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Abstract

This paper reports our work on parallehzing an algonthm computiog Crobner bases on o dos-
tributed wemory parallel machine. 'When computing Grobaer bases, the efficiency of computation is
dominated by the total pumber of S-polvamuials. To decrease the total number of S-polynomials it
is necessary to apply a selection strategy that selects the minimumm polynomial as a new eloment of
an intermediate base

O a distribmted memory pacallel machine, as opposed o oa shared memory parallel machioe,
we bave to take tnto acconnt now-trivial communication vosts between provessors, T reduce such
communication eosts, it is hetber to employ conrse grained pacallelism cather than fine grained par-
allelism.

We adopt A mansger-worker model. S-polynunids are redoced i worker processes 1o paradlel.
and the minimum polypomial is selected in the manager process, To implemwent the selection strategy
in this parallel model, syuchronization hetween worker processes is required for every selection of a
new elewmenl of Uhe intermedinte Tuse, However, in spite af syoeliromization, intredueing the selection
stratery produces nob only o betber adsobn ke computabion speeed Dot adso etter speedop with moiti-
processors. We aclicved abont ¥ tites speedup with 64 processors for lavge problems, T-6 aml
Ex-17.

1 Introduction

Clonatraint logie programuming (CLP) is a programming pavadigin proposed by Jatfar & Lassce (1987} and
Colmeramer (I087) and is an extension of logie programming. At ICOT. we have been researching CLT
since TOAT. and we have been developing Lwo CLI languages. CAL { Contruinte Avee Logrque). reported in
[Adba et al. 1088), andd GDOC { Guarded Definite Cleuses with Congiramis). reported in Hawley (1991]
andl (Terazaki of ol 1992). CAL is o sequential CLP and GDCC is & parallel CLP.

CLI improves the descriptive power of a language by intreducing a facility to handle relationships in
certain domains other than syntactic equivalence of terms. To implewent & CLP Lugnage, one has ko
nnplement a subsystem called a constraant solver to handle the extra relationships.

CAL and GDCC are both CLI" languages with constraint solvers that bhave the ability to haudle non-
lincar algebraic equations by ewploying the Buchberger algorithn {Buchberger, 1965, 1983) to compute
il Grobuer base of givin {‘!I.lllil[.j.uilb.

T our research amd development of the GDOC pavallel constraint solver, our major concern is the ab-
solute speed of computing Grébner bases by parallel processing. To parallelize the Buehberger algorithom.
the absalute commpntation speed with a single processor st be fiest improved. Then, the speedup has
to be improved with multi-processors. If we have a slow compntation specil with a single processor. it is

" This vesearch was condncted at TOOT.



casy to provide deceptive specidup with wulti-processors. However, the efficiency of the constraing solver
is determined by the alsolnte spesd, uol by the speedup. Therefore, the speedup must be evaluated along
with the absolute computation speed. even thongl some works regard the speedup as more important
than the absohate computation speed.

It geveral, the wagor issues in developing efficlent parallel software are the machine architecture
o which the software is developed, and the programssng language used to write it. We fplement
our parallel constraint solver for GDOC on a pacallel inference machine PIM e developed at TCOT. as
veported in Taki (1992), and by uzing the kerned language KL reported in Chikayama (1902) and Uscda
& Chikayama (1990) for the parallel inferenee nchine. PIM o consists of 236 processors, and each
processor iz connected o the others by a two dimensional mesh network.

When implementing the pacallel constraint solver, we have to take into account the fact that TTM fm
is o distributed mewory wachine, Unlike a shaved wewory parallel machine. commuuication between
processors is not negligible compared to the compntation on a processor. For this reasou, on PIM /.
celatively coarse grained parallelismn is more suitable than fine grained parallelism to reduce the amount
of communication between provessors,

In our research on the parallelization of the constraint solver, wi iade the following tliree wodels: a
pipeline model, a distributed-rewriting model, and a manager-worker model.

The pipeline model was onr fiest atbewnpl o parallclize the Bouchiberger algorithm based on the par
allelization of the Konth-Bendiz algovithm by Fujita (E989). The basic idea of this model is o lorm
a loaped pipeline in which polynomials flowed to parallelize processes counected by the pipeline. ITow-
ever. we found that this model was not snceessful. First of all, since the pipeline in this implementation
fornwed a loop. Lhe slowest process determined the overall computational efficiency. Furthermere, experi-
ments showed that we were trying to parallelize inappropriate parts of the algorithm, that is. we did not
parallelize the most computational intense part of the algovithm.

Mexct. we tried Lo oplement the distribnted-rewriting model in Hawley (1091). Since the most com-
putational intense part of the Buchberger algorithun was the reduction. we tried to parallelize it. ‘1'bis
nuplementation showed good absclute computation speed for small problems, but for large problews,
Lot the specdup and the absalute computation speed was poor. In sequential implementations of the
Buchberger algorithm. it is well known that there is o seleclion strategy of a now element of an interme-
dlisbar base Lo greatly improve efficiency. To bmplement the strategy, synchronization between reduction
processes was required. However, this parallel implemicitalivn did nol syachronize these processes,

Lastly. we tried to implement the manager-worker model to overcome the difficulty of synchronizing
redluction processes. Chie of onr parallel constraint solvers with the manager-worker model could calenlate
the Grobner base for the T-6 problem in about 240 minutes with asingle processor and in abont 30 ninutes
with G4 processors on PIM/m. giving a speedup factor of abont 8. On a Sun Spare Server 490, it took
about 00 minutes for the sane problem by Backelin & Friberg (1991).

Thiz paper is organized as follows. Tn Section 2, we describe works related to parallelizing the Bucl-
berger algorithm. In Seetion 3. onr approach to parallelization of the constraint solver and the parallel
mionlel of the manager-worker are described. and the resnlts of the experiments are listed.

2 Related works

Several attempts bave boen made to paralielize the Bucliberger algorithm on shared memory machines
By Mudenk & Newn (1T988). Vidal (1990, Buchberger (1987}, and Clarke ef al. {1990), and on distribated
memory machines by Ponder (1988), Senechand {19887, and Siegh (1990).

For sharcd memory machines, two parallelisms woere inplewmented: coarse grained parallelism and fine
grained parallelizim. Cosese graaned parallelism parallelizes veduetion by redneing several S-polynomials
simmltanecously. while fine grained parallelism parallelizes reduetion of a palynomial by dividing it based
ou Lhe fact that only access to the leading wonondal is necessary to control the Buchberger algorithm
andd that an S-polynomial is a e combination of two polynomials.

