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Abstract

EUODHILOS is a general-purpose reasoning assistant system which allows
users to interactively define a logic and to construct proofs on the defined logic.
Users get supports for specifying syntactic structures of a logic so that they can
use the expressions that are familiar and easy to recognize. The logical struc.
ture is specified as a derivation system that consists of combination of axioms,
inference rules, and rewriting rules. These rules are represented in tree form so
that they are shown in a natural style and thus easy to recognize. A proof is
displayed in tree form as well. The users can manipulate proofs directly on one
or more windows where they are displayed. The window gives supports to the
users constructing proofs in quite flexible ways. The users arc allowed to mix
both forward and backward derivations following to the way they think. Such a
proof-assisting window is called a sheet of thaught in EUODHILOS.

This document is intended to be a guidebook to EUODIILOS system for
beginners. Most essential and important features of the system are described.

EUODHILOS runs on PSI(Personal Sequential Inference mnachine} with SIM-
POS operating system.

Key words: Reasoning assistant system, Generic system, Logic specifica-
tion, Froof construction, DCG, Parser, Unparser, Interactive System
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1 Introduction

EUODHILOS is a general-purpose (or logic-independent ) reasoning assistant system which
interactively helps us users with reasoning on various number of logics. We have two slages
of reasoning on EUODHILOS. In the first stage we define the logic we are going to deal with
in the system. Then we move to the reasoning {or proving) stage where we prove theorems,
define derived rules, and so on.

A logic in EUODHILOS is specified by describing langnage and derivation systems.
The language system gives the specification for the allowable expressions such as terms,
tormulas and everything that we will use in the logic. The syntaxes of the expressions
are given by using DCG(Definite Clause Grammar|Pereira 80]) augmented with constructor
declarations[Ohashi 90]. The derivation system gives us the means to describe how to create
a new statemuent out of the old ones by specifying the creation mechanism as rules that are
allowed in the world where we are reasoning on. Since a theory and a logic are identical
in EUODHILOS, we define all the rules in the intended theory as a derivation system. Ii
consists of three parts: axioms, inference rules and rewriting rules. Axioms are logical ex-
pressions that arc considered to postulates(or assumptions supposed to be true in advance)
for reasoning. Each axiom may have an optional name if the user thinks that it is more
convenient to use the name rather than the expression itself. Inference and rewriting rules
are represented in the Natural Deduction[Prawitz 65]-style. An inference rule consists of
three parts; a premise or premises of the rule, which may have optional assumption(s), the
conclusion of the rule, and optional side conditions. We can apply the inference rule when-
ever we have the suine number of staternents which inatches the premise(s) part of the rule
and the side conditions, il given, are satisfied. A rewriting rule consists of two parts; upper
and lower expressions. A rewriting rule indicates that the upper and lower eXpressions are
equivalent so that we may rewrite an expression having a subexpression matching to either
one of the expressions specified in the rule by substituting the expression corresponding to
the other one in the rule as the rule is applied. Every rule is supposed to have its name for
reference.

Once a logic specification has been ended, we move (o the stage of proving theorems and
constructing derived rules of the logic on “sheets of thought”. A sheet of thought helps us
with building up proof fragments® and giving justifications to the theorems and lemmas.
We can put assumptions, axioms, or theorems; derive new results by applying rules; and
connect two proof Lrees on a sheet of thought. I'he construction of proofs or partial proofs
goes 1n a tree form so that we can easily see the natural proof structure. Unlike ordinary
proof editors, we arc allowed both forward and backward derivations on a sheet of thought.
The forward derivation is a derivation which derives a conclusion from premises by applying
a rule. T'he backward derivation, on the other hand, is the derivation which derives one or
more premises from a conclusion. Two proof fragments can be combined inte a big one by
connecting an assumption of one of the fragments aud the root {or the conelusion) of another
fragment if the two cxpressions are unifiable. In this way, we are able to make a hig proal
out of assumptions and axioms put on the sheets of thought.

'The name EUOQDIILOS is an acronym coming after the sentence ‘Every universe of diseourse has ibs
logical structure.” by 8. K. Langer[Langer 23] and is supposed to be pronounced “you-oh-dee-loss ™.
“We also use the word “proaf fragments” for partially constructed prool trees,



It is a tedious job to build up a working envirenment for new logics on which we want
to do some experiments. We are able to build up such an environment fairly quickly on
EUODHILOS. Another advantage of EUODHILOS lies on developing a new logic itsell.
Since the definitions of syntax, rules, axioms are allowed to be changed freely, EUODHILOS
can be a good platform for developing logics from the beginning.

We have so far experimented with defining and making proofs for a number of logics
({Sawamnura 91b], [Sawamura 93], [Ohtani 93]). Among them are classical first-order logic,
higher-order logic, propositional modal logic, intensional logic, Martin-Lof's intuitionistic
theory, Hoare logic, general logic, elementary category theory, relevant logic, and so on.

This is an introductory gnide to EUQDHILOS system for those who have not used it
before, We learn how to initiate the system, create a logic, define a language and derivation
systems for it, and build up theorems in the defined logic. What arc explained in this article
are not comprehensive. However the reader will be able to learn the most important and
useful features of EUTODHILOS from this article.

The following sections are organized as follows. In Section 2, we will take up quite a
simple logic as an example and see how a logic is defined on EUODHILOS and how a simple
theorem is constructed. This short experience will be good enough for the reader to capture
the rough idea of what the reasoning stvle on EUQDHILOS is like.

Iu the following sections, we will see some other useful features of EUODHILOS such as
how to define and use special symbols that are familiar with on papers but not appears on
standard keyboards, how to make up a complete syntax description, how to construct proofs
m a more sophisticated way, and so forth, In Section 3, we will see how the process of reason-
ing goes on EUODHILOS. One of the fundamental thoughts in designing EUODHILOS is
that human reasonings proceed only through trial and error. Thus EUODHILOS is designed
as flexibie as possible in the interaction with users as well as modifying the definition data
of logics.

