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Abstract

Tiis paper reports our work on pacallelizsing an algocitheon compuking
Griobner bases on a distributed memory parallel machioe, When compnl
ingg Grobuer bases, the efficiency of computation s dominabed by L Lotad
number of S-polynomials. To deersee te botad momber of S polyaomials
it 15 necessary tooapply o selecbion sbealegy Kiak selects the minimon
padyanmial s o pew elemenl of an o mtemmiediate base,

O aabistolmied] wenmory parallel machine, as apposed to a slired
seeetniory parallel mnchine, we have to take into acconnt non-trivial commu-
nicikion enats hetween proceszors, Lo reduce suech communnication costs,
it is better to employ coarse grained parallelism rather than fine graimed
parailelmsm.

We adopt & manager-worker model,  S-polynomials wee reduced in
worker processes in parallel, and the minboum pelyaomial is selieted in
the manager process. To aploment the selection strategy in Uis pasadlel
model, synchronization between worker processes s ceqniced for every
selection of a new element of the intermedinle base. However, in spite
of sy nelimmizabion, wlmwlueng the sclection strategy produces not only
a betler alisolube compatation speed but also better apeedup with multi-
provessirs, We achicwsd abont 8 times speedup with 64 processors for
larges problems, T-6 and Ex-17,

B This rescarch was condueted at [O0OT



1 Introduction

Constraint logie programming (CLP) is & prograomping paradigon proposced by
Jaffar & Lassez (1987} and Colmerawer {1987) and is an extension of logic
progeamming. At ICOT, we have been researching CLI since 1987, and we have
been developing two CLP languages, CAL { Condramte Avee Logugue), reported
in (Adba el el 1988), and GDOC | Guerded Definite Clauses wath Constroinds),
reported m Hawley (1991) and (Terasaki ef o, 1992}, CAL is a sequential CLT
and GIMCC is a parallel CLE.

CLFE fmuproves the deserptive power of a lnnguage by intesdocing o faeility
to handle relationships in certain domains other than syntactic equivalence of
termes. To il].ll.l].l.‘:l’lll:].ll u CLP Iu:lgua,gr:, o s Lo ilupiuuu:ul i HIL1JE}':$IE1II culled
a eonslront selver to handle the extra relationships.

CAL and GDCC are both CLE languages with constraint solvers that have
the ability to handle non-linear algebraie cquations by employing the Buch-
berger algorithm {Buochberger, 1965, 1983) to compute the Grobner base of
given equations.

In enr research and developrment of the GDOC parallel constraint solver,
onr major concern is the absolute speed of computing Gedlmer hases by parallel
processing. Lo parallelize the Buchberger algorithm, the absolute computation
speed wilh aosingle processor must be fiest noprovedd, Then, the speedup has to
be improved with multi-processors. If we have a slow computation speed with a
single processor, it s easy to provide deceptive spesdup with multi-processors.
However, the efficiency of the constraint solver is deteemingd by the alsolule
speed. not by the specdup. Thercfore. the speedup wnat be evalnated along with
the absolute computation speed. even thongh some works regard the speedup
as more important than the absolute computation speol,

This paper reports our work on developing the parallel algebraic constraint
solvers with o wanager-worker wodel for GDOC, They are implemented on a
pavallel inference machine PIM i (Taki, 1992) developed at ICOT. which is a
distributed memory machine consisting of 256 processors, and by using the ker-
nel banguape KL (Chikoyaona, 1992, Usla L& Chikayama, 1990) for Lhe pacalle]
inference machine. One of our parallel constraint solvers with the manager-
worker model could calvulate the Grébuer base for the 16 problem in about
2 minntes with a single processor sl inabet 30 minnles with 64 processors
on PIM e giving & speedup factor of ahout 8. On a Son Spare Server 490, it
took about Y minetes for the same problem by Backelin & Froberg (1991},

The stracture of this paper is 2s follows. Fe Section 2, we describe works
relatedl to parablelizing the Buchberger algorithm. In Section 3, our approach to
parallelization of the constraint solver andl the paratlel wodel of the manager-
worker are described, and the resielts of the experiments are lsted.