L 1988, Melenk & Newn (1988) proposed fine prained parallelism and aclieved abont 2 times speedop
ou i two-processor CRAY X-MP. 1o 1990, Vidal {1990} implemented coavse grained parallelism based on
the idea, mentioned by Bucliberger (1987). of reducing several S-polynomials siuultanconsly. His parallel
algorithm was implemented on a 16 procesaor Encore machine, and achieved 14 times speedugy with 12
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processors. In {Clarke ef al, 1990, these two technigues were combined and it was found Uhal fine grained
parallelism only worked for sulficiently large problems, such as Nose in (Boege ef ol 1986),

Ou thee other lond, for distributed memory machines. fine grained parallelism. which parallelizes re-
duction of a polynomial by dividing it, was not inplemented becinse of the non-trivial communication
costs between processors. Pomder (1988) deseribed three parallel algorithms: an algorithm to reduce
several S-polyuowmials siunltauconsly { Parallel S-polys), an algoritlin to parallelize the interreduction
between polynomials in the intermediate base { Parallel Reduction). aud an algoritlm to selve a problem
mder different orderings among varables to see which onlering is lastest. He achieved 1 to 2 tines
speedup with 4 processors using the Parallel S-polys and Paraliel Reduction algorithims. By nsing al
tevnative orderings, he found that the execotion time of the Buchberger algorithm is lighly sensitive to
ovdering, and obtained at best that the fastest ovdering was 66 ties faster than the slowest. However,
the ordering of the fastest computed Groboer base and the ordering of a nser’s request will often be
different. Therefore, the fastest computed Grolner base is not always the base which the user really
wants,

For Boolean Grobuer bases. Senechand {1989) parallelized generation and reduction of S-polynonials
by distribnting pulynomials of the intenmediate base to processors which foruw o riug structure and by
making subsets of the intermediate base circulate around the ring. She achieved 8 titnes speedup with 16
processors for o problemy with 32 polynomials and 5 variables, However, it is not clear that her method
is also effective for alpebraic polynomials becanse of their complicated coeflicients. Tn 1990, Siegl {1990
wsend o wedliun grain pipeline principle that parallelized reduction by making a pipeline of polynomials
of the intermediate base. That was implewented in STRANDSS on o transputer wachine. He achieved
G tilnes speedup with 16 processors for a small problem,

Because onr mwackhine is a distributed memory machine and the comnmnication costs between pro-
cessors are not negligible. we alsa employ coarse graimed parallelism to reduce several S-polynoinials
sinmltanconsly and aim to solve relatively large problems efficiently. In the following section, we describe
of onv approach to parallel implementation of the Buchberger algorithm.

3 Parallelization

4.1 MNotation and definition
The following notations and definitions are used in the following sections,

Dfinilion 1 (Power product and monomial)

A power product is o product cempeised of @ findle numdber of noneere varables, hat s,
wpay ..o 2y (2 0, each z, 15 variable ),

A meanoriind v the produc! of o coofficrend (rational number) and o power product,

Definition 2 (Palynomialf

A polynomial 15 o suwn of meneminls,

Definition 3 {Adwssihle ovder)
An ardering, =, betwesn pawer products 25 edvassille when o salisfics e followmy properiies, Foeoall
power products a. b, ¢

1 = a

o= b= oae = e

We also express that the power product of wonomial o is snoaller than the power product of monomial

1eow.r b = s onp = T

Deefinition 4 [ Leading monomial)
For polynemnial . Lo f) vepresents the leading monomind of f. whicl @5 the mazimum monomioel woel

~ confamed mm f. Furthermore, Le{ ] represents the leading cocfficient. the cocfficient of Lm(f].

Dsfinition & (feduwcng)
Lot foand v be polynomdals, If monemaal moof § 45 a mulfiple of o), then me is vepdaced Dy e — Iﬁ'ﬁ"



amd f a8 vedneal to polynowminl b = Le(r}f — Le(r) 5. Notation f =, b vepresents that f s veduced
fo f dry epplyping v to [ oomee.

Definition 6 (frreducible form)

The nveductble form of polynomiel f wort. polynomiod set B is defined as the polyneaial whiels cannot
be frother veduced by any polyuondal i I after applying a polysiomaad m i to £ oa findte number of times.
The vrreducible form of [ wrdt, B s represented by f | g

Definition 7 {5 polyromial)
The S-polynomind of pelynomaads | and g o5 defireed os
len{Lon{ £}, Liadg)) . Tem{Lon( f). Lin{g))
L'Ht[fjl Lm,[!’” i

and @5 vepresented by Spoly(f o), wlere fem Lo £, Lorelg)) 75 the Toast commen maftaade of Lo £) und
Lw{g).

Definition 8 {Frimition part}
Pl £ represents the prttifiee port of polynomial f, whose greatest commoen dirtsor af r’.'mﬁiﬁir:'”fﬁ ig I

3.2  Approach to parallelizing the constraint solver

Fignre 1 shows the sequential Buchberger algoritho, Sinee rednction is the most tine consuming part
of vomputing Gribner bases as deseribed in Hollman & Langemyr (1991}, we try to pavallelize this as
shown by line {14} in Figuee 1

(1} input F:= F,. Y Fo 14 a set of input polynomials,

(2} input .= R, W Rie i @ or aninitial Grihuer base,

{3] F o= HE-'{!'?-!'I"FLTH[F. Rll U Medbnes '[r.‘n.rling wsnoieials of all 1]I)|__'r'||ll|[|1i|_,l§ i F }n}' It
(1) while F 2§

(%) F = Choose( 7} % Choose the mininnon polynowial from 7'
(G} Fe=F\{s!

(7 h=pp(f Ir)

(&) if it =1 then

{0} return fi = fu:l

{10 endif

(11} 5= MakeSpoly={}. k) W Make S-polynomials,

112) F.=Fusg U Updale a sob of polynomials,

(13} Iti— RU L)

{14} F = Reduee Ll F, R)

{15} endwhile

(16) B := Interredure ) W Tnterrishwes bobween cletents of K.
(17} return ff

Figure 1! Sequential Doehberger algorithm

The total wnber of S-polynomials generated during computation has a great influenee on the total
ctiiciency of the Gribuer base computation. Thus. it is very important for efficient parallel implomentation
to decrease te wonber of S-polynomials. The number of S-polynomials is determined by the series of
leading monomials of clewents of the intermediate base B generated durdog computation. Tlhus, a new
elemnent of B should be selected g0 as to decrease the number of S polypomials generated by the function
MakeSpoalys( R 1) As deseribed fn Buchberger (1983). it is well known that a eritical paiv (f.q) is
not mecessary if the greatest comanon divisor of Lo [} and Loalig) s 10 To decrease the anmber of S-
pebynowials gewerated by MakeSpolys( I8 L), the muinimmn polynomial which has the sainimum leading
weaniad should Be selected, beeanse o smaller monomial is apt to be the prime to other mouonials
rather than to a lacger one. We shoukl thorefore choose the global miniio polynomial as a new olement
of B We imoplement an algebraie constraint solver on a wanager-worker model,



(1) input £ = F, .. (26) Wo=Wui i i)
(2} input [ = R (27) Wo=Wuiw,l
(3} Dnput o= b [28) else f, =1
U tigna 18 the number of worker processes. {20} endif
4y W:=40 {30} endfor
% W ois a set of polynomial sets, (31} i = Choose{ F)
() fori=Nton-=1 {32 fori=0ton-1
G} R =R (33) if f; = f then
% R oas it worker's inlenediate base.  (34) W=W" {W,}
N W (35) W, i= W\ ()
% W, is ith worker's polynomial set. {36) W= WU W}
(4 W =Wu IHI,} {37) b= pp[_,l’{]
(% endfor (18] endif
(L) F = HeduceLmF. 1K) (39 endfor
(1Y e o= Connd | F) (40 if i =1 then
% Connt polynmuials in F 141) return R = faoil
{12) fur j=0tom -1 (4] endif
(1% = First| F) (43} W = LvadBalance{ . W . n)
% F is the first polynomial in F. % Generate S-polynomials
{14} F:=F\{f} (44} R=RuUlk}
{15 i:= jmodn (150  m:=0
(1G] W, i=w. u{f) (46} fori=0ton-1
(171 endfor (47} R = R ulh}
[18)  while m # 1) (18} W, := Beduce Lo (W, R;)
{1 F:=0 [49) iy 1= Count{ W;)
{2“:‘ fori=lton-=1 [flﬂ] HE = e+
(21} if W, = ¥ then {31) endfor
(22} W= W [ {32] endwhile
{25 _F. = (:ftmﬁﬂ[“‘r;} {53) H:= Intevvedouce| /)
(24) Fo= FUlfi} 154) return N
(25) f= foln,

Figure 2: Manager-worker model

3.3 Manager-worker model

In the wanager-worker model. reduction is parvallelized by partitioning a polynomial set to be reduced. To
decrease the communication cost between the manager and worker processes. all worker processes have
the same intermediate bases on their own wemories, They reduce polynomials in parallel and report
the local minimum polynomials to the manager process. The manager process then chooses a global
minimnne polynomial from among these

Fignres 2 and 3 show onr manager-worker model. The set of polyvnomials is partitioned and each
worker process has a different subset W,. The initial Grobner base 8, is copied to all worker processes.
New input polynonials are distrilited Lo the worker processes by the manager process so that all worker
processes have the same nnmber of polynomials.