We have two ways of creating a logic, one from scratch and the other by copying some
of the data from a logic already defined. The former has been shown in Section 2. Section 4
explains the latter. We need to specify which data of the old logic to be copied to the new
one. We usually use special symbols, especially some of the logical connectives, in a logic.
Section 5 shows how to create a font for special symbols and how to use them in a specific
logic. In Section 6, we learn how to specify syntax of expressions used in the logic. This
feature allows us to use expressions in the form we want to use. Sections 7 and 8 show
us how to give the derivation system of the logic we are dealing with. Rules are given in
tree form and axioms in a list of names and expressions. The proof editing facilities are
explained in Section 9. We start the proof procedure by putting assumptions, axioms, and
theorems on a sheet of thought. Then we make them grow by applying rules and connecting
proof fragments. A sheet of thought proving environment gives us the means of constructing
proof fragments in a flexible way so that eventually the intended results would be proved
quite easily. We have an appendix that shows us some of the samples of logics defined on

EUODHILOS. These will help us feel potential usefulness of EUODHILOS,



2 Getting Started

It would be a good experience for beginners to take a simple example and see how EUQD-
HIL.OS works in order to get a rough idea, This section is written for this purpose. The
logic treated in this section is @ propositional logic which has an implication as the only
logical connective, which has only two inference rules; implication introduction and impli-
cation elimination. We will write the syntax of the logic, define the two inference rules, and
construct a theorem of the logic.

This section is organized as follows. Section 2.1 shows how to initiate the system. In
Section 2.2, we see how to create a new logic and give it a name. We can terminate the
system whenever we want to. Section 2.3 shows us how to do it. We must be very careful
when we terminate the system, because some data we have defined may be disappeared
as the system is terminating. In Section 2.4, we have a description how to activate and
manipulate a logic. Section 2.5 describes about the functions menu of a logic. We can show
ar maodify various kinds of data of the logic through this menu. In Section 2.6 and Section
2.7 the ways of defining the syntax and inference rules are shown respectively. Finally, in
Section 2.8, we will learn how to construct and manipulate proofs on a sheet of thought.

2.1 Starting EUODHILOS

We suppose EUODHILOS is properly installed® so that the “EVODHILOS” item appears in
the system menu. We will not mention here how to install the system. For installation, see
Lhe relerence manual([Minami 92]).

[Evparts] [Medim Systems] Fr et
dabugger procass :

TP LE window
flla TCPIP=nat
librarian octhera
ahl 1 logauk
spoalar [ mbart ]
patterA aditer

SYSTEM MENU

Figure 1: Svstem Menu

*EVODHILOS runs on PSI with SIMPOS operating system.



We will get the systein mcnu when we have logged in, and also whenever we give a double
right clicks(i.e. the clicking of the right mouse button consecutively twice), The double right
clicks is reserved for this purpose on PSI. The system menu looks like as shown in Figure 1.

EUQDHILOS will be initialized when we select the “EUODHILOS” item® We have to
wait for a while if it is the first initialization of EUODIILOS after the operating system gets
started, because the objects defined in EUODHILOS must be loaded in the first initialization.

Now we have the logic menu of EUODHILOS, which looks like as in Figure 2.

LOGIC

X new XX

X% font_editor %%
¥¥ calculator *%

% exit xx
Hoare_loagic
Martin_Lofs_tupe_theory
category_theory
dunamic_logic
first_order_logic
general_legic
halting_problem
hardware_wverification
higher_order_logic
imply_calc
inductive_proof
intensional _logic
logic_of_knowledge
mocking_bird_puzzle
modal _leaic

natural _deduction
predicate_logic
relevant_arithmetic
relevant_logic_Rimp

Figure 2: Logic Menu

T'he first four itemns represent the general functions whereas the rest are the list of the log
ics defined and slored in the system. The first item “#* new =" of the menu is for creating
a new logic. See the following Section 2.2 for details. The second item “** font_editor **"
is for making new symbols. The standard font editor of SIMPOS will be invoked when we
select Lhis item. We can define the new symbaols which we want to use in our logics. The
third itemn “=* calculator *#" is for opening up a Boolean calculator, which is a tool for
checking the validity of propositional formulas in the ordinary (i.e. Boolean) logic. The

TFor selecting a menu item, move the mouse cursor on the item so that a rectengle which surrounds the
itemn appears, then click any mouse bution we want.



fourth one “#* exit *+" is for terminating EUODHILOS. All the EUQDHILOS windows
will be closed as we select this item. So, we have to be very careful when we select this item
so that we will not lose data which should have been saved. The rest items are the names of
the logics already defined. They are sorted in the lexicographical order. The logic menu is a
scroll window so that we can see other logics which are not displayed in the initial menu by
scrolling the window. For handling an old logic, select the name of the logic, Then we will
get the manipulation menu, which is deseribed in Section 2.4 at page 7.

2.2 Creating a new Logic

We will create a logic as a new one for our logic. Select the “** new **" jtem of the logic
menu. We will get the prompting window for inputting the name of the logic. Let's lype
“example” as the name of our logic.

theary_name>Examplel]

Figure 3: Tnputting the theory/logic name

The new logic named “example” will be created, and be shown in the logic menu. Then
the logic is activated and we get the functions menu of the logic. See Section 2.4 for the
proceeding steps.

2.3 Closing EUODHILOS

Some system has a poor user interface so that we have a trouble finding a way to quit it.
In EUODHILOS it is quite easy to find how. Clicking the “s* exit =*” item in the logic
menu(Figure 2, page 6),° is all we have to do to terminate EUQODHILOS. Then all the
windows used in the session are closed and the system terminates.

2.4 Manipulating a Logic

When we select a specific logic, we will get the menu for selecting what to do on this logic. We
will eall it the manipulation menu of the logic. The window in Figure 4 is the manipulation
menu of the logic Yexample”.

The “information” ilem is for displaying information about the logic and also some
remarks, if we have given, for the logic. See the reference manual ([Minami 92]) for detail.
The “activate” ilem, which we are going to click, is for displaying the functions menu of
the logic and getling into the work on the logic. The “rename” item is for changing the

51f the menu is under some other windaw(s), then give a left click anywhere on the menu, so that the
target menu will make itself raise up.



example

information
activate
rename
copy
delete

Figure 4: Manipulation Menu of a Logic

name of the logic. The “copy” item is for creating a new logic by copying some or all of the
data of an old logic. The “delete” item is for deleting all the data of the logic.

2.5 Functions Menu of a Logic

Now suppose we select the “activate” item of the manipulation menu. We have the func-
tions menu for the logic as shown in Figure 5.

