we adopted a concurrent logic progranuning language KL1],
which was based on GHC [2].

Software development environment, Tools originally designed for sequential pro-
gramming do not always provide the functionality required for debugging highly parallel
software, even with extensions made afterwards. The same can be said about the op-
erating system features, snch as interfaces to the resource management mechanism and
virtualized 1/O devices. The original design relies so mmeh on sequential processing thal
maost of the extensions for parallel processing are only suited for small-scale parallelism.

Aun vriginal operating system, PIMOS (Parallel Inference Machine Operating System)
[4] was thns developed to provide a comfortable software development environment for
parallel application software.

Experimental Application Systems
Operating System 1"IMO5 \

KLl Language Processor

Parallel Inference Machine PIM

Figure 1: Parallel inference system.

'I'he parallel inference system has an overall structure as shown in figure 1. A notable
difference with conventional computer systems is that the operating system is huilt npon
the level of the programming language processor. For efficient execution, highly parallel
application software has to control parallel processing activities in the system; this control
usually was not needed in sequential or small-scale parallel systems. The application layer
and the operating system layer thus require the same primitives. We decided to provide
a commumon basis for them, namely, the programming language KL1.

2 Architectural Platforms

When the development of the parallel inference system began in 1986, no hardwire systems
in the market seemed to fit our purposes. Parallel systems available in the market were
either 8IMI) processors or had too few processors, Thus, we decided to design our own
parallel processing hardware for the system.

[t was not clear which parallel processing architecture was mosi suited to knowledge
information processing. It was quite difficult to evaluate many architectural ideas through
desk-top analysis only. Software simulation was too time-consuming to evaluate using
application software with practical complexity and size.

We decided to develap several (five, to be precise) experimental models of parallel
inference machines (PIM [4]] with different processor and interprocessor connection ar-
chitectures and to evaluate them through experimentations with application systems that
were experimental but practical in their complexity. In addition, before developing full
PIM systems, we developed a smaller-scale system called Multi-PSI with up to 64 proces-
sors for accelerating R&D of software systems.

Scalability was our first concern. We were not aiming at developing technologies that
could only solve problems we have today, but technologies that will be needed in the next
century and on. Thus, we chose the interprocessor network as the global communica-
tion medium. Some models also have shared memory clusters, consisting of up to eight
processors, but even with such models, clusters are connected by communication network.

Table 1 shows various aspects of Multi-PSI and the five models of PIM. All the models
have an implementation of the common kernel language KL1, and most of them run the
common operating system PIMOS described below, Thus, the same application software
can be run on different architecture,

3 Language

A concurrent. logic language, KL1 (1], was designed as the kernel language of the system
to give the basis of both hardware and software technologies.

KLI is a born concurrent language in which concurrent compntation is the default.
Its antomatic dataflow synchronization mechanism eliminates most of the synchronization
problems. Physical parallelism is specified as “pragma” in the language, clearly distin-
guished from logical concurrency, This allows modification of physical parallelism without
tonching the concurrency and synchronization behavior of programs. This made experi-
mentation with parallel algorithms much easier than the traditional approach.

3.1 Basic Mechanism

KLl is a concurrent logic programming language based on GIHC [2]. [ts basic execution
mechanism is common with other languages of the family, such as Concurrent Prolog [,
Parlog [6] or Janus [7].

KL1 programs consist of elewses, each of which corresponds to a logical axiom. Clauses
that define a program have the following syntax:

PredNamel ArgList, ...} 1= Guard | Body.
Fiach part has the following operational meanings:

PredName gives the name of the predicate {or subroutine) for which this clanse gives
{a part of} the definition.

ArgList determines Lhe correspondence of actual arpuments given to the predicale and
the variables written in the clause definition.

Guard specifies the condition needed to be satisfied to apply the clause, Any number of
goals, i.e., invocation of predicates, can be wrillen separated by commas, and the
condition is considered to be satisfied when all of them are satisfied. In the guard,
only unifications and invocations of certain predicates defined in the language can
be written,

Body specifies the aclion to be taken when the clanse is selected. Like the guard, any
wumber of goals can be given here and all the poals will be executed when the clause
is selected. Unlike in guard, uwser-defined predicates can be invoked from the body,
in addition to unifications and langnage-defined predicates.

lixeemtion of KL1 programs procecds roughly as follows.!
1. First, the initial goal is the only member of a multiset of goals called the goal pool.

2. Some of the goals in the goal pool are picked up.

Laetnal implementationa aze more optimized.

Table 1: Summary of PIM hardware systems.

Model Year fAlwoc. foode WMem fuode lulernode connection

"M/ p 2 512 # 256MB hypercube, 33MD/s

PIM/m 91 L3 1 Blnme 2-10 mesh, worm hole, SMnp/s
PIM e 0z 26 8 160 crosshar, 40mp/s

PIM/k 0 16 1 206Mn hdcrarchical bus, S0MEB/s
PIM /i 2 16 b J2han 08T

Multi-PST 88 6id 1 80mi 2-D mesh, worm hole, SMB/s

3. Goals picked up are matched against clauses of the program.

4. If there is some clanse with its head matching a goal and its guard is satisfied, the
original goal will be reduced to goals in Lhe body of the clause and the resultant new
goals will be put back to the goal pool.

5. Steps 2 throngh 1 are repeated until the goal pool becomes empty.

Steps 2 through 4 can be done in parallel [or wany goals at a time, This is the source of
concurrency in this language.

The most notable features of the concurrent logic programming languages are their
side-effect-free semantics and implicit dataflow synchronization mechanism. Since no no-
tion of assignment 15 in the language, the value of a variable, once defined, will never
change as the compulation progresses. The dataflow synchronization mechanism assures
that, whenever a decision is to be made for conditional execution, it is suspended auto-
matically until all the data required for the decision, such as operands Lo a comparison,
get ready.