2 Related works

Several atlempls have been made to parallelize the Duchberger algorithm on
shared memory machines by Melenk & Neun {1988), Vidal (1990). Buchberger (1987),
and Clarke ef al, (1990), and on distributed memory wachines by Pouder { 1988),
Siegl (1090}, and Senechand {1989,

For shared memory machines, two paralielisms were implemented: eoarse
grained parallelism and fine grained parallelisin.  Coarse grained parallelism
paralledizes reduction by reducing several S-polynomials sionnltaneously, while
fine grained parallelism parallelizes reduction of a polynomial by dividing it
based on the fact that only access to the leading monoial is neeessaly to control
the Buchberger algorithm and that an S-polynomial is a linear combination of
twao poelynomials,

In 1988, Melenk L Nean (1988 ) proposed fine grained parallelism and achieved
abont 2 times specdup on a fwo-processor CIRAY X-MD, In 1990, Vidal {1990)
implemented coarse grained paraliclism based on the idea, mentioned by Buch-
boerger (1987). of reducing scveral S-polynomials simolianeously, His parallel
algomithon was implemented on o 16 processor Encore machine, and achieved 14
times spoedup with 12 processors, Tn (Clacke ef af 1990), these two techniques
were combined and it was found that fine graiged parallelism only worked for
sutliclently large problems, such as Rose in {Boege of ol 1986).

On the other hand, for distributed memory wachioes, line grained paral-
lelisn, which parallelizes reduction of a polyuomial by dividing it, was not im-
plemented because of the non-trivinl commuunication costs hetween processors.
Ponder (1988} described three parallel algovithms: an algortlon Lo reduce sey-
aral S-polynomials simultaneonsly { Porellel S-polys), an alporithion wo paralielize
the interrediction between polynonuals in the intermediate base { Parallel Re-
ducfron), and an algorithm to solve a prroblem nuder dillerent orderings among
variahles bo s which ordering is fastest. He achicved 1 to 2 tiwes speedup with
4 processors using Lhe Parallel S-polys and Parallel Redoction algorithms. By
usimg alternative orderings, he found that the excention time of the Buchberger
algorithm is highly sensitive to ordering. and obtained at best that the Fastest
ordering was Gii times [aster than the slowest. However, the ordeving of the
fastest computed Gribner base and the ordering of & user's request will olten
be different, Therefore, the fualest computed Gribner base is not always the
base which the user really wants,

For Boolean Gribner bases, Senechand [ 1989) parallelized generation and re-
duction of S-polynowdals by distributing polynomials of the intermediate hase
to processors which foruw a ring stenctnre and by aking subscts of the inter-
mediate base virenlate around the ring. She achieved B times speedup with 16
processors for a problem with 32 poly uowsials aud § varinblea, However, it is not
clear that her method is also effective for algebraic polynomials becanse of their
complicated eoefficients, In 1990, Siegl (1990) used a medium grain pipeline
principle that parallelized reduction by making a pipeline of polynemials of



the intermediate base, That was implegented o STRANDES on o transputer
machine. He achieved 6 times specdnp with 16 processors for a small problem,

Because onr machine is a distributed memory machine and the communica-
tion costs between processors are not negligible, we also employ coarse grained
parallelism to rednce several S-polynomials simnltanesusly and aim to solve rel-
atively large problems efficiently. In the following section, we describe of our
approach to parallel implementation of the Buchberger algorithun.

3 Parallelization

3.1 nolation

The fullowing notations are used a0 Uhe Tollowing sections (Terssaki of of 0 1992,
Hollman, 1992, Buchberger, 1983).

Lane{ f1r Leading monemial of polyuomial f.

f = b Palynomial fis reduced to polynowial & by applying polynomial ¢ to
polynomial [ onee.