In erder to ehoose / global minimmn polynomial, it 3 necesaary to reduce only the leading monomials
of all polynomials by the intermediate base. To add the selected polynomial to the intermedinte base,
however, the selected polyiomial must be rodweed completely, while other polynomials need oot he
reduend completely. Thus, each worker process reduces polynomials by i accarding to the following
reduction stages.

(1) A polynonial s wol vedoeed.

() The leading wonomial of & polvnomial is reduced,

(3) A polynonial is completely reduced to an iveeducible form.
(43 A polyvonmal s reduced Lo ils prooative part.



Cilohal ranimum message

Worker process: Worker
Polynomial subser: W
Intermediate base: Ry

The new element of B

Worker process; Workerg
Polynomial subset- Wy

Local minimum podynomisl

Manager process
Intermeshiate base: R

Mot glohal minimum message

Woorker process: Worker |
Polynomial subset: W |
Intermediate base: R | 4

L
Manager process
Intermediate base: R

The new element of R

Candulate for
a new element of R

Waorker process: Worker |
Polynomial subset: W

Intermediate base: Ry Intermed:iate hase: B

Figure 3. Arclilveture of the wanager-worker moclel

Allinput polynowials and S-polynomials are inpat to the first stape, These polynomials are sent to the
secomd stage after reducing the leading monomial completely by the function Reducelm(W,. R,). At
the second stage, each worker process selects the local minimum polynomial. sends a copy of the local
minimnm polynomial to the manager provess, and reduces the loeal minimwm palymomial according to
stages 3 and 1. After going through the reduction stages, the loeal minimwn polynomial becomes the
foeal randidate for the new element of R,

The manager process receives local winimum polynomials from all worker processos, selects the plobal
mininmm polynomial from among these, and sends a alobalvindman-message or not-global-mingnum-
messige to each worker proeess, When o worker process receives a plobal-minimum. message, it shonld
sl ks loeal caudidate to the manager process. The manager process receives the loeal new-clenont-
candidate, adds it to R, awl sends it to all worker processes. Fach worker process receives the new
clement of K. adds it to By, then geserates critical pairs and S-polynomials,

I the manager-worker model with synchronization, idling time exists in worker processes, In owr
inplementation. to reduce such ulling tune. each worker process execnutes a subtask afler computing its
local candidate for & new element of I until it receives o plobal-minimum-message or the new elewent of
£ from the manager process. The main task is computation of the local candidate. and the subtask is the
recluction of other polynomials. that is. the reduction of mwonomials other than the leading wonvmials.
Simee such subtasks are not always execnted, these sublasks may canse nondeterminacy in our parallel
algorithm, that is. the sequence of generating elements of R and the total number of generated S-
polynomials are not the same for evory execution. 1y our parallel algorithm. if several loeal candidales
for the new clement of 1 have the same leading monomials, then the INATIAZCT Process connpares otler
monomials in those local candidates. Sinee the result of comparison by the manager process depends
on whether such monomials of these locul candidates have been reduced previously, the manager process
duves not always choose the same candidate at every execntion. wd nondeternunacy may ocenr. However,
thicse subtasks may decrense Ue sulseguont load.

3.4 Load balancing

For parallel processing. it is necessary to balance the load on each processor. Sinee cach worker process
rehuees its own polynomials, we should balance loads acconding to the reduction cost. It is quite diffienlt.,
however. to predict the reduction cost for every S-polynomial beforehand. Thus. we balance loads so that
vawh worker process lias the sane nmnber of polypominls,

The most waive method for this load balancing is for the manager process to generate all §-polynomials
andl distribute then to worker provesses. But this ethod increases the commmnication cost between the
manager and worker processes, and results in A connmumication hobtlencck,

Since cach worker process has the same intermediate base B, it can generate the same critical pairs



(1) B:=d (23} else

% I is a load balance mformation number set. {24 B:=Bulkt
(2) M= (25) M := MU {m}

Yo M is A set of numiber of polynomials. (26) endif
3y fori=0ton -1 (27} endwhile
(4} I:=FU () {28) endfor
(3) my = Couwnt (W) {29) fori=0ton=1
6)  M:=MU{n} (30) W= WO (W)
(71 endfor (31} o= Criticnd Privs( R, &)
(B fori=0ton—] % Make critical pairs.
(9] B =5 {32) e i= Cound ()
{10} B=1{ % Connt critical pairs in ).
{11 M= M (33) forc=Utom—1
(12) M:=0 (34) (f. 1) := First(C;)
(13)  bi:=n (35) C, 1= O\ (S, b))
[14) while b, = n (367 = e modl 1
(1) b= Mimimum( #') (37) if § =&, then

% b s the miniouwn wumber e B [38) g:= Spoly(f. I}

(16) B = B\ {b} {30) W, := W, U {s)
(17} m o= Mimimuwmi{M') {40} endif
(18} M’ = M'\ {m} {41}  endfor
(19) if m; = m then {42)  Wo.=Wu {W;)
(20) b, :=b {41) endfor
(211 n.=pup (44) return W
(22) M =MuM

Figure 4; Load balancing

in the same order. Hased on this [aet, we have implemented a method where each worker process
generates eritical pairs in parallel. as follows. Fignre 4 shows the lowd balaneing cxeented by the funetion
Lomet Bolanee{ R Wk, n) in Figure 2. Fach worker process reports the number of polynomials it has Lo
the manager process. The manager proeess decides on a load balance information sumber &; for eacl
worker process, and sends that uuber to them. Each worker process assigos a critical pair nmuber, e
to each generated critical pair. where ¢ is common to all worker processes, Then. each worker process
generates S-polynomials from aueh eritieal pairs such thal ¢ mod o= ;.

Figure 5 shows an example of load balancing. There are three warker provesses, Workery, Worker;,
and Workers, The total nmmbwer of worker processes, . is 3. Workerg has 3 polynomials, Worbker
has 2 polynomials, aud Workers has 4 polynomials. The processes report the munber of polynomins
they have o the manager process. The manager process decides on a load balance information wmmber

Munager process
b= &2
Waorker process. Worker | Woarker process: Workers
{Mumber ol pilynomts=2} {Mumber of polynomials=4}
Critical pairg =t +
Critiealos Critioaingi
——Erterbprrer— Cntscul pairg

Worker process: Worker g
{Mumber of polynomels=3)

Critical pair

Figare 5: Example of load balaneing



B D this case by = 1obp =0, and by = 2. The manager process then semds these load balanee
information nmubers to all worker processes. Based on tlese load babanes inforation viunbers, Worker,
prnernies 5-polynonnals feom Cribieal pairg so that cmod 3 = 1, Worker; penerates S-polynomials from
Critienl prir, so that cmod 3 = 0. and Werkery generates S-polynomials from Critieal pair, so that
el 5 o= 2,

3.5 Various implementations

I monomind e of polynowdal f s a waltiple of leading monowidal Loefg) of polynomial g in the interoedi-
abe hase 17, thew [ is veduced to i = Lcr(y}f—&{g]ﬁ;y. as defined in Definition 5. The vednetion may
take a long thoe if the polynowdals ave complivated. that is. they bave many monomials and their mono-
udals have lurge cocfficients. To improve the efficicncy. we shoubl avoid creating complicated polynomials
by reclnetion.