The combination of these features assures that there will never be synchronisalion
problems such as

» Overwriting a variable before its value is read
Reading a variable’s value hefore it is set

Programs in KL1 are usually organized using the object-oriented programming style
[8]. Almost the whole PIMOS operating system and many of the application systems
running on PIM are written in this way.

3.2 Computation Mapping

KL1 provides only low-level process distribution and priovity-based scheduling features for
controlling computation mapping. 1t seems that, at least with the status quo technology,
e wulomatic lond-distribution schemes are universally effective to all kinds of algorithins.
Our decision thus was to provide lower level primitives in the programming language level
and to make the software written in it responsible for computation mapping.

The primitives provided in KL1 are as follows. Note that they are no more than
pragmas that only suggest the language processor for betier performance; they will not
change the meaning of the programs.”

Processor specification. Euch body goal may have o processor specilication that des-
ignates the processor on which to execute the goal.

Priority specification. Fach body goal may have a priority specification. Each goal has
an integer priorvity associated with it,

Although process distribution is specified by pragmas, data referenced by distributed
processes are fetched from remote memory antomatically on demand. The side-effect-
free semantics of KL1 allows copying of any data except for undefined variables without
affecting the meaning of programs. Executable codes are also distributed on demand; ie.,
when a cerlain picee of code is necded on some processor and the code is not in the memory
of that processor, it will be fetched from some other processor antomatically. Memory

To he procige, pragmas will ot change the partial correctuoess of programs. but certain diverging
programs nay be azanred to stop theough pragma apecifications,

Control Report
Stream Stream

Shoen i A

Figure 2: Shoen and related streams.

areas occupicd by data structures or executable code no longer needed are reclaimed with
the garbage collection mechanism by using the scheme described below.

Several automalic mapping strategies have been developed for diverse problems in the
suftware level using the above straightforward mechanism. Relatively universal ones are
provided as libraries and are used in many application sollware systems [9].

3.3 Metalevel Control

With the basic semantics of the concurrent logic programming langnages, all the goals in
the system form one logical conjunction. This means that a failure or an exceplion in one
of the goals makes the whole system fail. Alzo, there is no way to control execution of
such goals. With this semantics, it is almost impossible to build a sysiem that requires
cfficient metalevel control on computation activities, such as an operating system.

KL1 thus provides a metalevel execution control feature called “shoen.”™ A shoen is
a group of goals. This group is used as the unit of metalevel control, namely, initiation,
interruption, resumption, and abortion of execution, The shoen construct also provides
exceplion bandling and resource-consumption control mechanisms.

A shoen has two comimunication streams as its interfnce: one, called the “control
stream,” directs inwards [rom oulside of shoen for sending messages to control the exe-
cution; the other, called the “report stream,” directs the reverse way for reporting events
inlernal Lo the shoen, such as exceptions (figure 2).

['IMOS uses this shoen structure to construct a higher-level notion of “task,” which is
the operating-system-level unit of resource management. Note that tasks are nof a unit
for parallel execution. There are usually many parallel activities within one task.

4 Distributed Implementation

This section deseribes the management of external references, distributed unification, and
distributed goal control.

In a distributed environment, each processor may have references across processors,
called external veferences. A unify request to an external reference canses message sending
ta the referenced processor to perform unification, which is called disfribuied unification.
A body goal with processor specification pragma may migrate among processors, A shoen

*The Japanese word “shoen™ ronghly corvespondds to the English word “manor.”
YPurther details can be found in [L0, 11).

procezsor i pProcessor j

expart table
-~ IJ ol " | wariable

{1) processor i generates an external reference L and throws o poal g

processor i o prroissar j
gl e import table export table

» variable

I - _._4 I

M

<ad

(2} processor j receives the goal and registors the external referenee T

Figure 3: Extenal reference.

is implemented using a proxy shoen called foster parent on each processor where the goals
of the shoen reside.

4,1 External Reference Management
4.1.1 External Reference

When a goal is thrown to another processor and the arguments of the goal are references
to undefined variables or structures, the references across processors consequently appear.
These are the external references.

When a goal with reference lo an object in processor j is thrown to processor i,
the original processor j erporis the reference to the object to processor i, and foreign
processor i impovts the reference to the object from processor j.

An external reference could have been straightforwardly represented by a pair <
proc, addr >, where proc is the processor number in which the referenced abject resides,
and addr 15 the memory address of the object. However, such an implementation canses
crucial problem; efficient local garbage collection (garbage collection within a processor)
is impossible, If locations of objects change as a result of local garbage collections, it must
e announced to all processors that may have references to the objects.

In order to overcome this problem, each processor maintains an export table to reg-
ister all locations of objects that are referenced from outside. An external reference is
represented hy a pair < proc,ent =, called external reference 1), where ent is the entry
number of the export table {figore 3).

When externally referenced objects are moved as a result of garbage collections, the
references from the export table entries are updated to reflect the moves, while the external
reference 1Ds are not affected.

4.1.2 Reexportation

Sinee an exported object is identified by its external reference ID, distinet IDs are regarded
as distinct ohjects even when they are identical. Since an undefined variable or a structure
may be exported to the same processor more than once, if the reexported object is given a

different ID, redundant read /write request messages may be sent.” To eliminate redundant
interprocessor communications, an exported object should not have more than one external
reference 110,

A hash tahle is attached to an export table to retrieve the same export table cuiry [rom
the same exported ohject. Also, each processor waintains an impert feble to register all
i:upu[l.ed external reference [Ds. There is a ha.ﬂhing mechanism for retrieving the import
table entry from the imported ID, so thal when o processor imports the same 1D more
than once, only one imporl table entry is allocated.

4.1.3 Interprocessor Garbage Collection by WEC

Since export table entries cannot be freed by a local garbage collection, there must be some
interprocessor garbage collection mechanisin to [ree those entries that become garbage. To
realize interprocessor garbage collection, the weighted erport counting (W) scheme [12]
is emploved, which is based on the weighled reference counting (WRC) scheme [13, 14]
and is a generalization of standard reference counting.