Fles Treedueible form of polyaomial £ w.ef, polynomial set [T
Spoly{ f.gh: S-polynomial of polynemials f and g

prlf i Primilive part of polynomial f,

3.2 approach to parallelizing the constraint solver

Since reduction is the most thne consuming pact of computing Grobner bases
as deseribed in Holliwan & Tangemye (19913, we bey Lo parallelize this

The total sumber of S-polynomials generated dudng computation has a
greal influence on the total efficiency of the Gribuer base eomputation, 'I'hus,
it i3 very important for efficient paralle] implemmtation to decrease e nuoder
ol S-polynomials, The number of S polynomials is determined by the series
of leading monomials of elements of the intermaediate base R generated during
compuiation. Thus, a new element of If should be selected 5o as to decrease
the number of S-polynomials generated during computation. As described in
Buchberger (1983), it is well known that a critical pair (f, g) is not necessary i
the grestest common divisor of Lm{ f) and Lmia) is 1. Todecrease the nnmber
of generaled S-polynomials, the minimmn polynomial which has the minimmm
leading wonomial should be selected. because a smaller monomial is apt to be
thee primie to other monomials eather than to a larger one, We should therefore
chonse the global mivuoum polyuomial as 2 new element of K.

Furthermore, we have to take into acconnt the fact that onr parallel infiecenes
mwachine PIM i is & distributed memory machine. Unlike a shared memary



parallel mnchine, conmmunication letween processors 2 not negligibli compared
to the computation on a processor, For this reason, ou PIM fm, relatively eoarse
graimed parallelism is more suitable than fine grained parallelism to reduce the
amount of eommunication between processors,

We implement an algebraic constraint solver on a wanager-worker model.

4.3  manager-worker model

In the manager-worker model. reduction is parallelized by partitioning a poly-
towinl set to be reduced. To decrease the commmmication cost between the
manager and warker processes. all worker processes have the same intermediate
bases on their own memories. They reduce polyuomials in parallel and report
the local minimum polynomials to the manager process. The manager process
then chooses o global mininm polynomial from atnong these.

Figures 1 and 2 show onr manager-worker model. The scb of polyromials
in partitioned and each worker process has o difforent subset W, The mitial
Grobner base Hingy is copicd to all worker processes. New input polynomials are
distributed to the worker processes by the manager process so that all worker
processes huve the same nnmber of polyneminls,

In order to choose a global minimnm polynomial, it is necessary to rednee
ouly the leading monomials of all polynowials by the intermediate hase. To adid
the selected polynomial to the intermediate hase, however, the selected prolyna-
mial st be reduesd completely, while other polynamials peed not be reduced
completely, Thus, cach worker process veduees polyuowmials by R, aceonding to
the following reduction stages,

I A polynomial is nol reduced.

2. The leading monwomial of o polynomial is vedueed.

3. A polynouial is completely redueed to an ireeducible form.
4. A polynomial is reduced tooits printive part.

Allinput palyuowials and S-polynonials are input to the first stage. These poly-
nomials are sent to the sceowd stage after ceducing the lesaeling monomial coin-
pletely Ty the funetion Redues Lol W IR0 At the second stape, each worker
process selects the loeal minimum polynomial, sends o copy of the local mini-
e polynomial to the wanager process, and reduces the loval wininmm poly-
nomial according to stages 3 and 1. After going through the reduction mliLgs,
the local winimum polynomial becores the local candidate for the new element
al 1.

The manager process receives local neinimum polynomials from all warker
processes, selecks the global winimum pelynonial from among these, and sends
a global-minimume-message or not-global-mnimun-message to each worker pro-
cors. When a worker process receives a global-aninimnm-message, it should send

an
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(22)
(23)

input F:= F .,
% Finge is a set of input polynomials.
input R := R

% Fine 15 @ or an initial Grobner base,

input mwi— g
% My 15 the number of worker
Y procvesses.
W=
W ks o osel oof lu:]y]lurl:ial sl
fori=lton—1
R,.=n
TR is i worker's intermediabe
i hase,
W, =1
MW, is ith worker's polynomial set.
W= WU {W;}
endfor
F = RedueeLani F, )
9 Reduee leading monomials of
% all pulynonials in F by R
o= Ot By
W Comnt polyoomials in F.
for y =0 tom 1
fi=Firat{F)
Y fis the first polynomial in 2.
= F\ (]}
f.: i:j IIlU‘lI e
W, =W, u{f}
endfor
while m: # ()
Fi=0
for ¢ = Dton— 1
if W, # 0 then
Wo=w" {W;]
fi = Chooze{ W)

