ICOT Technical Report: TR-0896

TR-0896
Preliminary Evaluation of a Distributed
Implementation of KLIC

by

A. Nakase, K. Rokusawa, T. Fujise
& T, Chikayama

Movember, 1994

© Copyright 1994-11-10 ICOT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg, 21F (0333450-3191 -5

lc DT 4-28 Mita 1-Chome

Minaio-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Preliminary Evaluation of a Distributed Implementation of KLIC

Akihiko NAKASE, Kazuaki ROKUSAWA,

Tetsuro FUJISE, Takashi CIHHIKAYAMA

Institnte for New Generation Computer Technology (ICOT)
21F. Mita-Kokusai Bldg.. 1-4-28, Mita, Minato-ku, Lokyo 108, Japan. Phone:4+08-3-3456-3193

e-mail: {nakase, rockusawa,

Ahbstract:

KLIC is a portable nnpleseatation of concurrent logic programming langnage K11,

fujise, chik}@icst._or.jp

T

KLIC, KL1 programs are translated into C programs and compiled into object programs, Through the
usager of the Clanguage on a variety of platforms. the sequential KLIC system shows hoth efficieney ol
portability, In this paper. we describe the key issues of portable implementation of a distributed KLIC
system, Lwo differcut confignrations of distributed KLIO systems are implemented and evaluated. We
propose and evaiuate some alternative data transfer mechanisms to maxiniize parailel efficiency of the

distributed KLIC svatem.

Keywords: Logic programming language. KL1, Parallel processing. Distributed processing, Evaluation

1 Introduction

KL1[1] is a concurrent logic programming language de-

veloped by the Japanese Fifth Generation Computer Sys-

trins proech, KLL was implemented on parallel inference

machines Multi-I'SI[2] and PIMs[3] and contributed to

the development of the operating systemn and many knowl-
edge information applivation sofltware systems. Although

KL1 was efficient on a parallel inference machine. it can-

not be used on conunercial machines.

KLIC has been developed to make KL1T maore widaly
available. In KLIC. KL1 programs are teauslated into O
programs. “Uhauks to the high portability of the C lan-
guage awil eflicient C compilers. KLIC shows high porta-
bility and officiency. [4]

I erder to utilize KLIC systems on conmercial par-
allel wawclines. we developed a portable configuration for
the distributed KLIC system. Tu this configuration, ma-
chine dependent procedures are strictly separated from
e distribution library, giving high portability. lu onr
experiental mnplementation. the pacallel efficiency of
the distriboted KLIC systewn depends on the efficiency
of the platfonn, e CPU speed and wessage commu.

nication speed. Various mcssage transfer schemes were
tried to decrease the number of messapges,

In this paper, we deseribe the portable implementa-
Lion of a distributed KLIC system, evaluate the parallel
execulion of benchmark programs, and show some meth-
ods for optimizing the message transfer schome.

Section 2 pives an overview of a distributed KLIC
system amdl its configuration. Section 3 deseribes the
framework of our experimental implementation. Section
4 gives some alternative stralegies for o message passing
seheme for the distributed KLIC system, Section 5 gives
the results of experiments using benchinark programs.,
Section 6 gives a summary and descriles fubnee plaus.

2 Overview of the Distributed KLIC

System

L the dhistributed KLIC system. KL1 programs are trans-
lated into C programs, compiled juto object programs,
linked with libraries, and become executahle Proprains.
Iu this procedurs, the distribution execution library is

2 ILPS'94: Design and Implementation of Parallel Logic Programming Systems

always linked to ohject programs.

Some 'l'.ﬂpil‘:!-'- aof these executable Programs are forked
{or spawned), and these programs execute while com-
municating with each other. These forked processes are
I'.'-i.i."l.'li KLIC PT'{.I‘L’.'T.'H.‘H.'I‘E.

In order to maintain the performance of sequential
execution, the distributed KLIC system does not change
the sequential KLIC core. The digtribution execution
library is attached to the sequential core as a form of
extended library. This mechanism is called a generte
ebject[4] in KLIC system.

For the portable implementation, we divided the dis-
tribution execution library inte a KL1 level distrabution
hbrary and a machine level distribution library,

The KLL level distribution library is directly called
from the sequential KLIC core and contrals Ena.l kg ra-
tiom. distributed unification, distributed garbage collec-
tion, and distributed termination detection.