The WEC scheme associates some weight {positive integer) to external references {im-
porl table cutries in processors and cxternal reference [Ds in messages) and export table
entries, so that the following is invariant for every export table entry £ @

weight of B = E weight of x

T in r{“frrr:mr-x t &7

The above equality ensures that the weight of export table entry E reaches zero if and
only if there are no external references to B either in processors or in messages,

When a new export table entry is allocated, the same weight is assigned to both the
export table entry and the external reference D When a processor receives a external
reference 1D, it adds the weight assigned to the received ID to the weight of the import
table entry, which registers the same 1D, If there is no corresponding entry, the processor
allocates a new import table entry and registers the received 1D,

When a processor throws a external reference, the processor assigns a weight to the
external reference I and subtracts the same amount from the weight of the corresponding
unport table entry. The new weight of the entry and that assigned to the thrown external
reference ID should be both positive, and the sum of the iwo weights is equal to the
original weight of the entry.

When an import table entry is released, its weight is returned to the corresponding
export table entry by a frelease message. On receiving a $release message, the weight
of the export table entry is decreased by the refurned waight. If the weight of the export
lable entry reaches zero, the entry is freed. Figure 4 shows external reference management
under the WHC scheme.

4.1.4 Indirect Exportation

When the weight of an buport table entry is one, the processor cannot throw the external
reference, because nonzero weight must be assizned to the thrown external reference 1D
and nongero welght must also remain in the import table entry after throwing. In this
sitnation, the processor performs an mdivec! erporiofion; it registers the external reference
itself and generates a new external reference 1D (see figure 5).

El?rmll.'rwrirﬂ vperakions {pnard hody anification) are deseribed in section 4.8,

[TR L |

processor |

processor i

W=500
-—

expart table

impaort table

I

V=500

(1) An external reference with weight GIN) (s sent.

pProcessor i

expart table

W=300

processor k

l. R
W=200

|

W=E00

(2) Weight = aplit into two positive weighss.

PIOCEssOr |

import table

Arelease
W=300

processor i

export table

processor k

import table

Ex |+

W=200

—]

W=E00

(3} The external referenee in processor j is relensed.

F‘igllri—! 4: rl‘l‘lﬂ E'FF:C Hﬂ'llf—_‘:l“‘-".

Y=A00 -
* export table impert table

[- T

W=B00 W=1

Figure 5: Indirect exportation.

processor i processnr j
import table export table
U—"IER —|-—-l='_jrjb ali I_ _____]
w2
s

(1) An external reference with a mew 10y is sont,

processor i Processonr j
impaort table expart table

O—fX__ Fiidb il = |
O—fx F4iid3 ul?

(2) A new import table cntry is allocated,

Figure 6: Low-cost exportation and importation.

4.1.5 Low-Cost Exportation and Importation

The WEC mechanism mentioned above has overhead in terms of maintaining weight and
of locking up the hash table to check the reexporting and reimporting.

To minimize the cost of exportation and importation, on each exportation of a single
reference object, a simple export table entry 15 newly allocated and a simple external
reference [} with wo weight is generated. Also, on each importation of a simple external
reference ID, a simple import table entry is allocated." When a simple import table entry
is released, a Yrelease message with no weight is sent to the corresponding simple export
table entry. Un receiving the Yrelease message, the export table entry is released.

Since both a simple export and a simple inport table entry consist of only one field,
and no hashing mechanism is necessary, the cost of the management of the table is guite
low. Figure 6 shows the low-cost exportation and importation.

Single references and multiple references are distingnished by the Maltiple Reference
Bit (MEB) mechanism [15, 16] (see figure 7 and 8). Since there exist at most two single
references to an object, exportation through a single reference can be done al most twice.
Therelore, allocating o new export table entry and attaching a new external reference [1)
on each exportation of a single referenced object causes no redundant communication; at

“These simple tahles and simple 10 are called adite export fnport tables and white external reference
1D0s. while another complex vees are ealled blaek ones [12].

variable
< MRB OFF
(1} The chijsct iz an nodetined (2} The object is instantiated

vl with MRE OFF.

Figure T: Single references.

variabte
*— ® MRE ON
(1} The object is an nuwdefined {2) The object is instantiated
varinble, with MILG O

Fignre 8: Multiple references.

most, two read /write request messages may be sent.

4.2 Distributed Unification

Distributed unification is implemented based on message passing.

4.2.1 Guard Unification

The guard unificalion is perforined in a read and compare manner. To read the value of
the ahject referenced hy the external reference X, the return address for the response is
allocated, and the following read request message is sent to the referenced processor:

fread(y,Retidr)

After sending a ¥read message, the goal that causes the guard unification is hooked to
the external reference X,

If the referenced object has a concrete value, it is returned by an fanswer_value
message, shown below:

Yanswer_value (Retldr, value)

Figure 9 shows the operations described above,

If the referenced object is an undefined variable, the read request is hooked to the
variable, and the return of the value is suspended. If the object s an cxternal reference,
a fread message is forwarded to the referenced processor,

On receiving an Yanswer_value message, the external reference X is overwritten by
the value carvied, and the import table entry referenced by X can be freed. Clonsequently,
the hooked goal wailing lor the reply is resumed.