(24)
{25)
(26)
(27)
(28)
(29)
(30]
(31)
(3]
(33
(34)
(35)
(36)
(37}
(38)
(30}
(440}
(11)
(42)
(43}

{44]
{15}
{16}
{47}
(48}
{49)
{50}
(51}
{52}
(53}

{54}

Fignre 10 Manager-worker model

% Choose the minimnm
% polynomial from W,

F=Fulfl
Il filg,
Wo=W, U {fi}\{f}
W:=%Wu {WL]
else f, =0
endif
emdfor

Ji= Choose{ F)
for:=Uton 1
if fi = f then
W= W W]
W= Wi {f7)
Wo=Wu (W}
Rz pp( f])
codif
endfor
if b =1 then
retuen B = fol
endif
W= LoadBalaneel £, W, I, 0}
% Generate S-polynmnials
R=Ru{h}
o=
fori=ttomn-—1
R =R, Uk}
W = ReduwceLani W, 1)
miy o ot { W)
= we |
endfor
endwhile
H = Interreduce| 1)
% Interreduce between elements of A
roturn /i



Manager process
Intermediate base: R

Global minimum message Mot global minimum message

Wowker process: Worker o ) Worker process: Warker -1
. Local minimum podynomial _ n
Polynomial subset: Wy, Polynumial subsei: W |
Intermediate base: Ry R Intermediate base: R,

WV

Manager provesy

Inicrmediate base: R | 3 new element of R
Candidate for

The new element of B

Worke s Work W ;W
orker process Woarker, s new element of R orker mss ket )
Polynomial subset: W Palynomial subser: W
Intermediate buse: Ry, |, Intermudinle base: Ry,

Figure 2: Architecture of the manager-worker model

its local candidate to the manager process. The manager process receives the
loeal new-element-candidate, adds it to I, and sends it to all worker ProCesses.
Each worker process veceives the new element of 7t adds it to B, then grenerates
critical pairs and S-polynomials.

In the manager-worker model with sieh syuehronteation, idling time exists
in worker processes. Iu our inplementation, to reduce such iling Lime, cach
worker process excentes a subtask after compuling its local candidate for a new
element of R uwutil it reccives & global-minimum-message or the new clement
of R from the manager process. The main task is compntation of the lucal
vandidate. and the subtask is the veduction of other polynomials, that is, the
rednction of wonomials other than the leading wonomials, Sinee sueh subtasks
are not always exeented, these subtasks may canse nondeterminacy in our prar-
allel algorithm. that iz, the sequence of generating clements of M and the total
number of gencrated S-polynomials are not the same for every excention. In our
parallel algorithm. if several lucal condidates for the new element of B have the
saunie leading monomials, then the manager proces copnpares other monomials
in those local candidates, Since the result of comparison by the AN Prodess
depends on whether such monomials of these local eandidates bave been redueed
previously, the manager process does not always chonse the same candidate at
every execntion, and nondelerminacy may oeeur. However, these sublasks TLERY
devrease the subsequent load,



1) H:=10 (23) else

% B s a load balanee information mumber set.  (24) 1= b}
2y M= {25) M= MU {m}

% M is & set of munber of polywomials, (26) endif
(3) fori=0ton-1 (27) endwhile
(4)  B:=Ruli) (28) endfor
(5) m, = Count{W,) (28) fori=0tan-1
] M= MU [my) {50 Wo=Ww"'{W.}
{7t endfor (1) Cy := Critical Pairs{ 1, h)
{8} fori=0ton-1 % Make critical pairs,
{9 B = (32} moe= Count{{y)
{10} .= % Count critical pairs in ().
{11) M= M {33) forc=0tom — |
(12)  M:=@ (34) (f.h) = First(C,)
(13) bii=n {35) Ci= G\ {(f.h)}
i14) while 6, = n {306) Ji—cmmd n
(1) b= AMindmumi ') (a7 if j =, then