Tl puaehine level distribution library is called from
the KL1 level distribution library. Tt initializes KLIC
processes and passes actual messages between them,

The configuration of the distributed KLIC system is
lunstrated in Figure L.

(KLIC process)

Sequential KLIC core

KL1 level distrilmtion library

Machine level distribution Iihrar}'

(Commimication path)

Machine level distribution library

KLL level distribution library

Sequentinl KLIC core
[KLIC process)

Figire 1: Configuration of the distributed KLIC systen

This comfiguration makes the distributed KLIC sys-

tem Lighly portable. It can be ported by changing the
machine level distribution library for the target machine
architecture and communication path.

2.1 KL1 Level Distribution Library

The KL1 level distribution library controls goal inigra-
tion, distributed upification, distributed garbage collec-
tion. and distributed termination detection. The ba-
sic mechanisms of the KL1 level distribution library are
the same as for the distributed execution mechanisms of
Multi-I'51 and PIMs[5].

In the distributed KLIC syatem, goal migration should
be explicitly directed in the source program by pragma
‘gmode (X)) *. For example,

a:=true | b@nede(1).

means to migrate goal b to KLIC process 1.

In the distributed KLIC system., when a goal is mi-
grated to another KLIC process, the goal is encoded in
the Hthrow message and is seut to the other KLIC pro-
cess,

When a goal is thrown to another KLIC process and
the goal containg references to variables, references aeross
KLIC processes appear; these are called external refer-
ences, (Figure 2) We are using the gencric object to
implement the external references.

GOAL GOAL
variable | = external
reference)
KLIC process i KLIC process j

Figure 2: External reference in a distribnted KLIC sys-

Lem

When a goal tries to unify some value to an external
reference, a Fumify message is seat to the KLIC process
where a variable exists. (Figure 3)

When a goal requires the value referred by an exter-
nal reference, & Fread message i3 send Lo Lhe referred
KLIC process to fetch the value. {Figure 4)

ILPS94: Dhsign and Tnplementation of Parallel Logic Programuing Systems 3

jli”ﬂy{ : wvalue)

L/

external
reference

wvariahle

KLIC process i KLIC process j
Figure 3: % 0Unify message

variahle P ——— " _|external
reference

ELIC process 1 KLIC process j
Figure 4: ¥ Head message

Ou receiving the Freod message, if the variable has
been instantiatedd, an Horesoer wpssage 18 returned to
the KLIC process from where the Fread message was
issnedd. (Figure 3)

If the variable has not been instantiated yet, the %an-
swer niessage is 1ol sent until the variable is instantiated,

When an external reforence is wo longer referred to, a
Hrelease message is semd to the referenced KLIC process
for garbage collection. {Fignre 6)

Thus there are mainly 5 basic wessages in the dis-

tributed] KLIC system. puaely the $throw, SFunify, Sread,

Fanswer, and Froloase messages.

2.2 Machine Level Distribution Library

2.2.1 Functions of the Machine Level Distribu-
tion Library

The machine level digtribution library has two functions.
These are: initialization of KLIC processes, and actual
message commnunicalion belween them,

KLIC process i

Hanswer{ . value)
——

value | = 1" |external
reference

KELIC process j
Figure 5 S Answer message

jrefmcelf A
[

n texternal !
treference

varialile

KLIC process i

KLIC process j
Figure 6: % Release message

o [nitialization:

In initialization, KLIC processes are spawned. The
number of KLIC processes is specitied when the
executable program is invoked. Commnication
paths wre Lhen established between all KLIC pro-
erases. Moreover, a console process is invoked, and
communication paths are established between the
KLIC proeesses and console process. The console
process manipulate the inpot amnd output of tracer
of KLIC.

Message passing:

Message passing in the distributed KLIC system is
done in & simple manner. Sophisticates] message
passing primitives, anch as broadeast messages or
the use of tagged messages. are nol neecssary,

Message sending comprises just three actions. These
aree ereating the send buffer, packing data into the
semd buffer, and sending the message, Message re-
ception also comprises just three actions, These
are; creating reveive buffer, receiving wessage into
the receive buffer, and unpacking data froums the

4 ILPS04: Design and hnplementation of Parallel Logic Programming Systems

receive bufler.