4.2.2 Body Unification

If an argument of hody onification s an external reference, the body wnification has
to realize the unification in a remote processor. Body unification between an external
reference X and a term Y is done by sending the following message:

10

impart table export table

2 i +___|

i

Yread(X,Retidr)—»
expart table

(1} Allocating a veturn address and sending a fread message.

impart table expaort table

P . -+ value

< angwer_valuae
h (1101: dr ,value)

nport table

—

i2) Sendding back an Yansver value message ciorying a vadie

Figure 8: Distributed guard unification.

import table
I

EX -+

I
b ——
I value funify (X, value)—=

Figure 10: Distributed body unification,

Hunify (X,¥)

This is a request to unify the object referenced by X with a term Y {figure 10). The proces-
sor that receives the above message performs the body unification. When the referenced
object is an external reference, a ¥unify message is passed to the referenced processor,

If both arguments are external references, a Yunify message iz sent to one of the
referenced processors,

4.2,3 Avoidance of Reference Loop Creation

A reference loop is a closed chain of references, If there were a reference boop, the obijects
on the loop would not have dereferenced results, and they could not be unified with any
concrete value, An wnrestricted wnification algorithm can ereate reference loops as follows,

processor 1 has an external reference Xi that references an nndefined variahle
Xj in processor j, while processor j has an external reference Yj that rel-
erences an undelined variable Yi in processor i. If body unification between

11

processor i rOCeESor |

T =
T ”ﬁ

Figure 11: Creation of a reference loop.

FOCESSOT 1 processor j
B3
11 x
R | EX
(i>j3)

Figure 12: Simply comparing processor nunbers
is insutficient,

processor i e i
| S—
¥

B snsafi
— = ZEJ

{ix3)

Figure 13: Safcﬂ_]nsafe attrihute,

¥i and Yi in processor i causes Yi to be bound to Xi, and body unification

hetween ¥i and Xj in processor j causes Xj to be bound to Y3, a reference
loop is created (figure 11).

In [17], this problem is solved by imposing the binding order rule: a binding of an
undefined variable to an external reference is permitited only when the current processor
nuwmber is larger than the referenced processor number; otherwise, a funify message is
senl Lo the referenced processor,

However, in the presence of indirect exportation, this simply comparing processor nwm-
bers rule s no lonper sufficient. For example, in figure 12, body wnification between an
external reference X and an undefined variable Z canses Z to be bownd to X and creates a
reference loop.

T cope with the presence ol indirect exportation, the Suf«},-’[ﬁmnfn attrihute is attached
to each external relerence 12| (ligure 13}, An external reference E is unsafe, if and only if
the processor nnmber in which 19 resides is smaller than the processor nnmber referenced

by I, or the object referenced by E is an unsafe external reference. An external reference
E is safe if it 1s not an unsafe reference.

/ fuster{h}l
O
goal
foo

goal goal

goal

shoou record
foster fuster parent recond

goal gl
(A)(H) shiren tlentifier

Figure 14: Shocus, loster parcals, and goals.

Body unification between an external relerence X and an undefined variable Y is made
as follows:

e [f X iz safe, Y is hound to X,

o If X is unsafe, a Junify message is sent to the processor referenced hy X,

4.3 IDistributed (Goal Control

41.3.1 Shoen and Foster Parent

A shoen supports the metacontrol facilities of execution control, resource management, and
status monitoring for the goals. The implementalion model for a shoen on a distributed
environment introduces a foster parent to reduce an access bottleneck at the shoen, A
foster parent is a proxy shoen located on processors where the goals of the shoen are
executed. A shoen and a [osler parent are realized by record structures that store their
details, such as stalus, resources, and number of goals.

Figure 14 shows the relationship among shoen recards, foster parent records, and goals.
INach goal in a processor has a pointer that points to its foster parent record, and in transit
has a shoen identifier. When shoens ave nested, the descendant shoen record points to its
parent foster parent record like a poal.

On creation of & shoen, a shoen record and a foster parent record arve allocated, and
the initial goal points to the foster parent record. When a goal arrives at a processor

L3

=-850

Tuzm v 120 ; 'gl”ﬂfm

goal goal goal

foster W50
"2 A

goal goal goal

(1) Throwing 4 goul with weight.

W=-BED

“terminated
/‘f-';ﬂn
r=-- === L] aal
! foster "'“E;.au_

Lerananinbed ; ﬁlﬂ""ﬂﬁu = 230

goal goal

V2 A

goal pga1 E98l

{2) Rebwrwing L weeight ol K Lermnimselenl Rsler parenl,

Figure 15: The WTC Schene,

where no corresponding foster parent record exists, a foster parent record is ereated in the
processor.

A foster parent terminates when all goals and all descendant shoens belonging to the
foster parent terminate. Furthermore, a shoen terminates when all foster parents belonging
to the shoen terminate and there are no goals in transit,

4.3.2 Termination Detection of Shoen

Termination detection of a shoen is a difficult subject in a distributed environment. Each
foster parent can detect the termination of all goals and all descendant shoens belonging
tn the foster parent, and can report it to its shoen. [However, even if a shoen receives the
report from all the foster parents, it is not sure that all goals have terminated. There
may be goals In transit, which will arrive at a cortain processor and a foster parent will
be created.

To detect the termination of a shoen efficiently, the weighted throw counting (WTC)
scheme [18] 7 is introduced. This scheme is an application of the weighted reference connt-
tng {WRC) scheme [13, 14], which is a garbage collection scheme for parallel processing
systems, and can efficiently detect termination without probing or acknowledgment ?

In this scheme, the shoen, each foster parent, and each message in transit have some
weight. 'I'he weight of 2 message in transit and that of a foster parent are positive integers,

"Essentinlly the snme sehome nancd the Credif istreibution and Keeovery algorithm is presented in
[38]. Credit in [38] corresponds to weight in the WTC scheme.
"Derivation of the W1I'C schewme from the WROC scheme is desoribid in [39),

14

while the weight of the shoen is a negative integer. ‘The WTC scheme maintains the
invariant that

The sum of the weights 15 zere.

This cusures that the weight of the shoen reaches zero if and only if all foster parents, all
goals, and all descendant shoens terminate and there are no messages in transit.

When all goals and all descendant shoens in it terminate, the foster parent terminates
and sends a Yterminated message to the shoen. 'I'he Yterminated message carries the
weight of the terminated foster parent. On receiving a %terminated message, the shoen
adds the weight to its (negative) weight (Hgure 15). If the weight of the shoen reached
gern, the termination of a shoen s detected.