96 b is the miniwmmm number in 07, (8] &= Spolyl f. )

(16) B':=B'\ [b} (39) W= W u {s}
(17) m = Mandma] W) {40y endif
{18) M= MY ) (1) endfor
{17} if m, = m then (42} W= Wu{Ww}
{20} by i— b (43)  endlor
(21} H—-—HBURB (A1} retarn W
(22) M:= MU M

Figure & Load balaneing

3.4  load balancing

For parallel processing, it is necossary to halance the load on each processor.
Sinee each worker process reduces its own polynonials, we shonld halance lnasds
arcarding to U reduction cost. 16 is quite diffienlt, however, to predict the
reduction cost for every 5-polynomial heforchand, Thuos, we balance loads so
that esch worker process has the same nmmber of polynomials.

The west paive method for this load balancing is for the manager process
to generale all S-polynomials and distribute them to worker processes. Bul
this micthod inereases the commnnication cost between the manager and worker
prn-c'm}!ﬂ, aned resalts in o cotnmudealion boleneck.

Since each worker process has the same intermediate base R, it can gen-
vrate the same critical pairs in the same order. Based on this fact, we have
implemented a method where eauch worker process generates critical pairs in
parallel, as follows. Figure 3 shows the load halancing executed by the funetion
Load Balanec{ B, W, h, 1) in Figure 1. Each worker process reports the number



by=1
Worker process: Wm-h::u
(Mumber of polynomials=3)

Critical pairy

H

Manuger process
by =i 2
Worker process: Worker i
{Mumber of polynomials=2)
Critical pairg
Crité .

‘\“fj
)

Worker process: Waorker 5
(Number of pelynomials=4)

Cririent-oa

Critical pair;

Fignre 4: Example of load babucing

of polynomials it lius Lo the manager process, The manager process decides
o a load balance information nnnber b for each worker process, and sends
that number to them. Each worker process assigns a critical pair number, o, to
each generated eritical pair, where ¢ is common o all worker processes. Then,
cach worker process generates S-polynomials from swch critical pairs such that
cmod o= By

Figure 4 shows an example of load balancing. There are three worker pro-
cesses, Workery, Waorker), aud Workers,

The total munber of worker processes, o, is 3. Workery has 3 polynomials,
Workery has 2 polynomials, and Workery las 4 polynomials. The processes
report the number of polyuomials they have to the manager process, The man-
ager process decides oo a load balanee information vamber b, In this case,
by =1, By — 0, and by — 2. The manager process Uen 2ends these load halancee
informudion numbers to all worker processes. Based on these load balane: in
formation numbers, Workery generates 5 polynomials jrom Critical e, S50
that cwod 3 = 1. Worker) generates S-polynomials from Critical paar,. so
that ¢ wod 3 =0, and Werkers generates S-polynomials | from Critical pair,
&0 that cmod 3 — 2

*.5 wvarious implementations

netion may take a long time if the polynomials are complicated. that is, they
e many wonopdals and their monomials have large coefficients. To improve
e efficiency, we should avold creating complicated polynomials by reduction.
I vur parallel implementation, there are four issucs that may have a greal
influence on complexity of the polynomials ereated by eeduction: admissible
ordering { Buchberger, 1983 ). arder of using polynowmials of the intermediate base
for reduction, mterreduetion. and using redundant elements of the intermedinte
baae to redice polynomials.



As for the admissible ordering and the order of nsing polynomials, we have
implementations that are regarded s the best for computing Grisbner bages offi-
ciemtly: the total degree reverse lexicographic ordering and the order that ofder
polynomials are used caglicr than newer ones. “U'he total degree reverse lexico-
graphic ordering is said to give the best theoretical and practical complexity to
the computation of Grébmer bases as deseribed in Hollman (1992},

The order of using older polynomials earlier is recommended by both Giovini
et al. (1991) and Hollman & Tangemyr (1991). Hollman (1992) also pointed out
that the result of reduction of a polynomial teuds to be more complicated than
the polynomial before reduction. That is. there is a tendency for a newer poly-
nomial to be more complicated thay an older one, becanse a newer polynomial
is reduced many more times than an older one. Therefore, Lo avoid creating
complicated polynowials by ceduction, older polynomials should be nsed hefore
HEWOT ones.