In onr parvalie]l implementation. there are four issnes that may lave a great influcoaee on complexity of
the polynomials created by redaction: admissible ovdeving. order of using polynomials of the intermediate
base for veduction. interredeetion. s wsing vedundant elements of the intermediate base to rednee
polynomials,

As for the suludissible ordering and the order of using polyuomials, we have implementations that
ave regarded as the best for computing Grdlmer bases efficiently: the total degree roverse lexicegraphic
orderng and the order that alder polynomials are nsed earlier than newer ones. The Lotal dlegree reverse
lexicographic ordering is said to give Lthe best theoretical and practical complexity to the computation of
Grobmer bases as deseribed in Hollman (1992),

Definition 9 [ Total degree veverse levicompaphic ovdering)
Tha: total degree vevovse leweeogrpline ovdering is defined as:
F RS S :.'!"1".?!’;’ vl fwfere w4 a4 - <2, )

o Ve dior Yoy =308 oy day =0 () <1).

Llve order of using older polywomials parlier is reconmmended by both Gioving of of. {1997) and Holloa
de Langemyr [18091) Hollwan (1992) also pointed ont that the cesalt of reduction of a polynomial tewds
to be move complicated than the polynomial before reduetion. That is, there is a tendency for a uewer
polymmmal to be more complicated than an older one. becanse a vewer polynowial is reduced many
more tines than an alder one. Therefore, W avoid ereating complicated polynomials by reduction. older
IJI::Jj"!IIHIIIiHl:i shoulid be uzed before newer ones.

Tlue=ae iplementations are also eployed to omr alpebraic constraint aolvers. As for inlerrslnebiong
and using rednndant elements, however, 10 is uecessary to examine their effeet on the efficiency of the
pavallel computation of Griboer bases,

3.5.1 Interreduction

Interreduction is the reduetion of every polynomial in an interiedinte base by other polynonsials. Sinee
newer polynomials have alrealy been reduead by older polviominds, intorveduction means that older
polynomials are reduced by newer ones, Thus. since newer polynoiials tend to be more complicated
than older ones. interreduction way lead to complicated polynomials.

Gioviud et al. (1991 descrilisd o interredoction as betler, Though Crapor (1991) sadd that interre-
chielion is pecessary to efficicntly compute Grébner bases in lesieopraphic ordering. we use the total
tlegree reverse lexicographic ordeving mstead of lexicographic ovdering. In our parallel implementation.
we cotpare a ne interreduction stategy to & one-atep interreluction steategy thal replaces every polyuo-
miad vy i an intermediate base with o, where v, =25 00 and B s o polynowial obtained as o gew olooear
of the intermediate hase

3.5.2 Using redundant polynomials for reduction

Ifa ]ﬂﬂ[lillﬂ,' monomial of a [:H':ul_‘!."]ltllllial it pritereddisebe Do oo b peelueed 'h_.'. ALOILWE I_II_;II_!_.I’]_U}[ILiiI_I_
thew tiee reducible polynomial s redundaret. as deseribed in Gebaner & Maller (1988). Ts it Detber toonse
reclilant polynomials for eeduction or wot? Sinee there is o tendeney for older prolymonnizals to e less



complicated than newer ones, a redundant polynomial is expected to he less complicated than a newer
polynomial which can veduce its leading monmpial. Therefore, the result of reduction of a polynomial by
the rednndant polynemial is expected to be less complicatesd than that by the newer one. In this sense.
a redundant polynowmial may be effective for reduction, Giovini ef ol (1991} deseribed that redundant
polynomials shomld he nsed. On the other hand, Gebauer & Moller (1988) said that the intermediate
base should be kept as small as possible, that is, redundant polyuomials should be eancelled.

T order to check whether using redundant polynomials is effective for reduction, we condincted several

experients,

3.6 Experiment

I this section, we describe the results of our experiments. There are two issues to be examined. One
is terreduction, and the other is whether to use redundant polynomials for reduction. Thes, we made
four parallel algebraic constraint sulvers as below.

NI-TJR: No Interrednction and Using Redundant pelynomials,

NT-MR: No Interredoction and Not using Redundant pelynonials,
OI-UR: Oue step Interreduction and Using Bedundant pelynomials.
OI-NR: Ouc step Interreduction and Not using Redundant polynomials.

Iu canch parallel algebraic conatraint solver, the admissible ordering is the total degree roverse lexicographic
ordering. and older polynomials are used earlier than newer ones for reduction.

The parallel algebraic constraint solvers are implemented on the parallel inference machine PIM;/m
developed at TOOT, wud in the kernel language KL1 for the parallel inference machine. To wmeasure
the speed of the machine, we nse a unit calied LIPS (logical inference per second) described in Mat-
smmolo (1990, Nakashima (1992) reports that each PIM/m processor has a clock of 15.4 MHz and a
speed of 615 KLIPS at its highest peak performance, while the performance of SICStus Prolog systems
on & SUN Sparc Station 10/3) i= 1053 KLIPS. PIM/w is a distributed memory machine, and Mat-
sty {1990) reports that it takes 30 logical inference ateps in PIMm to read one primitive data, anch
as & variable in oo wonemial, from the other processor,

To examine the performance of our parallel algehraic constraint solvers, we use the twelve benchmarks
listed below. The details of these benehimarks are described in the Appendix.

(1) Katsuwea-4 (Boege of al. T986): (5 variables and 5 polynomials)

2] Katsura-d {Boege ef al.. 1986): (6 variables and 6 polynomials)

(3] Kalsura-6 {Katsura. 1986): {7 variables and 7 polynomials)

(4] Butcher (Boege ef al., 198G): (B variables and & polynomials)

{3} Modified Hairer-2 (Boege et al., 1986} (13 variables and 11 polynomials)
(6] Modified Hairer-3 {Booge ef al, 1986): (13 variables and 13 polynowials)
(7] Modified Gerdt {Boege of al, 1986): (8 variables and 13 polynmnials)
(4] Cyelie 4-roots: (4 variables and 4 polynomials)

{9} Cyelic S-roots: (5 variables amd 5 polypomials)
{10) Cyclic G-roats: {6 variables and G palynomials)
(11} T-G6 {Dackelin & Friherg, 1991): {7 variables and 6 polynomials)

(12) FEx-17 {Gehauer, 1985): (12 variables and 12 polynomiala)



3.6.1 Results of experiments

Tables 1 to 6 and Figures 6 to 8 show the results of onr experiments. We found that the computation
time 12 nol decreased by using two processors instead of one. Although this may scem strauge, it is in
fact quite reasonable. In our parallel implementations. each worker process is allocated to a different
processor. and the manager process is also allocated to a different processor. With o siugle processor,
however, the manager process and the worker process are, obviously. allocated to the same processor.
The velationship between the unmber of worker processes noand the nnmber of processors s given by

- 1 {pn = 1)
Tlpm-1 (pnz2).

Thus. there is omly a single worker process in both cases of wsing one and two processors. that is. the
computation power is not increased by using two processors instead of one.