1.3.3 TForced Termination of Shoen

If a shoen broadeasts an ¥abort messoge cousing the foster parent fo ferminate, it
is possible to abort all the goals and all the descendant shoens belonging to the foster
parent, but impossible to abort the goals in transit. After receiving an %abort message
and aborting the foster parent, the processor may receive a thrown goal and a foster parent
way be created,

Since termination is detected using the WTC scheme described above, only delivery
of an %abort message to each foster parent is required to achieve aborl. To send an
%abort message to such foster parents that are created during abort, and not to send to
processors Lhal have no foster parents, a Yready message is introdoced. When a losler
parent is created, it sends a }ready message to the shoen, which gives notification of
the creation of a foster parent. On receiving a ¥ready message, the shoen memorizes
Lhe seuder processor of the Yready message, which is deleted on receiving a fterminated
message.

The shoen performs the following operations to achieve the abort:

(A} Sending an %abort message to each processor memorized:

{B) Scoding an Yabort message to the sender processor of the fready message
received afler (A,

An %abort message has the shoen identifier and some weight like a geal in transit,

All foster parents already detected by the shoen are aborted by (A}, (B) aborts foster
parents that were not recognized by the shoen when (A) was carried out, namely, a foster
parent that is created after {A), or created hefore (A} hut whese $ready is atill in transit.

On receiving an %abert message, the foster parent terminates and sends back a
Aterminated message which carries the sum of the weight of the terminated foster parent
and the ¥Yabort message. If there is no corresponding foster parent, the weight assigned
to the faborl wessage s retucoed back o the shoen,

Figure 16 shows the abort operations described above.

4.4.4 When the Weight Becomes One

When the weight of a foster parent becomes one, it cannot throw a goal, becanse nonzero
weight must be assigned to the goal, and nonzero weight must remain also in Lhe loster
parent aller throwing,.

In this case, the foster parent sends a {request message requesting more weight to
the shoen, Goal throwing is suspended until the weight of the foster parent becomes more
than one. On receiving a ¥request message, the shoen sends back a Yeupply messoge

15

shoen

procezger = i,j
habort

processor i Yabort processor k

foster |

T /;ual.
goal Processor j
__ﬁuster |
/2N R

Eﬂﬂ] Eﬂ‘ll EIJH.II.

(1] Sewding an Yabort to the processors memorized.

precesser = 4,1

ftarmin nti!&/' w:ndy
rocessor k

processor i
pEAMLL

3
: faster '1: Yrerminnted

terminated T erealed
processor gond
: i i"l.';ﬁ-t-E; “:
terminated

(2} Reveiving o %ready,

processor = k

‘Q‘iﬂrt
rOCRESOT K

[)
procsor

goal

processor j

(31 Sending an fabort as a respouse of the 'i".rn.dj.

Figure 16: Abort operations,

14

Debugger

Listeror,
rspecton

Tuning teol
Poirelropl

Librarlan
Linker, Relinker,

Compiler,
Prepacstsor

WMol Profiling

Resource
Managemenit

ic analyzer
Command Variuble
interpreter checker

Shell

Purzeri/nparser,
Runtime-Wtility | 5. gicivom

KL1 Language Processor

Figure 17: The structure of PIMOS,

that earrics some weight o tle sender foster parent and reduoces the same amount from its
own weight. When a foster parent receives a Ysupply message, it adds the weight carried
by the message to its weight, which enables it to throw any suspended goal.

Since receiving a Lhrown goal also inereases the weight of the foster parent, a foster
parent may lerminate before receiving a %supply message. A ¥supply message may Lhus
reach a processor that contains no corresponding foster parent. In this case, the weight
carried by the Yesupply message is seot back to the shoen, This is similar (o the action
when an {abort message reaches a processor with no corresponding foster parent.

5 Programming Environment

PIMOS is an operaling and programming system for all models of parallel inference ma-
chines. Its overall structure is shown in Hgure 17, Some of the characteristic submodules

of PIMOS are as follows.

BIOS provides the most basic 1/0) through the 3OS0 interface. KL1 provides a process
model of the SCST interface through built-in predicates.

Resource management provides a layver for communication management. Since all the
I/O devices and tasks have a message-stream interface, resource management by

PIMOS is effected by controlling nsage of such streams [14].

Tasks, implemented nsing the shaen mechanism, can be nested with arbitrarily many
levels. Thus, processes to control tasks form a tree structure, called the “resource
tree.” Processes to control communication with “servers” {deseribed below) are also
in this tree. By distributing such processes to the processor where the nser programs
made the request, the overhead of the operaling system can be distributed withowt
increaging the amonnt of communication,

17

Servers are processes to implement virtual devices upon physical devices [19]. Services
provided by software systems, such as the database management systein kawaim or
the librarian of the PIMOS described below, also have this server interface.

Debugging tools provide features tailored for debugging parallel programs. It includes
the *listener,” with its tracing and spying functions, and the “inspector,” which
inspects data structures either statically or during their dynamic generation.

ParaGraph is a program tuning tool providing a graphic display of execution profile in-
formation [21]. Such a visualization toel is quite powerful in tuning the performance
ol programs through changing the mapping pragmas as stated above.

Mote that, as stated above, changing pragmas will not change the meaning of the
programs. The change only alleets the performance. Data and the exeeutable code
recjired are automatically distributed. T'his makes the tuning of load distribution
much easier.

Librarian is responsible for mainlaining the correspondence with executable code mod-
ules and their npmes, [s implemented as a server.

Note that the side-effect-free nature of the KL1 does not allow even executable
code to be overwritten., Updating a program module means generating a new one
and changing the name correspondence. The older version may still be running
somewhere in the system [possibly on the same processor). This scheme may scem
ineflicient, but actually it is not, since updating executable code is not so frequent.
The clean semantics, on the other hand, makes users’ understanding much easier.

6 Application Systems

Many experimental application systems have been developed and are running on PTMOS
and PIM {currently, PIM/m and PIM/p systems are mainly used). In parallel with the
development of independent application systems, performance analysis study from a more
general standpoint is also ongoing (see [22], for example.)