INFORMATION
SOFT_KEYBOARD
SYNTAX
INFERENCE_RULE
REWRITING_RULE
AXIOM
PROVER
DERIVED_RULE
THEOREM
PROOF
¥% EXIT *x%

Figure 5: Functions Menu of a Logic

Here again the “INFORMATION" item appears in the menu. It has the same function as
the “information” item in the manipulation menu of the logic. See Section 2.4 for brief
description of this item. The “SOFTKEYBUARD" item is for defining and displaying the key
assignment of symbols used in the logic. We can use special symbols in the expressions of the
logic as far as they arc alrcady defined and assigned onto some keys. Symbhols are defined with

8



font editor and their assignments are done by this itemn. The delail is explained in Section 5.
The “SYNTAX" item is for defining the syntactic structure for the expressions, e.g. formula,
term, and so on which will be used in the logic. We are supposed to define the syntax first
because we can define axioms and rules only after specifying what sort of expressions will
be used in the logic. The “INFERENCE RULE”, “REWRITING RULE". and “AXIOM" items are for
defining inference rules, rewriting rules, and axioms respectively. The logical structure of the
logic is given by Lhese data. The “PROVER” item is for assigning theorem proving program
for the logic. We are supposed to give the file name where a theorem prover program for the
logic written in ESP is stored, the class name, and the method name. The “DERIVED_RULE"
and “THEOREM ilems are for displaying the list of derived rules and theorems. respectively,
We will get these kinds of data on sheets of thought by derivations. They will be saved to bic
used in the later derivations, Theorems can he used exactly the same way as axioms whereas
derived rules as primitive rules. These data do not change or augment the derivation power
of the logic. However they will help us making large proofs shorter and easier to deal with.
The item “#+ EXIT **” is for terminating this menu, as it says.

2.6 Defining Syntax

We are going to define the syntax for the logic “example”. Figure 6 indicates the acinal
synlax definition window of the logic.

SYNTAX : example -
save make test structure print reshape exit

gormula --> formula, "=>", formula !
"""y formula, "3" !
meta_formula H
"ar-"z";

meta_formula —--»> "AY-"Z",

operator "=>";:left.

Figure i: Syntax Definition Window

The logic “example” has only one logical connective—implication. The syntax definition
consists of two parts, DCG part and constructor declaration part. The former part describes
how the expressions are constructed as strings. The lalter part deseribes the construclors,

i.e. operalors and predicate f[functional symbols, used in the first part. We need to designale



the constructor component in a compound expression, i.e. an expression composed of more
than two subcxpressions. For example, we read the expression “AAB” as conjunetion(A) of
“A" and “E". Thus, “A” is the constructor of conjunctive expressions,

The expressions given to the system are stored in its internal form which is a tree consist-
ing of the constructor as the root and other component(s) of the expression as its leaf( leaves).
This data is used for creating internal data of the tree form by the parser as well as by the
unparser as generating the external expressions from the internal forms. It will be used also
in the structure displaying of the expressions. See Section 6 and Scction 9.5.1 for structure
displaying facility. The parser and unparse will be generated when we finish the syntax
definition and select the “make” item.

The window in Figure 6 defines as follows. The syntax category (i.e. non-terminal )
“formula” has four kinds of forms; implicational formula, parcnthesized formula, meta for-
mula, and either of the characters from “a” to “z”. Meta formula is represented by either
one of the characters from “A” to “Z". The prefix “meta_” of the syntactic category name
indicate that it is for defining meta-variables. A meta variable is a place holder where we
can substitute any cxpressions belong to the syntactic category that the meta-variable has,
The last line is the constructor description. Here we have defined “=>" as an operator which
is left associative.

What follows are descriptions of items in the functions menu for syntax definition win-
dows. They form a line at the top row of the window.

save: Save the syntax data. It does not gencrate the parser nor the unparser,

make: Create the parser and the unparser from the syntax definition given on the
window. A parser interprets the given string as a logical expression and create
its internal represcnlation. An unparser creates a string from the internal
representation of a logical expression. A message is displayed if syntactically
wrong definition is given and the creation of the parser and the unparser fails.

test: Thisitem creates a testing window. We can give an expression and see whether
this one belongs to one of the syntax categories. [f it is acceptable all the
matching categories are shown. The detail description is explained in Section 6.

structure: Display the structure of the expression. The constructor of an expression will
be displayed higher then the other parts of the expression. This facility is
helpful in checking if the tree structure we have defined is the same to that
we want to define. See Figure 46{Page 32) for the actual image of structure
displaying.

print: Print the syntax rules to the standard laser printer of PSI (if it is available).
Please be patient. It will take a long time.

reshape: Change the size of the window.

exit: Terminate the syntax definition window.

10



2.7 Defining Inference Rules

The logic we are dealing with has 1o axioms nor rewriting rules. It has only two inference
rules—implication introduction and implication elimination.

For opening the window for defining inference rules, we are supposed to select the
“INFERENCE RULE" ifem in the functions menu of the logic (See Figure 5 at page 8). Then
we have a window which looks like as follows.

INFERENCE RULE:example
*% ney w*

w% gxit ww

Figure 7: Inference Rule Menu

The "** new #+7 item is for making a new rule, and the “s* exit **" for closing the
menu. We click the “#* ney #*" item to get a new inference rule window.
Now we have the window waiting for the definition as is shown in Figure 8

E:><‘:J‘t|£“ Ifl

TIEmS

¥x Hide conditon =z
*x* Define xx

Figure 8: Inference Rule Window

From top to bottom the window region is devided into four areas. The top one is the
icon displayiug area where we see seven icons. Next comes the name area where the name
of the rule is displa}ed Then comes the rule bady displaying and editing area. The bottom
area is for giving and displaying the side conditions for the rule. The rule can he applied
only if all the side conditions are satisfied.

Teons in the window show the following functions (from left to right).

> : Scroll the rule body region to the right.
<7 Seroll the rule body region to the left,

E ¢ Hesize the window.

11



%5 / ¥+ The pencil and the eraser icons indicate the writing and deleting mode
respectively. If we give a middle click on this icon then it will change itself
to the ather mode. We are sure to change to the deleting mode before we
erase a formula.

Eﬁ / E;! : The copy and move icons indicate the copying and moving mode respec-
tively. Il we give a click on this icon then it changes to the other mode.

E’fj ¢ Save the current definition and make the rule be effective.
=¥ : Exit from the editor. The inference rule window will disappear.

The way how to input the name and body parts of the rule will be shown in the next
subsection.

2.7.1 HRule Name

The rule name field is editable. Give a double left click(or two) while the mouse cursor is
in the name field. Then we will get a window, shown in Figure 9, waiting for inputting the
rule name.

INPUT ' ]
rule name>=>T f

Figure 9: Rule Name Prompting

Type the name of the rule we are going to define. In the figure above “=>I" is typed as
the name. Type the return key at the end of the name. Then the new rule name we have
Just typed will be displayed in the rule name field of the inference rule window. Tt looks as
in Figure 10.