The effeet of nondetermanacy in our experiments shonld be mentioned. As deseribed iy Section 3.3.
the subtask canses nondeterminacy in our parallel algorithm. The effect of nondeterminacy is significant
i the problems Modified Ilairer-2 (Table 3 (a) wnd Figure 7 (a)) and Modified Haiver-3 {Table 3 (1)
and Figure 7 (b)) In Modified Hairer-2, a remarkable spedupr by using two processors is obtained by
NI-UR. As describerd above. however. the compnting power does not increase hy using two processors:
the obbained speedup is dne to the nondeterminacy cansed by the subtask. With a single processor,
sinee the manager process and the worker processes are allocated to the same processor, the subtask
i nol executed because the worker process eannot work when the wanager process works. With two
processors, however, since the worker process can work when the manager process works. the subtask is
executed. Thus the sequence of gencrated polynowmials of the intermedinte sel 17 is different from that
with u single provessor, and the total computational cost is decreased. The details of the coanpitation
are shown below.

(1] 1 processor:
Number of generated polynomials of £ = 100
Nuwber of redundant polyuowmials of 7 = 62
Number of generated 5-polyuondals = 284

(2] 2 processors:
Number of gonerated polynomials of R = 82
Number of vedvndant polvuomials of B = 44
Number of generated S-polvuomials = 257

L tlus case. the nondeterminacy has & good effect an the efficiency of the computation,

In Modified Haiver-3. however. the nondeterminacy Las an adverse effect as shown in NI-NR and
OFUR. Iu these cases. the total compntational cost increnses drastically due to the nondeterminacy.
Especially in OIUR. the Crobner base could not be computed in 24 hours will two processors, yet it
wits compited in 40 minntes with a single processor. The details of the computation by NI-NR are shown
below,

(1) | provessor;
Nuwber of geaerated polynowials of 7 = 100
Number of recindant polyuomials of 7 = 69
Numher of genorated S-polyuomials = 399

(2] 2 processors:
Nunber of generated polvnomials of £ = 109
Number of redundant polynomials of £ = 69
Number of gencrated S-polvnomials = 406

The nnumber of polynonials and $-polynomials generated during the computation are almost the same in
botli cases. Thus, the higher computational cost is due to the complexity of the polynomials.

10



Table 1: Tiwming and speednp for Katsura-4 and Katsura-5

ta) Timing aud speedup for Katsura-4 (in seconds)

Numher of processors

Solver 1 2 4] B[ 16 32] 64 128 256
| NI-UR | Timing | 36 ] 34 190[ 15[ 16 18] 25] 84 123
Speeduop | 100 | 1.06 | 1.8 | 240 | 225 | 2.00 | 1.44 | 0.43 | 0.29

NI-NR | Timing | 3.7 | 42| 19| 15| 17| 18| 25| 3.7 ] 7.6
Specdup | 1.00 | A8 | 1.95 | 247 | 218 | 2.06 | 1.48 | L.O0 | 0.49

OLUR | Timing | 33| 33| 17| 10| 20| 30| 45| 90| 150
Specdup | 100 | 100 | 194 | 174 | LG5 | 1.10 { 0.73 | 0.33 | 0.22

OINR | Tuming | 33| 3.7 16| 24] 21| 341 87 B0 110
Speedup | 10D | 080 | 2.06 | 1.38 | 1.57 | 0.97 | 0.38 | 041 | 0.22

(b)Y Timing and specdup for Katsura-5 (in secomds)
Number of Processors

Solver 1f 2] 4 Al 16 ] 32 64 ] 128] 25
NIUR [ Timing {383 [37T3 [ 158 04 [ 106 ] 139 | 16.1 | 195 | 29.4
Specdup | LOD | 103 | 2.42 [ 407 | 3.61 | 2.76 | 298 | 1.96 | 1.30

NE-NR | Tioung | 37.0 [ 366 [ 15.0 | 9.1 [ 113 | 144 | 17.2 | 23.6° | 27.7
Speednp | 100 | 1.0 | 2.47 | 407 | 3.27 | 257 | 215 | 1.55 | 1.34

| OI-UR | Timug | 32.2 | M6 | 187 | 0.1 | 1156 | 17.0 | 23.0 | 48.8 | 72.5
Specdup | 100 | 0.93 | 235 | 3.54 | 2.80 | L&D | 1.35 | 0.66 | 0.44

OI-NE | Timing | 327 [ 359 [ 151 | 9.2 | 173 [ 223 | 230 | 500 | 70.0
Speedup | 100 | 096 | 2,17 | 3.55 | 1.89 | 1.47 | 1.42 | 0.65 | 0.47
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Table 2: Timing and specdup for Katsora-6 and Butcher

fa) Tuning and specdup for Katsura-6 {in secomds)

Mumnber of processors

Sulver 1 | 2 | 4 8 | 16 I 32 I 123 J 206

]
NLUR | Tinng | 641 | 692 | 549 | 195 | 100 | 106 | 158 | 214 | 272
Specdup | 100 | 093 | 1.17 | 3.29 | 648 | 6.10 | 4.06 | 3.00 | 2.37

NIENR | Tiwing | G46 | 690 | 548 | 152 | 111 | 107 | 158 | 250 | 226
Specdup | 1.00 | 0.94 | 1.18 | 4.25 | 582 | 6.04 | 4.00 | 253 | 2.86

OIUR | Tiwmng | 513 [ 563 | 223 111 B4 | 112 | 189 [ 306 | 442
Specdup | 10D 0.00 | 230 | 4.62 | 6.11 | 4.58 | 271 | LGB | 1.16

OI-NR | Timing | 516 | 563 [ 307 | 171 f 101 | 132 | 194 | 294 | 443
Speedup | LOO [ 092 | 1.68 | 302 5.11 { 3.01 | 266 | 1.76 | 1.16

(b Tinving and speedup for Butcher {in secomds)

Muber of Processors

| Salver 1] 2] 4] 8] I6] 32] 64 ] 128 ] 266

NI-UR | Timing | 474 [ 45.2 [ 235 [ 166 | 1.2 | 16.2 | 105 | 227 | 20.3
Speedup | 1.00 | 1.05 | 2.02 | 3.04 | 3.12 | 2.93 | 2.43 | 2.00 | 1.62

WNI-NTL | Thni g | 426 | 433 | 239 ) 160 [ 160 ) 17.4 175 | 218 | 351
Speedup | 100 | 0.08 | 178 | 252 | 266 | 2.45 | 243 | 195 | 1.21
OLUR | Timing [ 340 [ 351 ] 208 [ 140 | 153 | 18.0 | 284 | 51.3 | 35.8
Speedup | 1.00 | 0,97 | 1.63 | 2,43 | 2.22 | 1.80 | 1.20 | 0.G6 | 0,95

OLNR | Timing | 287 | 293 [ 166 | 13.4 | 10.0 [ 10.4 | 26.3 | 651.0 | 94.6
Speedup | T.O0 | 098 [ 173 | 204 1 151 | 148 | 1.09 | 0.56 | 0.30
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Table 3: Timing aud speedup for Modified Hairer-2 anad Modified Hairer-3

[a) Timing and specdup for Modified Harer-2 {in seconds)