These implementations are also employed to our algebraic constraint solvers,
As for interreduction and using redundant elements, however, it is necessary to
examine their effect on the efficiency of the parallel computation of Grabner
hases,

3.5.1 interreduction

Interreduction is the reduction of every polynowial in an intermediate base by
other polynowials, Sinee newer polynonials have aleeuly been rodueed by older
polynomials, interceduction weans that older polynomials are reduced by newer
ones, Thus, since newer polynomials tend to be more complicated than older
ones, inferreduction may lead to complicated polynomials,

Giovini et ol (1981} described no interreduetion as better, Though Cza-
por [1997) said that interrednction is necessary to efficiently compute Grobner
bases in lexicographic ordering, we use the total degree reverse lexicographic
ordering instead of lexicographic ordering. In our parallel implementation, we
compare a no interreduction strategy to a one-step interroduction strategy that
replaces every polynomial =, in an intermediate base with v when vy =y, 1]
and ki is a polynemial oldained as o new element of the intermediate base,

4.5.2  wsing redundant polynomials for reduction

Il & leading monomial of a polynomial in the intermediate base can be reduced by
a newer polynomial, then the reducible polynomial is redundant. as descriled
in Gebaner & Maller (1888). Ts it Letler Lo use redundant polynomials for
redduction or not? Sinee there is a tendency for older polynomials to be less
complicated than newer ones, o redundant polynomial is expected to he less
comphcated than a newer polynomial whicl can reduce its leading monamial.
Therefore, the result of reduction of a polynomial by the vedundant polynongal
is expected to be less complicated tan that by the newer one. In this seuse,

I



a redundant polynomial may be effective for reduction. Giovini et al, (19491)
described that redundant polynomials shonld be nsed. On the other hand,
Gebauer & Miller (1988) said that the intermediate base should be kept as
suiall as possible, that is, redundant polynomials should be cancelled.

In order to check whether wsing redundaut polynomials ia effective for re-
ihuetion, we conducted several experiments.

3.6 experiment

Tn this section, we describe the results of our experiments. There are two is-
stes to be examined. One is interreduction, and the other is whether to use
redondant polynomials for reduction.  Thus. we made four parallel algebraic
constraint solvers as Lellow.

NI-UR: Mo Interveduction and Using Redundant polynoenials.

NI-NR: No Interreduction and Not using Dednndant polynomials.
OT-UR: Oue step Interreduction and Using Redundant. polyuomials.
OL-NER: One step Interreduction and Not using Redundant polynontials,

In each parallel algebraic conatraint solver, the admissible ordering is the total
degres reverse lexicographic ordering, and older polynomials are vsed carlier
than newer ones for reduction,

The parullel algebraie constraint solvers are nnplemented on the parallel in-
terence machine PIM /i developed at ICO1. and in the kernel langnage KL for
the parallel inference machine. To measure the speed of the machine, we use a
mnit eallsd LIPS (logical inference per second | described in Malsnmoto {194H1).
Nakashima (1992) reports thal cach PIM/m processor has a clock of 15.1 MHz
ad o ospeed of 615 KLIPS at its highest peak pecformanee, while the perfor-
mance of SICSs Prolog syateimns on a SUN Spare Station 10,30 i 1053 KLIPS.
LM /m is a distributed memory machine, and Matsumoto (1990) reports that
1 Lakes 30 logical inference steps in PIM/m to read one primitive data. such as
a variable in a monowial, o the other processor,

T examine the perfonance of one pueadle] algebraie constraint solvers, we
nae the twelve henchmarks listed below,

L. Katsura-4 (Boege of al, 1986): (5 variables aud 5 polynomials)
2. Kalsura-3 (Hoege et ol, 1986): (f variables and 6 polynomials)
4 Ratsura-6 (Ratsura. 1986} (7 variables and 7 polynomials)