INFERENCE_RULE : exa
el ar e Tk

Tame : =1

¥¥ Side condiion ¥%
2% Define ==

Figure 10: New Rule Name Added in the Inference Rule Menu



2.7.2  Inputting the Inference Rule Body

llere we are going to input the body part of the rule named “=xI"(lmplication introduction
rule) and finish the definition of the inference rule. The procedure of inputting is similar to
that of inputting the name of the rule.
The rule looks like as this.
4]

B
A=>B

It has one premise formula “B” which has an assumption “A”. The conclusion of the rule
is “A=>B". This rule says that if we have a prool of “B" from the assumption “A” then we
can conclude that “A=>B" holds. We can input these three formulas in any order. In this
example we will input the assumption “A” first, then “B”, and “A=>§" finally.

Give a left click in the upper left part of the rule body region. A small box appears at
the top-left corner of the rule-body region, which indicates where the assumption expression
is supposed to be inserted. (See Figure 11.)

INFERENCE_RULE :exar
0> O 28

Name S =5

a

% Side econditon %%
¥ Define xx

Figure 11: Defining an Assumption Part of the Inference Rule

Give a left double clicks in the region. Then we will get the window for inputting the
expression for the box. Type the assumption “A* as in Figure 12. (And be sure to iype the
return key to terminate the input.)

INPUT
expression>h

Figure 12: Inputting the Expression “A”

13



The expression “A" is displayed as the assumption for the premise that has not been
typed yvet. Figure 13 shows the current situation.

INFERENCE_RULE :exar

¥k Side conditon =z
¥ Define %%

Figure 13: Inference Rule having an Assumption

Next we are going to type the premise part of the rule. Let’s give a left click in the
center-left part of the body region just under the assumption “A”. This time, again, the
prompting window appears and waits for the premise expression “E" to be typed. When we
have finished inputting the premise “B” the window looks as is shown in Figure 14.

< T2 Ta
(A1

B

% Side conditon xx
xk Dafine *xx

Figure 14: Inference Rule having an Assumption and a Premise

Finally we move to the conclusion formula of the rule. Give a left click in the lower
left part where the conclusion of the rule would be inserted. Again the prompting window
appears. Type the conclusion expression “A=>B" of the rule in the prompting window. The
conclusion part is displayed on the rule definition window as the prompting window closes.
We have completed the body part of the rule (Figure 15).

As we have finished the definition of the inference rule “=3I7, we have to save the defi-
nition so that the rule can be used in proofs. Give a middle click on the B " jcon. We
will get the message “saved” at the place where the mouse cursor is shown while the data
are being saved. The name of the rule will be added to the menu of inference rules.

14



B@aﬁ%gw

name: s>
LAl
L]

H

A=>B

*¥ Side conditon xx
*¥ Define ==

I'igure 15 Inference Rule(Implication Introduction)

Click next the “#* new *#" item of the menu again for the next rule “=>E". The expres-
sion of the rule looks like this.
A A=>B
B

Input the name of the rule and one of the premise “A” in the same way as we did in
defining the implication introduction rule. Now we are going to input the second premise of
the rule. Give a left click at the place just right of the first premise “A”. We will get the
following rule window (Figure 16).

O Z %0 ™

name s =>E

Al

% Side conditon xx
% Define xx

Figure 16: The Second Premise of an Inference Rule

Apgain, give the left double clicks and input the second premise “A=>B", then input the
conclusion “B". Be sure to save the definition data of the rule. Now we have finished of
defining the implication elimination rule (Figure 17).



INFERENCE_RULE t exar

D<M %2 ¥

name; =>C

A a==g

*% Side conditon =¥
*¥x Define xk

Figure 17: Inference Rule(lmplication Elimination)

This concludes the definition of inference rules. We now have defined the logical structure
of “example”. So it’s time to move to the prool-making phase on sheets of thought.

2.8 Proving on a Sheet of Thought

Sheet of thought helps us users with constructing proof trees on the logic that we are dealing
with. We may say that it is a proof editing environment or a proof editor. A proving
procedure begins by putting some assumptions® and/or axioms (or theorems), These are
the origins of more complicated proofs on the sheets of thought. Then we make them bigger
by applying some rules and connecting some of the partially coustructed proofs (i.e. proof
fragment). In this way, we would have final results that eventually be stored as either
theorems or derived rules. Onee stored theorems can be used just like axioms and derived
rules as rules.

Now let’s get back to the functions menu (Figure 5, page 8) of the logic “example”.
Select the "PROOF” item of the menu. Then the proof manipulation menu looked like the
following will appear.

PROOF _NAME: example
¥ [ew ¥
¥ p¥it ®x%
%k gork ==

Figure 18: Proof Manipulation Menu

The “+* new **" item 1s for creating a new sheet of thought, the “#* exit *#" item
for closing, and the “** work *#” item for opening up the work arca where proof fragments
constructed in sheets of thought may be stored.

“We can think an a-ssumptions“as a goal, since we are allowed to apply a rule backward on it at any time,
and thus it is treated a goal in this case.
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A sample figure of sheet of thought is shown ju Figure 19.

_SHEET_OF_THOUGHT :predicate_logic
=
& U D<A T{0Tg6g
1 4
[Aa)] [Yx~A{x>1
43T {1} ) 2 —(UE {4} } 5
IxA{x) [~TxA{x) ] ~O{al [A{alX]
(~E{1,2}) 3 —{(~E{4,5})
L [dxA{x)] Nl
— =T {2} ) (JEL3, 4} )
~A{a) 1
—(PI {2} (~I{4})
U {~A{x)) ~{HAxa(x))
(oI {} ) (= {3
~qAxA (x) DUz~ (x) B~ () o~Ox0 ()

sheo 11— SEREEEEEEE—

Figure 19: Sheet of Thought

The icons lined up on a sheet of thought have the following meanings.

[I) :

Scroll the window to right for proof tree.
Seroll the window to left for proof tree.

Scroll the window Lo upward for proofl trec.
Scroll the window to downward for proof tree.
Resize the window.

Writing/Deleting mode indication. Give a middle click to change the maode.
These icons appear when we have a marker for inserting or deleting a proof
sublree or a formula on a sheet, of thought.

Forward /backward derivation mode. The icans indicate how the derivations £o.
In the forward derivation mode we will get the conclusion will be derived from
the given premise(s). In the backward derivation mode the premise(s) will be got
from the conclnsion in the derivation.

Copy/move a proof tree or an expression from right click position to the place
where the left click was given. The original tree or expression will be erased as
the copy/move operation is applied in the move mode.
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: Close the sheet after saving the proof data.

w¥ : Close the sheet. We will have the conlirmation menu for the proof data whether
they should be saved or not{See Section 9).