The KLIC process which is to semd a0 message, is
called o message sereler process while the KLIC
process which is to receive a message, is called a
TESSAFE TECETVET PIOCEss,

2.2,.2 Communication Paths

The machine level distribution library handles nmessage
connmunication on the communication paths of the plat-
form. We give examples of communication paths.

s General purpose message-passing library:
Wecently, many message-passing libraries have been
develuped., suel as l”'-"l"-'I[E]. and MPI!Tj. These 1i
braries have been]'.\'[I]'L[!ll onto many kinds of par-
allel machines awd enhancee the portability of dis-
tribmted KLIC svsten.

Shared memory:
In shared-memory machines and virtwal shared-
memory machines, shavsl wemory can be used fon
a high performance messape path,

¢ Machine-dependent communication path:
Moat parallel machines have their own mesaage
pasaing lihraries for waximiaing pacallel execition
performance. I these libraries have the [unctions
deseribed i 2,2.1, they can be used o Che machine
level distribution library for the digtribnted KTLIC
systen.

3 Experimental Implementation
of the Distributed KLIC Sys-
tem

Wi g twe different connunication paths for the ex-
porinental pnplementation of the distributed KLIC sys-
temn. We nsed PVM and shared memory for the commu-
nication patls,

3.1 Tmplementation Using PVM

We implemented the expevimental distribunted KLIC ays-
fesui wani PVM.[G] {This puplementation s called o PV
version of the distributed KLIC system.) PVM iz a mes-
snge pasaing libvary running on varions kinds of paeallel

machines, such s networked workstations, shared mem-
ory machines, and massively parallel machines.

PVM has library tontines which satisfy the functions
deseribed in 2,21, and we used about 10 of these library
routines.

The KLIC process is invoked by poecspoumn Mes-
sages are sent with pum_initsend, pym_pk, and pym_send.
Message are received with, prmonrecy and pum_uph.

3.2 TImplementation Using Shared Mem-
ory

We also implemented the experimental distributed KLIC
system on a shared memory waclme, {This ioplementa-
tien is called a Shared memory version of the distributed
KEIC systerr) Figure T shows implementation using
shaved memory.

Proc. 0]~ | Message Buffer 0
R I SO

w?‘ffﬂ“\\
Proc. 1 [roga i Message Buffer 1;
Mroc. 2 i Message Buffer 2!

Figure T: Shared memory version of the distributed
KLIC ayatem

Eacl KLIC process has its own message buffer on
shared wemory, This message buffer is used for receiv-
ing messages. KLIC processes are invoked by fork or
pronsproam (I PVM b2 availabile).

The message sender process exclusively writes the
message into the message buffer of the message receiver
process, Then the message receiver process exclusively
ieadd Bhe message from its own message buffer.

3.3 Volume of Source Code

The volume of the sonree code in machine level distribai-
tion library and in the total distributed KLIC systom is
listed in tadale L

ILPS™84: Design and Implementation of Parallel Logic Programming Systems b

Table 10 Vohune of sonree code in KLIC

PV
480 lines

Shared Memaory
G40 lines

Machine level
distribat o 1ih:.‘lr3,r
{Imtialization

[Messnge Passing)

{320 lines} (310 lines)

{150 lines) (180 lines)

10000 (C) + 3400 (KL1) lnes
~ 2100 lines

Seqitential core
KL level
distribulion library

The KL1 level disteibution library and machine level
distribution library ave written in £ The sequential core
is written in C and KLI1,

The souree code in the machine level distoionmen 1i-
brary is less than 3% of the total code for the KLIC
sygtemn. In this confignration, the distribmted KLIC sys-
tem i= easily parted to other architertures, !

4 Some Alternative Communica-
tion Methods

LThere are some allernative message communivation met -
ads for distrbuted KLIC system.

4.1

We can consider two strategies for teansferming struce-
tured it

* Lazy transfer mode for sending structured
data:
This strategy sends only oue level of the stractared
data. For cxample, in transferving list [1,2,3],
1 {car of the list) and poltess to [2,3]{cdr of
the list] are sent., [2,3](edr of the list) will be
sent when it s really necessary. This prevents
unnecessary transfer of elemeants of Che struetured
iladae, (Figure 8} This strategy is called [nzy trans-
fer e,

M o implem entation, we developed the PVM version of dis
tributed KEIC system hst, “Un port it g0 acshaeed memory version
of the distribneed KITC syatem takes ouly one porsosi-day.

Transfer Methods for Structured Data

&

KLIC process i KLIC process j
Figure 8 Lazy transfer mode for structured data

» Eager transfer mode for sending structured
data:
This strategy sends the whole data structure based
on the pointers to the structure. For example. in
transferving list [1,2,3], all the list structures are
sent. This rednees the number of messages trans-
ferred. {Figure 0} This strategy is called eagoer
transfer mode.