4. Butcher (Boege ef ol 1986): (8 variables and 8 polynomials)

5. Modified Hairer-2 (Sawada et ol 1994): (13 variables and 11 polynomials)

11



fi. Modified airer-3 (Sawada et al. 1994): (L3 vaviables and 13 polynomials)
7. Maodified Gerdt {Sawada et ol | 1994} (8 variables and 13 polynomials)
8. Cyclie A-roots: (4 variables and 4 polynomials)

9. Cyclic: 3-roots: (5 variables and 5 polynomials)
10, Cyclic B-roots: {6 variables and 6 polynomials)

1. T-6 {Backelin & Froberg, 1991): (7 variables and 6 polyuomials)

14 Ex-17 {Gebaer, 1985): (12 variables and 12 polynoniials)

3.6.1 results of experiments

Figures 5 to 7 show the results of our experiments, We found that the compu-
tation time is not decreased by using two processors instead of vue, Althoagh
this may seem strange. it is in fact quite reasonable. In our parallel implementa-
tions, each worker process is allocated to a different processor, and the manager
process 13 also allocated to a different processor. With a single processor, how-
ever, the mansger process and the worker process arve, obviously, allocated to
the same processor. The relationship between U nunber of worker processes
1 and the number of processors pn is given by

_— 1 tom =1}
T gL pmo= 3,

Thus, there is only a single worker process in both cases of using one and
two processors. that is, the computation power is not increased by using two
processors instend of one.

The effect of nendeterminacy in our experinents should be mentioned. As
elescribual in Section 3.3, the subtask canses nondeterminaey in onr parallel
alporithum. ‘The effect of nendeterminaey is significant in the problems Modified
Hairer-2 (Figure 6 {a)) and Modified Hairer-3 (Figure 6 (b)), In Modilied Hairer-
2, wremarkable speedup by using two processors is obtained by NT-UR as bellow.

I processor: Computation tine = 413 (seconds)
2 processors: Computation time = 191 {seconds)

As deseribexl above, however, the computing power does nol inerease by using
twn processors; Lhe obtained speedup ig due to the nondeterminacy cansel hy
the subtask. With & single processor, since the manager process and the worker
processes are allocated to the same processor, the subtask is not cxecuted Li-
canse the worker process cannol work when the manager process works., With
two processars, however, since the worker process can work when the manager
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process works, the subtask is executed., Thus, the sequence of generated polyno-
mials of the intermediate base & is different from that with a single processor,
and the total computational coat is decreased. The details of the computation
are shown helow,

(1} 1 processorn
Number of generated polynomials of B = 100
Number of redundant polynomials of H = 62
Number of generated S-polynoinials = 284

{2) 2 processors:
Number of generated polynomials of R = 82
Number of redundant polynomials of 1 = 44
Number of generated S-polynomials = 257

T this case, the nomdeterminacy has a good effect on the efficiency of the com-
putation.

In Modificd Hairer-3, however, the nondeterminacy has an adwerse effoct as
shown in NI-NR and OFT-UR. In these cases, the total computational cost in-
creases drastically due to the nondeterminacy. Fxpecially in O UR, the Grabner
base could not be computed in 24 hours with two processors, yet it was cou-
puted in A0 minutes with a single processor. The details of the computation hy
NI-NH are shown below,

(1) 1 processor:
Nuniber of generated polynomials of It — 100
Mumber of redundant polynomials of 8 = 69
Mumber of generated S-polynomiale = 309

(2] 2 processars:
Number of gencrated polynomials of B = 108
MNumber of redundant polyoowials of B = 69
Number of generated S-polyvnonials = 106

The number of polynomials and S-polynomials generated during the computa-
tiom are alwost Lhe saine in both eases, Thas, the higher computational cost 3
due to the complexity of the polynomials.

3.6.2  influence of nondeterminacy caused by the subtask

Bacied on the resnlts of experiments, NI-UR is employed as onr parallel alge-
brade: comstraint solver, As described in the previous section, the subtask canses
nondeterminacy and may adversely increase the lotal computational cost. How-
ever, the subtask is necessary to improve the efficiency of comnputing Gribner
bases by decreasing the idling lime of processors. “I'herefore, a parallel algebraic
constraint solver in which the nondeterminacy has little offcet on the efficiency
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should be employed. NI-UR, which is a parallel algebraic constraint solver with-
ol interreduction and using redundant peolynomials, showed a good abzolute
speed of computation and relatively stable speedup with multi-processors come-
pared to others, though it does oot compute all W Gribner bases faster than
others.