Give the middle click on the icon in order to select the item. The © ﬁ " and the “ ¥ "
icons as well as the © i‘.‘IE " and “B% " icons indicate modes. When we select the ﬁ " icon
then the mode changes from writing to erasing, and the icon changes to the “ 3" icon.
The situation is exactly the same on copying and moving modes.

Let us get back and try to prove the theorem “(A => (A == B)} == (4 => B)". First
we put the two assumptions “A=>(A=>B)" and "A" on the sheet.

Select “#* new **” item of the proof manipulation menu and let a sheet of thought open.
Give a left click on the sheet. Then a box marker appears in the lower left corner of the
sheet. Next give a left double clicks. The selection menu appears (Figure 20).

COMMAND N
input_assumption

input_axiom/theorem
cancel

Figure 20: Input Assumption Menu

Select the “input_assumption” ilem so that we have the prompting window (Figure 21).

THPUT
input=>A=>(A=>B)

Figure 21: Input Assumption

The expression we gave is inserted to the place where the box marker was displayed.

G OO g8 -

1
[A==> (A=>B}]

Figure 22; Assumplion is Displayed

The assumption expression is surrounded by brackets *[7 and “]” so that it is easy to
recoguize and the assumption identification number is assigned to differentiate one from the
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others. Now let us give an another left click on the sheet at the right of the assumption
mentioned above. When we get the box marker, we give left double clicks to the sheet and
type the next assumption A", We now have the sheet shown in Figure 23.

SHEET_OF_THOUGHT :example

$ U DO

1 2

[A=={A==B}]1 [A]

Figure 23 Two assumptions are displayed.

Next we apply the implication elimination rule. Give right clicks on both assumptians,
then the assumptions are highlighted with being surrounded by black boxes (Figure 24).

SHEET_OF _THOUGHT :example

ARVA=SELat Sl o Rl

1 2
(A== (A==8) 1L A]]

Figure 24: Two assumptions are highlighted.

Give left double clicks and get the application selection menu {Figure 25).

INFERENCE _RULE REWRITING_RULE DERIVED_RULE COMMAND
=xE ==ravarse_applicat jon=- enneel
=»1 disokargn

anarchoruledinput)
search_rula
==gall prover=-

igure 23 Application selection menu




Select the “=>E” item. Then the selected rule will be applied to the highlighted formulas
on the shect and the conclusion will be derived. The result is displayed as a tree as is shown
in Figure 26. The pair of numbers *{1,2}" at the right of the rule name indicates that the
conclusion “A=>B" of this application depends on assumptions 1 and 2.

SHEET_OF _THOUGHT : example

0 OB

i 2
[A=>(A=>H) ] [A]
{(==E{1,2}}

A==H

"

Figure 26: The rule “=>E" is applied.

Next we wonld like to derive “B” by applying the rule “=>E” again to “A=>B" and “A".
Since we want to use the assumption “A” as the saine one as that having the assumption
number 2, we need to copy the assumption “A” wilh Lhe assumption ID 2 to the place next
to the formula “A=>R",

Give a right click on the assumption “A™ aud mark it with a black box. Give a left click
next to the derived formula “A=>B" on the right and get a white box marker. The copy icon
must be displayed. If not, give a middle click on the move icon and get it. Give leflt double
clicks in the proof area. We will get the sheet in Figure 27.

G Gr_’;}(f_l@l—uﬂg vy

i 2
[A==>(A=>H)1 (Al
(=>E{Lly2}) 2
f==8 Al

Figure 27: Assumption “A7 is copied.

We are going Lo apply the inference rule “=>E” again. Select the two formulas “A=>B" and
“[A]" by giving right clicks. Do not worry about that all the left proof tree is surrounded
by a black box. It is equivalent to sclect the root formulas. Again, give left double clicks
and select the rule “=>E". Figure 28 shows where we are,
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~SHEET_OF _THOUGHT : examp1e

S YeTal SLA ST

i 2

[A=> (A=>A)] [al
(==E{1,2}} 2
A=>H &l
——{=2FE{t, 2} )

Shoet_1 R

Figure 28: The rule “=>E" is applied.

Now we apply “=>I", which has an discharging assumption. Select the formula “B” with
a right click. Then give a middle click on the discharging assumption “A”. Select either one
of two occurrences of “A™. The selected assumption is shown with underline.

SHEET_OF _THOUGHT : example

£ < D{08E R o

Figure 28: All the proof fragment is selected.

Here, we give double clicks on the sheet and select the inference rule “=>I" in menu.

SHEET_OF _THOUGHT : example

AN T C

i 2

[A== {A=>8% 1 [l
——{=>E {1, 2} } 2
Fi=p [al
(==E{1,2}]

1]

—f==l 11}

Asz=B

Figure 30 The rule “=>1I" is applied.




We apply the implication introduclion rule one more time, and discharge the assumption
numbered 1. We now have completed proving the theorem “A=>(A=>B)=>(A=>B)".

SHEET_OF _THOUGHT : example
0 OO T o
1t e

A== {A=>A)1 [&)]
—{==E{1,2}} 2
A=>B [&]
e (=2E{l, 2} )

B
—{==1{1}}
a=»>H
(=14}
A=>(A=>B)=> (A=>B)

T

Figure 31: Proof completed.

The conclusion has no depending assumptions now, So it is a theorem of the logic. Let
us save the result as a new theorem. Give a left click on the conclusion of the proof. Then
a white box marker surrounding the proof tree appears. Give left double clicks. Then the
following command menu will appear.

COMMAND

{save_as_theorem/derived_rula|
save_as_proof_fragment
instantiate
show_structure
cancel

Figure 32: Select the saving item

Select the “save as theorem/derived_rule” item in the menu. This is the item for
saving the selected proof fragment as a theorem or a derived rule. If the conclusion of the
fragment has at least one assumption then it is saved as a derived rule. Otherwise, i.c. when
it has no assumptions that depend on, it is saved as a theorem. In this case, the result is
saved as a theorem. Here, the following input menu appears.

1

| INPUT 1

i theorem name>contraction |

Figure 33: Input the theorem name.
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As we type a name, say “contractien”, the theorem is saved which has the given name.
If we just type the return key without specifying the name, the theorem will be saved as a
theorem which has no name. In this casc, we have to answer to the confirmmalion window as
1s shown in Figure 34.

sauve with no name T

ok| cancel

Figure 34: Confirmation of the theorem name for saving,

T'he proof fragment disappears when it is saved as a theorem. We see the body of the
theorem, that is the conclusion of the proof fragment of the theorem, and its name also, if
we have given.

SHEET_OF _THOUGHT : examp1

O 0D TG o

contraction
A=> (Am>0) =» (A=>0)

Figure 35: The thevrem looks like this after it is saved.