[N S,
1 1

E

pesemmme=d an = -

i ..;
) g,

3 3

KLIC process i KLIC process j
Figure % Eager transfer mode for structured data

4.2 Methods to Detect Message Arrival

T o distribmted KLIC system, the message receiver pro-
cess should be able to delect the arrival of a message
during computation, and receive the wessage to allow a
guick response,

There are two alternative methods,

* Sender interrupts receiver:
In this strategy, alter the wessage has been seut,
message sender process interrupts the message re-
ceiver process. This can be aclieved by, for ex-
ample, by :uandlns; a sig:ml tar the MESAALE TErRIVEr

H ILPS%: Design and Implementation of Parallel Togic Progranuming Systems

process. This strateey allows a quick response,
* Receiver checks message arrivals:

In this strategy, the message receiver process checks
for the arrival of messages. For example, if an in-
Lerval tineer is available, each KLIC process sets
the uterval tHoer and checks for the arrival of a
weadage synchronized with the timer intereapts.
The message receiver process s intervipted less
frequently during computation than with the first
1net fuod.

5 Evaluation of the Experimen-
tal Implementation

In this section. we evaloate e experimental inplemen-
Labioim.

5.1

5.1.1

Test Environments
Benchmark Programs

* Queen:
Connts the nomber of solutions to [3-queen prob-
lens,

s poly:

Palynominal Interpolation program. (ne process
is dedicatod to load disteilanbion

* penetic analysis:

P'rotein sequence analysis program using multiple
aligument. One process is dedicated 1o load distri-
bittic.

5.1.2 Hardware 'l‘!ullﬂgurntiun

Measurements were done ot a SpareCenter2000. Spare-
Coenter200in is asharedanenory nltiprocessor machine.
which has 40MHz SuperSpares as its CP'Us,

o PVM version of the distributed KLIC sys-
tem:
We invoked PVM on a SparcCentor2000 and oxe-
cide tlie distribated KLIC system. The PVM dace-
mon assigns KL provesses b pliysical processors,
amcl communications between KLIC procosses are
dlone vin the PVM daewmon.

Shared-memory version of the distributed
KLIC system:

We used the shared memoery of the SparcCenter2000
in just the same way as described in Section 3.2.
Invocation and KLIC processes are handled by PVM,

We measnured execution time (response time) of the
benchmark programs and the uember of messages trans-
ferred.

I the tables in this section, Time(sec) is the excen-
tion time of the benchmark program, Speed Up means an
mcrease i pacallel speed, and Messages is the number
of messages transferred.

For the measwrement of specd up, we cxeented the
benchmark programs with 1, 2, 4, and & processars. Tn
poly and genetic analysis programs, we used 2, 3. 5.
and ¥ processors. Becanse in these programs, oue process
is dedieated to only load distribution.

5.2 Evaluation of Experimental Imple-

mentations and Communication Strate-

gies

5.2.1 Transfer Methods of Structured Data

First, we compared the eager transfer wode and the lasy
teansfer mode for structured data, In this experiment,
the message sender process inlerrupls the wessage re-
ceiver process after sending each message.

Talde 2 shows the results of measurcments using the
PYM version of the distributed KLIC system, and Table
4 shows the results of measnrements using the shared-
memary version of the distributed KLIC system.

The share] memory version shows a better perfors
mance than the PVM version,

This is becanse. in the PYM version, doe to the
low performanee of the communication path, message
commiunication forms a bottleneck in the parallel per-
formanee,

The eager transfer mode shows a hetter performance
than the Iy transfer mode, especially in the PVM ver-
siom of the distiboted KLIC system.

In the eager transfer mode, the number of messages
ave significantly decreased compared with the lazy trans-
for noiecle. and the message commumication bottleneck is
sl

In general. if the appropriate messape transfor stral-
egy is selected, a reasonable increase in speed can be
achieved for the queen and poly prograns.