Some of these application systems are described below. All of them and many others
are available as {ree software from ICOT,

GDCC is a parallel constraint logic programming system. It provides highly declarative,
flexible, and efficient constraint logic programming languages, dealing with various

I{i:lldﬂ :Jr{:unﬁtru] il ;III.ZIII["I]S IllJJlIiIII!!H.l' !ll}].:,."ll[l[lli.il.] l.‘llll-‘-].l.‘l"'[l!-.l !23] .

Quixote is a language system providing lundamental facilitios for knowledge information
processing, such as very high-level knowledge representation and inferences [24].

Kappa-P 1z a parallel database management system based on a nested velational model

[20].

MGTP is a massively parallel, high performance botiom-up theorem prover on first-order
problems [25).

The prover tries to generate models satisfying a given axiom set. The system can
be used in two ways, As a theorem prover, it will show that no models can satisfy a
given axiom set angmented with the negation of the given theorem. As a constraint
satisfaction system, models found by the system to satisfy a given axiom set are
answers to a constraint satisfaction problem, The system showed almost linear
gpeed-up up to 512 processors,

12

(Genetic information processing software includes several software systems that help
analysis of genetic information by hiologists.

The protein sequence alignment systems have several variations, based on parallel
dynamic programming [26], parallel simnlated annealing [27] and the knowledge-
based approach using Quixote as mentioned above [28|.

T'he protein conformation prediction system is for predicting the 3-D structure of
proteins from wmino acid sequences based on geometrical stochastic reasoning [29].

Parallel logic simulator is a system to simulate VLST cirenits to verify their logical and
timing specifications.[30]
‘I'his system adopts a virtnal time algorithm, in which the simulation proceeds in a
speeulalive wiy, assuing input signal to be notified from other processors will not
change. If such a change is notified later, the simulation will be rolled back. This
strategy extracted much higher parallelism than & nonspeculative algorithm, obtain-
ing 166-fold speed-up on 256 processors of PIM/m (534k events/sec). Although the
parallel algorithim used is rather complex, it took only several man-months to build
its first version,

Other systems in the VLS CAD area include cell placement systems [31, 32]. LSI
router [33], and eircuit minimization system [34].

Helic-IT is a parallel legal reasoning system referencing o laws and precedents [35).

Reasoning from the legal viewpoint is not a simple inference process based only on
laws and regulations, sinee many words and phrases appearing in themselves are left
midlefined . Their interpretation is based on precedents, The system keeps two kinds
of databases, one on laws and regulations and another on precedents. New cascs arc
matched against precedent cases nsing higher level interpretation {such as matching
a taxi driver and a flight pilot as a traffic operator). The laws and regulations are
applied allerwards, using the above-mentioned MGTP as the inference engine.

Mendels zone is a software synthesis system for concurrent programs that allows very
Ligh-level specification.

The specification of methods o the system is lrst deseribed in equational logic,
the correciness of which is verilied automatically. Timing constrainis within the
methods themselves and hetween different methods are deseribed in temporal logie.
According to the constraints, the structure of the whole program will be converted
Lo a Pelnl nel, which is then converled to a KL1 program automatically. All the
comversion and verification processes are executed in oparallel, vmch reducing the
computation time reguired,

In an experiment of building o plant coutrol expert system, 6200 lines of KL pro-
wram were generated from 1000 lines of high level specification, requiring five man-
months of human effort. In comparison with a separate nctivity of writing the
system divectly in KL1, the program size increased by 4%, bnt the ariginal deserip-
tion decreased by 15%. The mon-months required were almost halved, and, notably,
the debugging process required only one twelfth as much of human cffort in direct
description.

19

7 Through Our Experiences

T'his section summarizes our experiences with building software systems in KL1 on the
parallel inference machines.

7.1 Programming Ease

The automatic synchronization mechanism and fine grain concurreney of KL1 made pro-
gramming much easier. The software productivity hecame far better than in sequential
programming languages with barogue parallel processing extensions,

When we started developing the first version of PIMOS in 1987, there were no parallel
KL1 language implementations available. Thus, the operating system was first debugged
on a sequential { pseudoparallel) implementation, which had only fixed scheduling strategy.

When the system was ported to a prototype parallel machine, Multi-P'S1, in 1HHEE,
we were ready to deal with the annoving synchronization bugs that will not reproduce
themselves, although the antomatic synchronization mechanism of the langnage should
avold such problems in theory.

The theory turned out to be the reality, We found alinost no syonchronization prohblems
except for a amall number of design problems at a very high level, although the scheduling
on Lhe real parallel mwachione is quite dilferent from the emulator. We knew this in theory,
hut actually experiencing it made ns much more confident of the virtue of writing a system
in a language with datallow synchronization. When PIMOS was later ported to several
other models of 1M systems, each with its own scheduling strategy, we almost never
cncountered synchronization problems,

Most of the experimental application systems written for PIM were coded by programs-
mers with no experience o parallel processing, Nevertheless, they did ool seemn Lo have

much problem with synchromization.?

7.2 Development Environment

Joftware development tools, including debugging tools and performance tuning tools tai-
lored [or paralle]l processing, have been found indispensable for high software productivity.

Mest of the application software systems were first developed on the Multi-P5S1 system
with up ta 64 processors, then ported to PIM /in with 128 processors when it was ready
far use, then to its 256 processor version when its production had completed, and then to
PIM/p with 512 processors. Many programs that showed almost linear speed-up with 16
processors would do so not with 512 processors,

Using the tuning tool ParaGraph was very elfective in finding bottlenecks. lear
distinction beiween logical concurrency and physical parallelism contributed considerahly
to making program tuning easier. Awtomatic datn and code distribution alse helped
considerably. Goal distribution specification pragmas were the only changes needed for
luad distribulion luning.

As a whole, it nsnally tank only a few weeks before a new version with an improved
load distribntion algorithm showed good parallelism on larger-scale syslems.