We would like to close the sheet of thought. Give a middle elick on "'E::T,_f] " icon, Then
the window will be closed after saving the proof data into the working storage arca. Sec
Section 9 for detail about sheet of thought. Lel us exit from the logic now. Select the
“#* exit *+7 item of the top menu of the logic “example”. If the window is under one or
other windows then give a left click at a point on the top menu. Then it will come as the
most front window in the screen, and we can select the item. We will have the confirmation
window. Select “yes”. Then all the windows related to the logic disappears and only the
logic menu appears in front of us.

It is time to exit from EUODIILOS. Select the “#* exit *x" item of the logic menu.
Now all the windows will be disappeared, and the execution of the system will terminate.
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3 Overview of EUODHILOS

In the previous section, we have seen briefly how to use EUODHILOS. In the following
sections we will define a bigger logic and build up some simple proofs by using more functions

of EUODHILOS.
The process of using EUODHILOS can be illustrated in the following figure.

Langunage

Symbol  Syntax

Derivation

Axiom Inference Rule Rewriting Rule

Proof

Sheet of Thought

Figure 36: The process of using EUODHILOS

There are two phases in using EUODHILOS: defining a logic and constructing proofs.
A logic in EUODHILOS consists of language and derivation systems. A language system
describes what characters are used in the logic and how to combine them and construct
expressions used as predicates, terms, and so forth. We can use all the standard characters
assigned on the keyboard for this purpose, of course. However in most cases they are not
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sufficient enough. We would like to use more characters for readability of these expressions.
For example, for logical connectives it is better using “A”, “V", “3” and “07 rather than
SANTONT, BT and f[]7. We can make such symbaols using the standard font editor
of SIMPOS and use them by assigning them on keys by the software keyboard facility
given by EUODHILOS. Section 5 describes how to carry these out. We give a syntax
description to the system and specify how to combine the characlers and make reasonable
expressions. Syntax description in EUODHILOS has two parts. One is the syntax definition
based on the DCG (Definite Clause Grammar)[Pereira 0] notation with some augmentation
such as “or” notation, character interval specification, and so on. The other part in syntax
description which is unique in EUODHILOS is the constructor declaration. This part defines
constructors that are suppose lo be the main operations when expressions are combined.
Take, for example, the expression “A A B". This expression consists of three characters:
FAT, PAT, and “B”. As we see this expression we naturally interpret this as the “and” (or
conjunctive)-expression, which has the operator “A", which takes the two sub-expressions
“A" and “B" as arguments. W call the operator “A™ the constructor of the expression. For
any combination which has more than one subexpressions defined in the syntax definition
part, the system supposes il has a construetor declared in the constructor definition part.
All the windows including the syntax definition window that are uscd for inputting character
strings have the Pmacs” interface. So, we can easily scroll the window, position the cursor,
yank texts, and do other editings.

We move to the derivation system definition when we have finished the language system
defimition. Derivation system consists of three parts: infercuce rules. rewriting rules, and
axioms. We just call “rules” when we refer both inference and rewriting rules. EUODHILOS
has two types of rules based ou our observation that we humans use both types of rules in
our reasonings. We have an explanation in detail in Section 7.

We will move to the construction of proofs when we have defined the logic. A sheet of
thought is a field in which we can rcason by putting assumptions and axivms, applying new
rules, compasing a larger proof from smaller fragments, and so an. We can apply rules both
forward and backward on sheets of thought. We can even mix both of them il it is convenient
for us to do in order to get proofs. See Section 9 for detail.

It will probably happen that we find the logic we have defined lacks some rules, and it
is not sufficient enough for our purpose. In this case we can go back to the logic definition
phase and modify one or more rules, add rules, or even change the syntax description of the
theory. When finished we can go forward in the suspended proof. This kind of flexibility is
one of the most uselul and characteristic features of EUODHILOS.

4 Creating a Logic

A logic (or a theory) is the most elementary concept in EUODHILOS, A logic is the frame-
work of expressing the concepts and structure we are going to reason with. On EUODHILOS
we will create the name and some small data for the new logic at first. Next we will give
syntactic structure of the expressions used in the logic. Then we will give logical structure
of the logic by giving a number of inference rules, rewriting rules, and axioms. A new logic

"Pmacs is the Fmacs like editor installed in SIMPOS,
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will be defined in this way. It should occur that the logic we have needs some madification
as we find the logic does not meet our purpose or it is even wrong.

In this section, we will see how to create a new logic. We will call it *mylegic". We
have two ways to create a new logic. The first way is to create a logic by selecting the
“#* new **" item of the logic menu as we saw in Section 4. The other way is to create a
logic by copying some data of other logic. Suppose here that the logic menu of EUODHILOS
is displayed. The logic “example” that we defined in the previous section is displayed in the

MENU &5 111 Figurc 37,
LOGIC

¥¥ new X%

¥ font_editor *x%
%% calculator *%
£t exit (%
Hoare_logic
Martin_Lofs_type_theory
Freleg
categsory_theory
dynamic_logic
example
first_order_.logic
general _logic
kaltina nraklam

Figure 37: Logic Menu (part)

Let us make a new logic by copying the syntax data from the logic “example” and
madifying them. Select the “example” item of the logic menu first. We will get the following
menu { Figure 38).

information
activate
rename

delete

Figure 38 Copying a Logic

The “information” item is for showing several kinds of information on the logic such
as remarks, the date when the data are updated, and so on. The “activate” item is for
activating{opening) the logic. The “rename” and “delete” ilems are for renaming and
deleting the logic respectively. The “copy” itcmn is for copying the data of the logic and
making a new logic.

Let us select the “copy” item. We will get the following input window (Figure 39).
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INFUT
| copy example to>mylogic

Figure 39: Specifying the target logic name for copying.

We type “mylogic” for the name of the logic we are going to create. Then we will have
the copying items menu window shown in Figure 4(.

ITEMS TO BE COPIED

cancel

kay_assignment

axiom
rewritino_rule
derived_ rule

theorem

Figure 4(k: Ttems menu for copying logic data

Here the items which are defined in the logic are highlighted except the “derived_rule”
and “theorem” items. They are non-selected items as default. We need to choose them if
we want to copy these data to the new logic.

Let us copy the syntax data only in this example. Select "inferencerule” item and
change it from the highlighted item to the normal non-highlighted item so that it would
not be copied to the new logic. Select the item “OK” and wait for a while during the data
are copied. The name of the created logic is added to the logic menu. Select the name
“mylogic” and select the “activate” item. Then we will get the top menu of the logic.

Here we are going to modity the syntax of the logic *mylogic” and to define the first-order
classical logic. First, let us see how to define a language svstem in EUQDHILOS.