ILPS'94: Design and Implementation of Parallel Logic Programming Systems

Table: 2: Comparison of transfer mode{PVM version)

Table 3: Comparison of transfer woede{Shared Memory
VeTsion)

| E-i;j::l.'l' Leansfer made T
Processors 1 2 4 i Eager transfer mode

e Time [sech | 176 104 54 33 Processors 1 2 4]
Speed Up 1 160 1 326 | 5.9 ques Time (sec} | 171 | B4 11 23

Messnpges fl FW | 495 | &7 Speed lp 1 204 | 489 | T.43

Processors | 141 | 241 | 441 | B+1 Mezisngs 4] 330 405 560

paly Time {sec) | 100 (g 13 5 | Frocessars | 1+1 | 241 | 441 | B4l
Speed Up L 128 | 2,33 | 40 poly Time (sec] | 06 71 36 18

Messages | 414 | 727 | B8O | 97D Speed Up 1 1.35 | 267 | 5.33

Processors | 141 | 24+1 | 4+1 | 5+1 Megsages | 414 | TI0 | BGD | 0658

gonelic Tt (sec] G4 BE i a2 Processam | 141 | 241 441 | 841
il ysis Hpeed Up 1 073 1.0 1.23 g ki Torwe s [V T ELT 26
Mesanges 104 | 3754 | 3007 | 4153 analysia | Specd Up 1 000 | 1.61 | 2.42

Lazy transfer mode i Moessnges | 00 | 4016 | 4062 | 3953

Processors 1 z 4 i) Lazy transfer mode

queet Time (sec) | 183 | 103] 57 Processors 1 2 4]
Speed Up 1 1.78 | 265 | .21 queen Time (sec) | 174] BT 27

Messages [2004 | 4356 | 060 Speed Up L LO% | 348 | G.44

Provessors | 141 | 241 | 441 | 841 Muessapes 1] 2004 | 4366 | SO6

poly T (see} 132 105 T4 Gl Procesaom | 1+1 | 2+1 | 441 | 841
Speed Up 1 116 | 185 | 200 puly Time (sec) | 98 T2 36 20

|".']|'_'m:|.l:|‘!!t dIHE | 4057 | 5392 | BG3IS Speed Up 1 1.33 2.67 4.80

Processors | 141 | 241 | 4+1 | B+1 Messages | 4008 | 5022 | 5470 | 5727

genetie Thne (sec] (K] iR} T ik Processars | L4+1 | 241 | A+=] | 8=1
analysis | Spead Up 1 080 | 109 1.26 gemetic | Time [sec) T1 51 30 31

Messages | 10092 | G757 | 6770 | 6778 analysis | Speed Up 1 130 | L.82 | 220

Messages | 18541 | 6578 | GBTY | G700

lu the genetic analysis program. prablem division
i= alone very well, but message conmmunications between
snb-problenis are concenteated in a short poeriod, forming
a boitileneck iu parallel spoed.

This kind of program is not offective for distributed
KLIC system on a shared-memaory machine, hecase of-
fectively there is only one message cowtnunication path.
(In the PVM version of disiributed KLIC system, 1t 18
a single 'VM dacmen process. In the shared nemory
versien, il is one shared wemory and one wemory bus.)

We intensd to port the distributed KLIC systein and
the genetic anmalysie program to network machines
andd evaluate the performance there,

5.2.2 DMethods to Detect Message Arrival

As deseriliesd in Section 4.2, sending a signal after send-
g Lhee nessap e s s effeetive way Lo get a gquick response

=1

to the wessage. But it is disadvantageons to the mes-
sage receiver process becanse of the high cost to signal
landling.

The objective of this experiment is to examnine the
trade-off between quick message response and the cost
to signal handling.

Tn this excperiment, we ased the PVM version of the
distributed KLIC systew. which sends a signal message
after sending each messape.

In the shared memory version of the distribated KLIC
system, we don’t use a signal lo indicate messagze arival,
The message sender process directly accesses the inter-
rupt Bag of wessage receiver process, whicl s checked
every reduction cycle. Therefore, the message recoiver
process can detect message arrival withont overliead.

We then examined two alternatives.

® The message sender process sends a signal to the
message receiver process after sending each mes-
SALL.

s The message sender process does not sond a sig-
nal to the message receiver process. The message
teceiver prooess checks for the arrival of messages

periodically.