"However, those who hnd been very accustomed to Prolog found it diffiendl t realize the large semantie
differences of two languages with similay synlas,

20

7.3 High-Performance Hardware

I'he largest-scale PIM system, PIM/p with 512 processors, showed a total thronghput of
more than 150 MLIPS.' This 150 MLIPS is comparable to 5 to 10 GIPS (giga instructions
per second),

Hardware svstems with such amazing performance have been very helpful in acceler-
atling software research. In the earliest phases in the development, application developers
did not have to write a highly optimized version. The high-performance hardware allowed
running programs written without too wuech concern about execution performance for
problems of realistic sizes. The developers could then tune their programs gradually by
using performance tuning tools. This was especially helpful for developing considerahly
cotpplicated knowledge processing systems,

Uomparative study of different architectures is still going on, but unfortunately, com-
parison has not been casy. The behavior of the software is more influenced by slight
differences in language implementation rather than by the architectures, and redoing the
language implementation requires too much effort. One thing we can say is that rela-
tively low throughput and & long delay of interprocessor network can usually be hidden
by sophisticated software ideas.

8 Current Status and Future Work

The parallel inference system an PIM has been and still is nsed as tools for R of parallel
application software research.

A serious problem we have with the system is that it runs only on specially devised
hardware, Although the system is efficient and self-contained, requirement of special
hardware is a great obstacle in sharing the environment with researchers world-wide.

[tesearch in subsetting the langunage to allow more concise and efficient implementation
has been conducted with promising preliminary results [36]. A separate effort to implement
KL1 by translating into C [37] shows reasonable performance with very high portability,
These resulis indicate the Miture dircetion of implementing the language and the system
on stock hardware to be shared among a wider range of researchers in parallel software
area.

T'he FFifth Generation Computer Systemns project ended in March 19335, The Japanese
Ministry of International Trade and Industry, considering the above-mentioned recent
research on implementation, launched a new two-year project beginning from April 1993,
aiming at disseminating the technologies established in the FGCS project by amalgamating
it with conventional computer technologies, such as UNIX and WISC processors. In this
project, the following results are expected:

« [KL1 implementation with reasonable software development environment an comner-
cially available hardware. An implementation with excellent portability by compila-
tion into O {nicknamed KLIC, for KL in C) for UNIX workstations, parallel UNTX
systems, and network-connected UNIX systems is being developed. Its prototype is
already working, showing excellent portability with single-processor efficiency much
better than already available Prolog implementations.

» lnowledge processing soltwire and experimental application soflware further refined

and ported to KLIC, If is also planned to include software already available on UNIX

L‘]I.IPE “ng_‘:l:'h.] inferenee [T :-il:'l::nlu|] imoae nnil wsed Ly pnessare |;|11'rﬁ)|_']_|1u[||;n uf II_IE-ll'. [EAR AT
lngmage implementations, 1 LIPS means that one logical inference step of “paive reverse” propgram can
be executed m one seeond.

21

systems as components of such software by utilizing the foreign language interface
provided by KLIC

All the resultant software is planned Lo be [recly available worldwide to be utilized as the

hasis of further research in the area of knowledge information processing systems, Some
part. of the work, including KLIC, has already been released as free software. Further
inquiries should be directed to the electronic mail address ifs@icot.ar. jp.

References

1]

2

¥

19,

10

[11]

[12]

[13]

K. Ueda and T. Chikayama, *Design of the Kernel Langnage for the Parallel Inference
Machine,” The Computer Journal, 33 (6): 494-500, Oxford University Press, 1990.

I, Ueda, “Guarded Homn Clanses: A Parallel Logic Programming Language with the
Concept of a Guard,” Technical Report 208, [COT, 1986,

T. Chikavama, “Operating System PIMOS and Kernel Language KL1,” Proc. In-
ternafional Canference on Pifth Generation Compuler Systems 1992, pp. Ti-88,
Ohmsha, 1992,

K. ‘Taki, *Parallel Inference Machine T'IM,)" Proc. Internotional Conference an Fifth
Generalion Computer Systems 1992, pp. 50-72, Ohmsha, 1992,

F. Shapiro, “Systems Programming in Concurrent Prolog,” M. van Canegham and
[0, H. D, Warren {eds.), Logic Programming and iis Applications, pp. 50 T4, Albex
Piblishing Co,, 1986,

K. Clark, et al.,, “PARLOG: Parallel Programming in Logic,” ACM Trans. Program-
ming Languoge Systems, 8 (1), 1986,

V. A. Saraswat, ef al, “Janus: A Step Towards Distributed Constraint Program-
ming,” Proc. North American Conference on Logic Programuming 1989, pp. 497-512,
MIT Press, 1990,

F. Shapiro and A, Takeuchi, “Object-oriented Programming in Concurrent Prolog,”
New Ueneration Computing, 1 (1): 25-49, Ohmsha, 1983,

M. Furuichi, et al, *A Multi-Level Load Balancing Scheme for OR-Paralle] Fxhans-
tive Search Programs on the Multi-PSL" Proc. Second ACM SIGPLAN Symposium
o Principles and Practice of Pavallel Programming, pp. 50-59, 1990,

K. Nakajima, ef al, “Distributed [mplementation of KL1 on the Multi-PSI/V2,"
Proe. International Conference on Logic Prograomming 1989, pp. 436 451, 1989,

K. Hirata, et al., "Parallel and Distributed [mplementation of Concurrent Logic 'ro-
gramming Language KL1," Proe. Infernalivnal Conference on Fifth Generation Com-
puter Systems 1992, pp. 436-459, Ohmsha, 1992,

M. Ichiyoshi, ef al., “A New External Reference Management and Distributed Unifi-
cation for KL1,” New (Feneration Computing, 7 (2, 3): 159-177, Ohwsha, 1990,

P. Walson and I Watson, “An Elficient Garbage Collection Scheme for Parallel Com-
puter Architectures” Proc. FPavallel Avehitectures and Langueges Enrope 19871, LNCSE,
259 (II): 432-443, Springer-Verlag, 1987.