Number of processors
Solver ) L] 2] @] ®[I6] 82 64 128 | 250
NILUR | Timing | 413 [ 191 ] 01| G1] oG] 62] 78] 06 ] 107
Speedup | 1.00 | 2,16 | 4.33 | 6.77 | 7.08 | 6.66 | 5.20 | 4.30 | 3.53
NI-NE | Timing 329 | 373 67 51 43 o 6T 95 | 1n2
Speedup | 1.00 | 0.88 | 491 | 6.45 | 7.31 | 6.09 | 4.91 | 3.46 | 3.23
OLUR | Timing | 213 | 212 74 34 54 T1| 105 | 179 | 330
Speedup | LOU | 1.00 | 288 | 3.94 | 394 | 3.00 | 2.03 | 1.10 | 0.65
OI-NR | Tinung 170 | 168 Gl 48 36 T4 | 103 | 169 | 326
Speedup | 1.00 | 1.01 | 2.79 | 3.54 | 3.04 [ 230 | 1.65 | 1.01 | 0.52
{b) Timing and speedup for Modified Hairer-3 (in seconds)
Number of Processors
Sulver 1] 21 4] B[] 16 32 64 | 128 ] 204
NLUR | Timing | 3572 | 5370 | 1086 | 605 | 449 | 891 ] 501 ] 506 602
Speedup | 100 0.66 | 3.20 | 547 | 7.96 9.14 G.04 G.31 5.9
NLNR | Tinang | 6234 | 60734 | 3825 | 5807 | 1014 | 1062 073 200 868
Speedup | 1.00 0.10 | L63 | 1.06G | 6G.15 5.93 G.41 7.7 T.18
OL-UR | Timing [ 2202 [ >1day | 857 | 1215 | 705 | >1day | »lday | >1day | >lday
Specdup | 1.00 239 | 1.80 | 3.25 - -
OLNIL | Timiug | 2150 | 3002 | 756 | 877 | 2162 |~ 306 450 i 832
Speedup | 1.00 0.72 | 284 | 245 | 099 7.03 4.78 3.581 258
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Tahle 4: Timing and speedup for Modified Gerdt and Cyelie 4-roots

{a] Timing and speedup for Modified Gerdt (in seconds)

I

Mumber of processors

Solver 1 2 4 &[] 16] 12 G4 | 128 | 254
NLUR | Timing | 665 | 679 | 286 | 181 | 120 | 140 | 164 | 250 | 330
Speedup | 1.00 | 0.98 | 2.25 | 3.67 { 5,16 | 4.75 | 4.05 | 2.57 | 2.02
NI-NR | Timing | 676 | 1021 | 380 | 257 | 187 | 196 | 211 | 328 | 386
Speedup | 100 | 0.96 | 251 | 3.80 | 5.22 | 408 | 4.64 | 2.08 | 2.53
OLI-UR | Timing | 574 | 702 | 325 | 234 | 198 | 201 | 242 | 356 | 54l
Specdup | LOO | 0.82 | .77 | 245 | 2.90 | 286 | 2.37 | 1.61 | L.06
OFNR | Timing | 549 | 64 | 279 ] 196 | 230 [ 233 | 240 | 59 | 544
Spoedup | 100 | L83 | 197 | 280 | 230 | 2.36 | 2.20 | 1.2 | 1.01
(b} Timing and 2peedup for Cyclic 4-roots {in seconds)
"~ Number of Processors
Solver 1] 2} 4] 8] I6] 32] 64 ] 1287 256
NIUR| Timing | O8 [ 14| 10O 0] L1] 10| 32| 66 15.2
Speedup | LO0D | 057 | 0.80 | 080 | 0.73 ) 080 | 0.25 | 012 | .05
NI-NR | Tuming 08| 08 LO| 13| L1j 14| 33| 4.7 131
Spoedup | 10D | 100 | 0.80 | 0.62 | 0.7% | 0.57 | 0.26 | 0.17 | 0.06
OI-UR | Timing | 08 08| LO| 16| 1.2 L5 | 33| 67| 138
Speedup | 100 | LOO | 080 | 0.50 | 067 | 0.53 | 0.24 | 0.12 | 0.06
OLNR | Timing | 08| 07 0.6 1.1] 14| 1.4 30 51 138
Specdup | 100 ) 1.14 | L33 | 0.73 | 0.62 | 0.57 | 0.27 | 0.16 { 0.06
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Table 5 Timing aml speedup for Cyclic S-roots mal Cyelic G-roobs

{a) Timing and speedup for Cyelic S-roots {in seconds)

Number of processors

Sobver | [T U @] 4] S 16] 32] 64 128 ] 256
NI-UR | Timing | 106 | 10.7 | 7.3 | 5.1 | 6.5 ] 9.6 | 10.4 | 13.1 | 30.8
Specdup | 1.00 | 0.09 | 1.45 | 208 | 1.63 | 1.10 | 1.02 | 0.81 | 0.27
NENR | Timug | 102 | 107 | 60| 54| 62| 85| &6 | 10.5 | 20.0
Speedup | 1.00 | 0.95 [ .70 | 1.89 | 1.65 | 1.20 | 1.19 | 0.97 | 0.49
OLUR | Tindne | 103 98 [ 65 0.0 7.0 | W02 | 141 | 27.0 | 526
Speedup | 1.00 | 1.05 | 1.58 | 1.75 | 1.47 | 1.01 | 0.73 | 0.38 | 0.20
OF-NRE | Tiging | 104 | 9.7 60 36| 7.1 | 11.3 | 145 | 282 | 520
Speedup | 1.00 | 1.07 | 1.73 | 1.86 | 1.46 | 0.92 | 0.72 | 0.37 | 0.20
(k) Timing and speedup for Cyclic f-roots {in seconds)
Solver 1 [ ] 1 4
NI-UR | Timing | 490 [ 582 [ 170 [ 115 [ 10t | 136 | 187 [ 291 [ 338
Speedup | 100 | 084 | 2.73 | 426 | 4.85 | 3.60 | 262 | 1.68 [ 1.45
NI-NR | Tumng | 474 | 599 | 2001 | 100 | 04 | 120 | 171 | 225 | 308
Speedup | 1.00 | 0570 | 2.25 | 474 | 504 | 395 | 277 | 211 | 1.54
OI-UR | Timiug | 493 | 520 | 195 | 117 | 150 | 153 | 223 | 378 | 637
Speedup | 1.00 | 0.93 | 2.53 | 4.21 | 3.20 | 3.22 | 2.21 | 1.30 | 0.73
OLNR | Timing | 543 | 965 | 450 | 111 | 131 | 143 | 223 | 421 | GI8
Specdup | 1.00 | 0.96 | 1.55 | 4.89 | 4.15 | 3.80 | 243 | 1.20 | 0.88
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Tabie 6: Timing and speedup for 1-6 and Ex-17

{#} Timing and speedup for T-6 {in imiuntes)

Number of processors

Solver 1] 2 4] B8] Ta 12 64 | 128 | 256
NEUR| Timing [ 230 [ 245 [ W00 [ 54 41| 30| 28] 33| 34
Specdup | LOD | 098 | 239 | 443 | 5.83 | 7.97 | 854 | 7.24 | 7.03
NI-NR [ Timing | 243 | 245 | 102 ad a7 28 28 33 kT
Speedup | LOO | 0.99 | 238 | 458 | 6.57 | 8.68 | 868 | 7.36 | 7.15
OLUR | “Tooing | 216 | 242 0% il A3 28 a1 43 ]
Specdup | 100 | 0.8 | 227 | 4.32 | 655 | 7.71 | 6.97 | 5.02 | 5.13
OINR | Timing [ 220 | 245 | 91| &0 | 34| 20| 20| 44 70
Speedup | 10D | 0.90 | 242 | 4.40 | 647 | 7.59 | 7.50 | 3.00 | 3.14
(b} Tining and speedup for Ex-17 {in minutes)
Nuwber of processors
Soiver 1] 2] 4] 8] I6] 32] 64 ] 1387 256
NILUR | Timing | 265 968 [ 105 | 58 [ 38 [ 26| a3z 20 a0
Speedup | 100 | 0.27 | 2.52 | 4.57 | 6.97 | 9.14 | 8.28 | 0.14 | 8.83
WI-NR | Tiuuug | 655 | 580 | 511 58 I8 26 26 26 26
Speedup | LOO | 113 | 128 | 11.3 | 17.2 | 25.2 | 25.2 | 25.2 | 25.2
OL-UR | Timing | 190 | 161 | 121 | 103 48 39 35 sl 3
Speedup | 1.00 | 0,99 | 1,57 | 1.84 | 3.06 | 4.87 | 543 | 5.00 | 4.87
OINR | Timing | 151 | 152 | 93| 88 | 40| a8 | 19| a4 | 42
Speedup | 1.00 | 0.99 | 1.62 | 1.72 | 3.78 | 3.97 | 3.87 | 3.43 | 3.60
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Figure f: Timing data-1