5 Special Symbols

Since FUODHILOS intends to help the user with his or her reasoning, it is one of the
important aspects to present easily recognizable expressions. In an ordinary logical system,
many symbols, especially logical symbols which have no corresponding keys on the standard
keyboard. Further, even if we have a key on the keyboard, it is not unusual that we want
something different symbols since we get used to them. Considering this observation on
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our preference on the way expressions are represented, to provide a {acility to use arbitrary
symbols in the expressions is one of the important features of EUQDHILOS.

EUODHILOS provides two facilities in order to let us use non-standard symbols. First
we can create new symbols by the font editor, which is provided as a built-in facility in
SIMPOS. Next we assign these special symbols we have defined on the software keyhoard.
The assignment to software keyboard varies from logic to logic. Thus we may assign only
those symbols that we want to use in the logic we are defining.

For ereating a new symbol, we select the “#* font_editor *+” itemin the logic menu(See
Figure 37). Then the pattern editor® will be invoked, and alterwards we are supposed to
load the font file and create a new symbol as a collection of dots. Figure 41 is a sample of
the image of the font editor. Since the font {ile of EUODHILOS already has a collection of
symbols, calling the font editor is needed only when we want to use a very special symbal
for the logic we are going to define.

" @ 3 a4 ® ¥ B & & & & & = & & & e w = = a = w ow v m oa P "hlte llni
............................. inverse souare
sy n o Font/File  Character
------- Draw Scale
S Draw Curwva Add
........... Draw Lino Swap
e Clear Reflect
e Mowve Box
............ Set Sample Delete
e Circle Cut
e oo width 13
boeal e | Height 18
C ;I ............ Bjas E

.....................................

......................................

...................................

Figure 41: Font editor

We need the software keyboard when we want to use some special symbols defined with
the font editor. Symbols can be assigned to the keys in the physical keyboard. Then we can
input the symbols by typing the corresponding keys. Select the “SOFT_KEYBOARD” itemn of
the top menu of the logic in order to invoke the software keyboard. Figure 42 shows how it
looks like.

SPlease refer to the PSI manual in order to know how to use the font editor in detail.
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SOF TWARE_KEYBOARD--COMMAND

exit assign
SOF TWARE_KEYBOARD
(8 EeEbn Emw - bhem

B EEEOEEEERr ] EEE
mooEunonononmcicEes
| SRR GGG N EEEE]
Co eI L A& e (=)

=N NEE IENElls

Figure 42: Software Keyboard

There are twa regions in this window. In the upper region we see two command items
“exit” and “assign”. The first one terminates the software kevboard, and the second
one change itself into the key-assignment mode (Fignre 43). We are in the key-assignment,
displaying mode. We can see some special symbols in the right part of the keys, and we can
see which key corresponds to what symbol.

We are going to assign some symbols to some keys in the actual keyboard. Select the
“assign” item in the softwarc keyboard. Then we will have another window of software
keyboard for assignments as is shown in Figure 43.

KEY_ASSIGN -- Sumbol Table :
o0 01 o2 03 o4 OF OF OV o8 DY OA OB OG0 OD OF OF

aasign >
release < oo e n B % b E F " H 1 il " L | | ‘0
save - 17— W =1 - - 1 " o 3 H n O e M E -
exdt o o2 X = = - r [l - =3 o i T z ] L) [ =

SOF TWARE_KEYBOARD
L8] [gEEwE [@EE0 S ()

EngongouoooeonEEiece
e R e 0T [8) AV
B e s PG G CL ) w=lie]s)
(7 LT =1 L 5 s 3]
L | [l ] (e @]

Figure 43: Software Keyhoard (Assignment Made)
The lower half displays how the keys are assigned whercas the upper lefl part displays

the functions and upper right part shows the symbols defined in the standard font file. We
can define or modify the symbels with font editor if we arc not satisfied with the symbols
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already defined, as has been explained before. However it is not recommendable to change
the shape of characters into completely different ones, because the symbol table is shared
with all the logics. So it is safe to define a new symbol in a new place rather than changing
one of the old characters defined already.

We go back to the explanation how we use the software keyboard and see how symbols
are assinged to keys. Give a left click on the “A" symbol in the symbol table. It will change
the key to be highlighted. Next we give another left click on the key where we wani to
assign. The key is also highlighted as is shown in Iigure 43. Then we select the “assign”
item in the menu area. New the assignment completes and the symbol is displayed on the
assigned key. In this way we have assigned the A" symbol on the numeral key “1” in the
ten-key area. Similarly we repeat and assign “v”, “2", *=" “¥" and “3". Finally seloct the
“save” item so that the current assignment will be in effect in the following phases. Now
all the assignments have completed. Select the “exit” item to get back to the display mode
of the keyboard. We will see the new symbols on the assigned keys.

Here let us see how other functions in the assignment keyboard work. The item “release”
is for releasing the assignment on a key. Give a click on a key which has an assigned symbol
on it. And select the “release” item. Then the assignment will be released. The four

BT

direction items “>", “<" %" and “v" are for scrolling the symbaol table.

6 Syntax Description

6.1 Syntax Editor

A syntax description window appears when we select the “SYNTAX" item in the functions
menu of the logic (Figure 5 at page 8). Figure 44 shows how it looks like. In the upper
part of the window we see function commands making a line. The lower part is the Pmacs
window region for inputting and editing the syntax description of the ]ugh: This is the
syniax definition for “mylogic”.

_SYNTAX : mylogic

save make test structure print reshape exit

p—

Formula =-> formula, "2, formuln
farmula, "A", formula
formula; “v¥"y formula
ety formula !

(", formula, ")}" |

meta_Fformula |

Tttty
meta_formula === "A"="2",

operator
Il_\‘ll:
"ATileft;
i lefi;
“rleft|f

Figure 44: Syntax for “mylogic”
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We select the “make” itern when we finish the syntax description. Then the description
is saved and the parser and unparser are generated, The parser converts an expression given
as a string of characters into the corresponding internal form. The unparser, on the other
hand, converts an internal expression into an external string form which is used Lo dizplay
the logical expression to the user.

The item “test” is a feature for chiccking up if the syntax description is good enough. To
describe the intended syntax looks fairly easy at first. But soon we will find it quite difficult
te write an appropriate one. If we go [urther, in the proof phase for example, it will be more
difficult to find what is or arc wrong. The “test™ function is quite uselul for finding the
mistakes in the syntax description. It is a testing facility in order to find syntax errors early
and with ease. The “test” window locks as is shown in Figure 43.