The reason why the nondeterminacy has little effect on the total compu-
tational cost in NI-TR is as follows. When we have two polynomials of the
samne leading monomial, we compare the rest of the polynomials and choose
the smaller polynomial as a new clement of the intermediate bage. Thus, the
subtask canses the nondeterminacy since the subtask is uol always exeented,
as described in Section 3.3, Furthermore. when polynomials in the intermedi-
ate base are reduced or coaneclled., the irreducible form of a polynomial is not
unique but depeadent on the reduction tindug. Thus, in NI-UR. the inHuence
of nondelerininacy is smaller than in any other solvers,

4 Conclusion

We have developed several parallel alpebraic constraind solvers in order to im-
prove the absolute computation speed. becanse the efficiency of parallel algebraie
constraint solvers are determined by the absolnte computational speed and not
by the speedup due to multi-processors. For exanple, for the Modified Gerdt
problews in Figure & {c). though the absolute computation speed of NI-UR is
superior to that of NI-NR, the speedup of NI-NK is better than that of NI-
UR because the compitation spoed of NENR is slow with a single processor,
From this exmuple, we find that the speedup must be evalnated along with the
abzolute compntation spead.

T our resenrch and development of parallel algehraic cousteain solvers on
the distribntes)l memory wachine PIM/m, there are three major issmes: the
communication costs between processors, the nondeterminacy cansed by the
subtask, and the selection of & miniwum polynomial as a new element of the
intermediate base.

To decrease the communication costs, we have mplemented vur algebraic
constraint solvers so that each processor has the same intermediate base on its
memery and so that each worker process generates S-polynomials for itself hy
exchanging an integer with the manager process, This iinplementation peguires
suficient memory for each proccssor becanse the total memory necessary for
the computation increases almost. linearly with Lhe increase of worker processes.
However, we used this implementation since it is essential to improve the effi-
ciency by decreasing the communicalion costs,

The nondeterminacy may have either & pood or bad effect on the cfficiency,
and it is very dillicult to predict whether nondeterminacy improves the officiency.
IF the snbtask is not exceuted, then nondeterminacy docs not eccur. The sublask
is, however. necessary to improve the ellicicucy by decreasing the idling time of
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each processor. Thus, we have chogen NI-UR as our parallel algebraic constraint
solver because the influence of nondeterminacy in NI-UR is less than that in any
other.

Selecting a mininmam polynotoial as & wew clement of the intermediate base
i known to decrcase the total computational cost in the sequential Buchberger
algorithin. To parallelize the Buchberger algorithm, it is also necessary to choose
a minimun polynomial. We apply this selection strategy in our manager-worker
wodel Ty synehronizing parallel worker processes. Such synchronization seems
to decrease the speednp with multi-processors. By applying the selection strat-
vgy. however, it is gnaranteed that the global winimum polynomial is selected as
a new element, amd the total computational cost dees not inerease with mualti-
processora. Furthermore, since each worker process reduces S-polynomials using
the same algorithm, the total compatation power increases even though synchro-
uization may muke some processors idle on every selection of a new clement.
As a result, the effect of the selection strategy on improving efficiency is greater
than the decrcase in elliciency caused by the defect in synchronization, and the
speedup with multi-processors is also improved when compared with algebraie
constraint solvers withont the selection strategy (Hawley, 1991).

Finally, we must noto the influence of the bignum cperation. The ealeulation
of coefficients, thal is, the bignmn oporation, occupies a large part of the total
computation. Therefore, the performance of the bigmnm operation affects the
strategy wsed Lo compute the Gribner bases. If the performance of the bignum
operation is improved in the foture, then the strategy might boe changed for the
same benchmarks Elllpluycl:l i pur {‘rpl!rimenl,.
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