3.6.2 Influence of nondeterminacy caused by the subtask

Based on the results of experiments, NI-UR is employed as onr parallel algebraic constraint solver. As
described in the previons section, the subtask causes nondeterminacy and may adversely increase the
total computational cost. However, the subtask is necessary to improve the efficiency of computing
Gribner bases by decreasing the idling tinw: of processors. Therefore, a parallel algebraic constraint
solver in which the nondeterminacy has little effect on the efficiency shonld be employed, NI-UR, wihich
is a parallel algebraic constraint solver without interreduction and wsing redundant polynomials, showed
a pood absolnte speed of computation and relatively stable specdup with muolti-processors compared to
others, though it does not compute all the Gribaer bases faster than others,

The reason why the nondeterminacy has little effect on the total computational cost in NI-UR is
as follows. When we have two polynomials of the same leading monomial, we compare the rest of the
polynomials and choose the smaller polynomial as & new element of the intermediate base. Thuos, the
subtask canses the nondeterminacy sinee the subtask is not always executed, as described in Section 3.3,
Furthermore, when polynomials in the intermediate base are reduced or cancelled, the irreducible form
of a polynomial is not nnigue but dependent on the reduction timing. Thus, in NI-UR. the influence of
notdeterminacy s smaller than in any other solvers,
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4 Conclusion

We have developed several parallel algebraic constraint solvers in order to improve the absolute comp-
tation spood, beeanse the efficieney of paralle]l algebraic constraint solvers ate determined by tle absolute
computational speed and net by the speedup due to multi-processora.  For exmnple. for the Maodified
Gordt problem i Table 4 (a) and Figure 7 (¢}, though the absolute computation speed of NT-UR is
superior to that of NI-NR., the speedup of NT-NR is better than that of NI-UR because the compntation
specid of NI-NIU is slow with a single processor. Frow this example, we find that the specdup must be
evaluated along with the absolute computation speed,

In our research and developiuent of parallel algebraie constraint solvers on the distributed memory
wachine FIM /m. there are three major issues: the conpmumication costs hetween processors, the nonde-
terntnacy caused by the subtask. and the selection of a miniminn pelynomial as a new element of the
intermediate base.

To decrease the communication costs, we have implemented onr algebraic constraint solvers so that
each processor has e saue intermediale base on its peemory and so that cach worker process generates
S-polynomials for itsell by exchanging an integer witl the manager process. This implementalion reguires
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sufficicut memory for each processor because the total memory necessary for the computation increases
almost lincacly with the increase of worker processes, However, we nsed this implementation sinee it is
ezsential to improve the efficieney by decreasing the communication costs,

The nondeterminacy may have cither a good or bad effect on the efficiency. and it is very difficult to
predict whether nondeterminacy impraves the efficiency. If the subtask is not executed, then nondefer-
winacy does not oceur. The subtask ig, however, necessary to improve the efficiency by decreasing the
iclling time of each processor. Thus, we have chosen NLUR as our parallel algebraic constraint solver
Brecanse e influence of nomdeterminacy in NI-UTR is less than that in any other.

Selecting a minimum polynomial as a new element of the intermediabe base is known to decrease
the total computational cost in the sequentinl Buchberger algorithm. To parallelize the Buchberger
algorithm, it is also necessary to choose a minimam polynomial. We apply this selection strategy in
onr manager-worker model by synchronizing parallel worker processes. Such synchronization seems to
deerense the speedup with wulti-processors, By applying the selection strategy, however. it is guaranteed
that the global minimum polynomial is sclected as a new element, and the total compntational cost does
not increase with mnlti-processors. Furthermore, sinee cach worker process reduces S-polynomials using
the same algorthm. the total eomputation power inereases even thongh synehronization may make some
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processurs idle on every selection of a new element. As o result, the effect of the selection strategy on
iproving efficiency is greater than the decrease in efficiency eansed by the defect in synchronization,
and the speedup with multi-processors is also improved when compared with algelraic constraint solvers
without the selection strategy.,

Finally. we must note the influence of the bignum operation, The caleulation of coefficients, that is.
the bignum operation. occnpies a large part of the total compntation. Therefore. (he performance of
the bignum operation affects the strategy wsed to compute the Gribner bases. If the performance of (he
hignuin operatiow is iwproved in the fture, then the strategy might be changed for the same benchmarks
employed in our experinment.
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Appendix Benchmarks

The following benclunarks are nsed in this paper.

(1) Katsura-4 (Boege et al., 1986): (U = Uy = 17 < Uy < Uy)
Number of input polynomials = 5
Nuwiher of polynomials in the final Griner base = 13
(U — Up + 207 + 203 5 2U% +2U2)
[ZﬂnUi + 20505 + 2U2U_‘, + 20500 — L’]jl
(2UpUy 4 203 + 205, Uy 4 2001, — Uy )
{20,075 + 204Uy + 2040y = Uy)
(o + 20 4 205 + 205 + 20 - 1)

(2) Katsura-5 (Boege et al.. 1986): (I < T < Uh < Uy < Uy < Uy}
Number of mput polynomials = 6
Number of polynomials in the final Grobner base = 23
(U3 ~ Uy 4 20U} + 203 + 202 + 207 + 207)
(2Unlh + 204Uy + 200U 4 200300 + 20U, 0y = Ly)
(20U 4 U + 200Uy + 203074 + 20505 — Us)
(20U + 20, Us + 200Uy + 20,05 = Ty)
(2Up Uy + 2041 + 204 Us + T — 1Y)
(L 4200 + 200 + Wy 20 +207, =1

{3

[

Katsura-6 (Katsura, 1986): (I < U} < Uy < Us < Uy = Uy = Uy}
Number of input polynomials = 7

Number of polynomials in the final Gribuer base = 41

(U 4+ 207 + 20U, + 205 + 2U; + 20, + 207 = 1)

(2Usly — Uy + 20707 4 20500 + W)

(2L Uy + 200 Us = Iy + 200175 + Ug + 20505)

(20500 + 205U + 200Uy + (2005 — 1)y + 200, 85)

(20U Ly + 20 0T + (2075 + 2060, + LUy =1 + U.z]

(20U + (20U + 200 )00 + BI00T, + 20000 + 20Uy — Uh)

(UF — Uy + 205 + 20 + 202 + 203 + 202 4 207)

Butcher {Bocge ef al, 1986): (A = Ag3 <= B < By, « By < By = (a2 = C3) Number of input
polynomials = §

Mumber of polynomials in the final Gribuer base = 25

(By + By + B3 — (A + B))

(820 + ByCy ~ (1 + 3B + B? - AB))