The vesnlts are Disted e Table 40 We wsed Ul cager
transfer mode for transferring strochured data,

Talile 4: Comparison of methods to detoct message ar-
rival

Sending a signal for all messages
Mrocessons 1 2 1 4 &
U Tire (gec) [176 | L | 54 3
Speed Up 1 LGD | 326 | .33
Processors | 141 | 251 | 441 | 841
proaly Time (sech | 100] 43 23
Speed Up 1 1.28 | 2.33 | 4.00
Processses | 1+1 | 241 | 441 | 81
genetic | Tine {see) | G4 B 62 a2 |
analysis | Speed Up i 003 | Lod | 123
Seuding no signal for any wisnage
Procesaams | 1| 2 4]
e Time (see) | 184 98 i 27
Speed Up |1 1.8G | 368 | 6.8
rocessurs | 141 | 241 | 441 | 8+1
pely Time [sec) 0% T 47 a0
Spreed T 1 132 1 211 | 4.05
Peocessors | LD [210 | 451 | #+1
penotic [Tiwe {me) i 2 Al 41
analysiz i Spmnd T 1 (181 | 1.21 | 166

T all henehmarks, semding no signal gives a betler
perfornice.

I onr benclunark programs. the problen is divided
wniloraly aud the size of each snbproblens iz large. There-
fore, it is not necessary to gel a guick response o the
message, bocause there are many goals to be computed
belore Lhe message response arrives.

But, there are sowe programs which need a quick
response to wessages. For example. there are some typi-
val stream-based KL1 programs. in which generator pro-
cesses anid consumer processes are linked by o streaim and
assipie] Loodifferent KLIC processes,

ILTS8: Design and Tmplementation of Pagallel Logic Programming Systems

Thus, selecting the method used to deteet messape
arvival can be effective as long as the charactor and be-
havior of the program are known.

6 Conclusion

We have deseribed key issucs in the portable inplemen-
tation of distributed KLIC svstem. Twe different con-
figurations of distributed KLIC system are actually jue-
plemented and evalnated,

We evalnaled the increase in parallel speed of the
distributed KLIC system for some benchmark progrems
andl application programs.

Our evaluation shows that the performance of dis-
tribnted KLIC systems wainly depeuds on the perfor-
maunce of the message path. But sene optimization of
the data transfer wethod can be offective i easing the
bottlencck cansed by a low performance message path.

We are now conrrently attempting to port the dis-
trilted KLIC system to various kinds of parallel archi-
tecture, inchading a virtual shared wewory machine and
a msssively parallel machine.

References

[1] K. Ueda aned T, Chikayama, “Design of the Keruel
Launguage for the Parallel Inferenee Machine,” The
Compaiter Jonrnal, Vol 33, NodG, ppA94 500, 1956,

['J] K. Wakajima. Y. Inamnra, No lebiyoshi K. Roko-

sawa, and T. Chikayama. “Distriboted Tinple-

wentation of KL1 on the Multi-PSI/V2ZT Proe.

Imternutional Conference on Logic Programming,

pp.436-431. 1989,

K. Hirata, B Yamamoto, A Imai. H. Kawai. K. Hi-
rano. T, Takagi. K. Taki. A, Nakase, and K. Ttokn-
sawa. “Parallel and Distribnted Implementation of
Coneurrent Logie Programming Language KL1Y
Proc. International Conference on Fifth Generaton
Computer Systems. ppA36-450, 1992,

[1] T. Chikaymwa, T. Fujise. aud D. Seckita, A
Portable and Efficient Implewmentation of KLL"
FPrac, Inlernational Symposiume an Progranereesy
Langiege Tnplementation and Logle Mrogramsing,
1994, Manuel Hermenegildo nmd Jean Penjam

LS04 Dezign and Implementation of Parallel Logic Programming Systews

16]

7l

vils,, Lecture Notes in Computer Science, #8384,
Springer-Verlag,

K. “ﬂhllﬁJLﬁ'IL. .A NH.L'GHHE!‘. ELIHI. T C!Iikﬂrﬂ.l"i’L “niﬁr
tributed Memory Inplementation of KLIC,” Work-
shap on Pavallel Logic Programmang and ifs Fro-
gruranivy Enavonments pp, 151 162, 1984, Univer-
sity of Oregon. CIS-TT-54-04,

A, Grast. A Begoelin, 1. Dongarea, W, Jiang,
1. Manchek, and V. Sunederam, PVAM 3 USERCS
GUIDE AND REFERENCE MANUAL, TM-
12187, Oak Ridge National Laboratory, Tennesser,
1904,

Lo J. Donparra, IL, Hempel, A, J. G, Hey, and D, W,
Wonlker, A proposal for A wserlevel, wessage pass-
ing interface in a distrilmited meiery environment
Technical Report TM-12231. Oak Ridge National
I..‘llmrnlnr:,', Fﬂhrum‘y 1903.

(=]