22

14] D. I. Bevan, “Distributed Garbage Collection Using Reference Counting,” Parallel
Computing, 9 (2): 179-192, North-Holland, 1989.

[15] T. Chikayama and Y. Kimura, “Multiple Reference Management in Flat GHC." Proc.
International Conference on Logic Programmang 1987, pp. 276 293, 1987,

|16] Y. Inamura, ef al., “Opiimization Techniques Using the MRB and Their Evalua-
tion on the Multi-PSI/V2," Proe. North Amervican Conference an Logic Programming
1989, pp. 907-921, MI'T Press, 1989,

[17] I. Woster, “Parallel Implementation of Parlog,” Proc. Inlernafional Conference on
Parallel Processing 1988, 1I: 9-16, 1988,

18] K. Rokusawa, et al, “An Efficient Termination Detection and Abortion Algorithm
for Distributed Processing Systems,” Proc. Infernational Clanfevence an Parallel Pro-
cessing [958, 1: 18-22, 1988,

[19] H. Yashiro, et al., “Resource Management of PIMOS" Proe. International Conference
on Fifth Generation Computer Systems 1982, pp. 269-277, Ohmsha, 1992,

[20] M. Kawamura, ef al, “Parallel Database Management System: Kappa-F,” Froe.
International {-:-Tuu_ftrr'mum ot F!:ﬂ}l (feneration f?ﬂmpuiﬂr Sj,l'#ftﬂ'tﬁ 1992, . 248—25'3,
{Ohmsha, 1992,

[21] S. Aikawa, ef al., “ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems,”
Proc. Internafional Conference on Fifth Ceneration Compuler Systems 1892, pp, 286~
203, Ohmsha, 1992,

[22] K. Kimura and N. Ichiyoshi, “Probabilistic Analysis of the Optimal Efficiency of
the Multi-Level Dynamic Load DBalancing Scheme,” Proc. Sieth Distribuied Memory
Computing Conference, 1991,

[23] 8. Terasaki, cf al., “Parallel Constraint Logie Programming Langnage GDOC and
its Paralle]l Constraint Sclvers,” Froc. International Conference on Fifth Generalion
Computer Systems {092, pp. 330-346, Ghmsha, 1992,

[24] H. Yasukawa, et al., “Object, Properties, and Modules in QUIXOTE” Proe. In-
ternativnal Conference on Fifth Generalion Compuler Sysfems (892, pp. 257-268,
Ohmsha, 1992,

[25] M. Fujita, et al,, “Model Generation Theorem Provers on a Parallel Inference Ma-
chine,” Proc. Infernafional Conference an Fifth Generation Compuler Systems 15992,
PR 357-375, Ohmsha, 1992,

[26] M. Ishikawa, ef al, “Protein Sequence Analysis by Parallel Inference Machine,” Proc.
International Conference on Fifth Genevation Computer Systems 1992, pp. 204-299,
Ohmsha, 1992,

[27] M. Hirosawa, ef al., “Folding Simulation using Temperature Parallel Simulated An-
nealing,” Proc. International Conference on Fifth Genevation Computer Systems
1992, pp. 300-306, Ohmsha, 1992,

[28] BL. Hirosawa, el afl, “Protein Multiple Sequence Alignment using Knowledge,” Proc.
26tk Annual Hawaii Infernational Conference on System Science, 10 803812, 19093,

23

29] K. Onizuka, ef al, “A Multi-Level Description Scheme of Protein Conformation,”
Froc. First fntelligent Systems for Moleewlar Biolegy, pp. 301-310, 19493,

0] Y. Matsumoto and K. Taki, “Adaptive Time-Ceiling for Efficient Parallel Discrete
Event Simmlation,” Western Multiconference on Computer Simulation, pp. 101106,
1993,

[31] H. Dale, ef al., “LSI-CAD Programs on Parallel Inference Machine,” Proc. fn-
ternational Conference on Fifth Generation Compuler Systems 1992, pp, 237-247,
Ohmsha, 1992,

132] T. Watanabe, ef al., “Co-11LI:X: Co-operative Recursive LSI Layout Problem Solver
on Japan’s Fifth Generation Parallel Inference Machine,” Proe. International Con-
fervence an Fifth Generation Compuler Systems 1992, pp. 1173-1180, Ohmsha, 1992,

[33] H. Date and K. Taki, “A Parallel Lookabead line Search Router with Antomatic
Ripup-and-reroute,” Prac. EDAC-FUROASIC 83, 1993,

[3) ¥. Minoda, et al., “A Cooperative Logic Design Expert Systein on a Multiproces-
sor,” Proc. Internationel Conference on Fifth Generafion Compuler Systems 1992,
pp. 1181-118%9, Ohmsha, 1982,

[45] K. Nitta, ef al, “HELIC-1I: A Legal Reasoning System on the Parallel Inference
Machine,” 'roc. Internationsl Conference on Fifth Ceneration Compuler Systems
1992, pp. 1115 1124, Ohmsha, 1992,

[36] K. Ueda and M. Morita, “A New Implementation Technique for flat GHC,” Proc.
Iniernational Conference on Logie Progromuming 1990, pp. 3-17, MIT Press, 1990,

[37] T. Chikayama, et al., “A Portable and Efficient Implementation of KL1," Proc. Pro-
gramming Language Mplementation and Logic Progeamming 1994, LNCS B44: 25-
39, Springer-Verlag, 1994,

|38] F. Mattern, “Clobal Quicscence Detection Based on Credit Distribution and Recov-
ery,” Information Processing Letters, 300 (4): 195-200, 1989,

[39] G. Tel and F. Mattern, “The Derivation of Distributed Termination Detection Algo-
rithms from Garbage Collection Schemes,” Proc. Parallel Avchitectures and Languages
Furope 1991, LNCS, 508 (I): 137149, Springer-Verlag, 1991,

24