(B,0F + ByC3 = (A(} + B*) ~ §B - B* - BY))

(B3A3Cz — (Al§ + B+ B*) - §B - B* - BY))

(BoC}+ ByC3 — (3 + 1B+ 2B? + 3B% + B* — A(B + B%)))
(ByC3A0Ch — (g + 3B+ 10+ 38° + B* — A(1B + LB* + BY)))
(B3 Ay (] —fi—ﬁﬁﬂ P+ 38 + BY - A({B + B* + BY))
I+ 50+ ED+ 1B+ B A(LB + B+ 3%))

(5) Modified Hairer-2 I:Br.-egu el .. 198G): {Agy < Azg = Ay = Ay = Ay = Az < By < B: < By «
By <Oy < O = )
Number of input polynominls = 11
Number of polynomials in the final Groboer base = 38
{By 4+ By + By + By = 1)
{820 + ByCy + ByCy — 1)
(8203 + BaC3 + By - 1)
(B3A5Cr + BydazCy + HiAaaCy — })
(8307 + By + ByCf - 1)
(B3C3A320% + ByCa ATy + ByCy Ay - 1)

4
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(6)

—_—
=1

i8]

()

(10)

(B3AgCF + ByAquCf + By AnC] — i)
(By A AnC: = )

(C2 — An)

(Cy — Az — Aaz)

(Cs — Agy — Agp — Agn)

(g = 1)

Modifies] Hairer-3 {Hoege et ol 1986): (Ass < Age < Agy = Asg ¢ Agy = Agg = Hy = By = Hy ~
Ca =g = Oy = %)

Number of inpul polynomials = 13

Number of polynomials in the flnal Gribner base = 46

(1504C23Cy + 1584C3 0 + 15B,C3C + 158503 Cy + 158305 Cy + 15B,CCy — 1)

(30B5CyCy 4 608,50 + 3085 Oy

(20830 208,03 4400, 0705 +20B,C3+20B;CF + 208503 + 2085 CF + 408, Cy Cy + 4085 T Cy +
A0, Cy0y = 1)

(20B5CF + 20B4C3 + 20B,C3 + 208,C3 + 208:C3 4 208:5C3)

(ADB T30 + 40 BTy Oy + d08 gy + 4005 Cy g = 1)

(60B4CF + 1208503 + 60B5CF — 1)

[I‘Zﬂﬁﬁﬂ‘g - ]}

Modified Gerdt {Boege et al., [986): (Lp = Ty = Ly = Ly = Ly = Ly = Lg = Lq)

Number of input polynomials = 13

Number of polynomials in the final Gribner base = 69

{T1(2Ly — Ly + 2Lg))

{{2L] = TLy{(—=10Ly + 5Ly — Lg))

(12LF — TLaW3Ls — Ls + Lg))

(=2 LE + LyLy+ 20404 - L§ = TLy =+ 210 ) =3Ly + 2L3) +3( M3 = 14Ly Ly + 3.{-%”
(TI=2L3 4+ Ly La+20y Ly — L3 —TLo +20 L W20y —2 L0 )+ (49 Ly — 140 Ly +-3L3 ) —45 Ly 4+ 15L2 —3L3))
(14{—2L} + L1024+ 2003 — L3 — TLy + 20 Lg) Ly + (A0 — 140, Ly + 3131120, — 315 + 215 )}
(Lad5hy = 3o + Lad(2ha = Ly )+ Tha(2Le = 4540

(Ly(SLy — 3La + LadLy -+ TLy{2Lg — 4L4))

(Li{5Ly —3La 4 Lay}{—204 — 2Lp) + Ly{2Lg — 404)(203 — 8Ly} 4 4204 L4)

(Lq(5Ly — 3Ly + LyM8Ly + 18Lg) + Ly{20g — 4Ly H3ILq — 1TLy + 5Ly} — 25204 Ly)

(15 Ly (OF — 3La 4+ La) + Ly(20g — 404 {00y — 20} 4+ Ly Le( =605y + 151y — 3La))
(=6l ly =3La 4 Ly)lp + Ly{Lg = 204} =20y 4+ L, = 2L} 4+ Ly La(24L) = GL3))

(3L (2L = 4Ly )Ly 4 Ly Lo (20Lg = 4Ls + 2L45))

Cyelic 4-roots: (X < X < X5 < X4)

Number of input polynomials = 4

MNmmber of polynomials in the final Grobner base = 7
(A 4+ +X 41X

(XX + XXy + XX, + X;XL‘J

(XX + X000+ 000 + LX)
(XXX 1)

Cyclic S-roots: (X; < X; < X; < Xy < X;)

Number of input polynomials = 5

Number of polynomialz in the final Grobner base = 20

(A X X+ X+ XS

(NN + DX+ XX+ A + A 4,)

thX2X3 - XQXJX.I. + X;X.|X,5 e XXX+ XXX

(XX XX + XXX + GG + NG X + X G
(XX XX Xs —1)

Cyclic G-roots: [X; < X < Xy = Xy < X = X))
Number of input polynomials = G
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Numnber of polynomials o the fnal Groboer base = 45

(X + X+ X+ X+ X+ X))

(X X+ Xo X+ XXy + X+ 0G4+ XX

(N AN+ XX, N+ LA 4+ LGN+ A

{X1X‘2.¥3X| - Xz:'-’;x.i_:{& = XﬂX*X;XE - X.{:'.F&Xﬂ:{] - X;,X,;Xng +X.5X1X2XJ]
(X XXX + XXX+ NN XX XA NN+ AN A
TAE XA

(X XXX XX — 1)

(11) T-6 {Backelin & Froberg, 199E): (X < X < X3 < X < X < & < X5)

Number of input polynomials = 6

Number of polynomials in the Hual Grobner base = 120

(Xi+ X+ XN+ 0+ 6+ X+ X5)

(XX + XXy + Xy + XX + X X + XXy + Ar X))

I::X] XE.Xg + X X:L.-Y‘ + X3X4X5 + .Y;X;X{, + X;XE.XT' + X{.X?X] + X'FX]X]}

(A XXX + A AL A + AN AN + AN + GG X + XXX,
+ X X A X5

(X AN N + AN N+ NG NGA, + XXX, + XN X,
+Xg A A A X + K N A G Xy

EEP IR R PR TR R CR FRECE CRCER CR PR ER R CR SRS I3 R CF €3 CF. O 5 CR PR CR CR OF OF S
e Xe XA Xy + XXX )

(12) Ex-17 (Gebaner. 1985 (A < B < C <D< E 4 F <K <L «M<N<0 <P
Number of input polynomials = 12
Number of polynomials in the final Gribner base = 50
(F—121)
(29F - 21P)
(5294 — K)
(735F — 361F P — 300¢) 4 520F7)
(8200 — 2T2PE — JGFO — 340N + 1058F E)
(BOMC — 195 P 0 — 225E0) — 255 F N — 285M 4 1038F D + 520E%)
{0540 — 130PC — 156600 — 182EN — 208F M — 2L + 1058FC + 10G8E D)
(10034 = TTPE = 990 = 1210N = 143EM = 165FL = 187K + 1058 F B + 1058 EC’ + 5290%)
(1058 F A + 1038 E R + 105800 — 3674 — OB - T2NC - 0DM - I0BEL - 126F K}
(1058 AE + 105800 + 52907 = 2140 - 35NE - 49CM - 63DL - TTKE)
(1058A0 4+ 1058CE = 10AN — 200 B - 3I0CL - 40K D)
(1058AC + 5208 - 3AM - 0BL - 1K)
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