_suntax.Test : mylogic

=
formula, meta_formula ... =success,

Input an expression
>HAR

Input its syntax
=formula

fermula ... sucaess,

Input an sxprassion

i |

Figure 45: Test Window for Syntax Definition

The testing facility works as follows. First, input an expression which is to be tested.
Then, input a name of syntactic category(non-terminal). If the given expression belongs
to the given category the message “success” will be responded, otherwise we will have
“failure”. We may type ouly the return key as the syntactic category. Then if the expres-
sion belongs to at least onc of the categories defined in the syntax destriplion, the system
will show the list of the names of the categories thal accept the given expression, and show
also the resulting condition “success”.

The item “structure” displays the structure tree for acceptable expressions. The input
window appears and we Lype an expression. If the expression succeeds in parsing then the
tree structure of the expression is displayed. Figure 46 shows how the tree is displayed.

The string expression is displayed at the bottom line of the window. TIn this sample
Lhe expression ig “~ H.IAI:I'} O Wi~ A{x)". The tree structure is cisplayed above this line,
The top part “2" of the tree indicates it is the constructor of the whole expression, The
operator is displayed exactly above the operator in the string expression so that we can see
the correspondence between in the tree form and the string form easily. The lelt and right
sublrees are the arguments of “2”. The root nodes of these subtreecs are “~" and “¥", which
indicate the constructors of the arguments.
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~dxh (%) xR {x)

Figure 46: Structure Displaying for an Expression

6.2 Extended DCG part

The DCG part consists of sequences of clauses which define syntactic structure of logical
expressions. The following is an example of TVCG clanses nsed in FUODHILOS,

Example:

formula --> formula,"=",formula |
constant;

(T3
E]

constant --> "“x

However DNCG clanses in EUQDIIILOS is different from those in ardinary DCG. The
following iz the list of features of EUQDHILOS different from the ordinary DCG.

{a) Delimiter
Put semicolons(' ;") instead of period(*.’) at the end of the syntax definition clauses.
Put a penod at the end of the last clause,

Example:
DCG EUODHILOS

formila --> formula,"=",formulat. formula --* formula,"=",formula;

(b} “Or" Notation

We can use the vertical bar(*17) for giving allernative expressions in one clause,
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Example:

DCG EUQODHILOS
formula --» formula,"=",formulal. formula --> formula,"=",formula |
formula ——» formulai. constant
formulal -=-» constant. constant --» "I'rjnyﬂplz";

constant --» "x".
constant =-=> "y,

constant ==3> "z",

(c} Character Range Specification
We can specify consecutive characters for a non-terminal by putting minus symbol{*=')
in between the characters having the smallest and the largest codes.

Example:

neG EUQDHILOS
constant --» "x", comstant -->» "x"-"z':
censtant --» 'y,

constant --» ''g",

(d) Calling an ESP Program
We can write any ES5P-methods call as conslituents in a syntax definition. The format
is as follows.
call( <method call> , ... )

(e} ESP Program in the Syntax Definition
We can put some ESP programs in the syntax definition part. They will work as in-
stance methods.

Example:
:check(A) :- integer(A)

Important Notice:
For each clanse in the syntax definition, we have to be sure that:

Each clause including at least two non-terminals in its body has to have
exaclly one component which is declared as a constructor in the constructor
declaration part.

6.3 Constructor declaration

The constructor declaration part consists of Lwo subparts; the aperator declaration and
predicale declaration. The operator declaration subpart declares operators. Prefix, infix,
and postfix binary operators, should be declared in this subpart.

Operators are lined after the key word “operater” in Lhe order of precedence. The
first one has the highest precedence, and the second one the next highest, and so on. We
can parenthesize two or more operators if they have the same precedence. Put comma(,")
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between the parenthesized consecutive operators. Put semicolon(*;’) at the end of the op-
erators and right parentheses to delimit the operators list. DBoth constants (i.e. character
strings in between two double quotation symbols) and non-terminals are allowed to be de-
clared as operators. We may put “:left” or “:right” for specifying the associativity of the
operator.

Predicates are lined after the word “predicate” delimited by comma(*,”) . Put pe

riod(*.") at the end of the list. Here also both constants and non-terminals are allowed in
the list.
Here is a sample of constructor declaration.
Example:
cperater
|Im1| ;

{(not, bind_op);

"N\ left;

predicate

pred_syml, pred symZ, function sym.

6.4 Remarks on Syntax Description

The order defined in the DCG part and that in the constructor declaration must
be matched. Mismalching of these two may lead failure and/or misinterpretation in
EUODHILOS. Se, it is highly recommendable to declare the operator precedence only
in the constructor declaration part instcad of putting the operator precedence in the
DCG part.

. Wt have Lo define one of the constituents of a clause as a constructor if the body

part of the clause includes at least two non-terminals. In this case we might declare
either a constant(string) or a non-terminal as the consiructor. We can use an empty
string(“""")} as a constructor. This might be useful when we define a construction
without explicit constructor as, for example, in dealing witli combinatory logics.

. Binding operators such as ¥ and 3 in predicate logic, and A in lambda calculus need

special treatinent. They bind a wvariable in the expression followed by the variable.
That is, the variable occurrences in the expression are no more free accurrences of the
variable. Binding operators must be declared so that they have the syntactic category
“bind.op”. The following is a typical example of defining binding operators.

Example:

formula --» bind op, variable, formula;

bind_bp ——> |r'l.;l.l'|r|1r3ni
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operatur

bind_op;

4. Meta symbols are defined as the syntactic category name having the prefix “meta.”.
We can instantiate meta symbols by substituling an appropriate expressions which are
supposed to include not only object symbols but alse meta symhbols.

7 Inference and Rewriting Rules

Inference and rewriting rules arc key part in the logic. We apply them to axioms, theorems,
assumptions, and proof fragments so that we get the new conclusion. Most of the proof
fragments grow in this way. In EUODHILQS, these rules are repiesented in tree form and
therefore easy to define as well as to recognize what they are saying. Inference rules may
have an assumption for each premise. It also he able to have one or more side conditions in
arder to give restrictions to how the rule is applied.

This section explains how to open and close the rule menu, how Lo define the rule, and
how to give one or more side conditions to inference rules. Since inference and rewriting
rules have much similaritics most part of this section can be applied to bouth cases.

7.1 Opening and Closing an Inference Rule Menu

When we select the “INFERENCE RULE"(“REWRITING.RULE") item in the funciion menu of
the logic(See Figure 5 at page 8), the inference rule menu(rewriting rule menn) is shown.
Inference rule menu looks as in Figure 47,

¥¥ now &
¥¥ pxil #&%
=»E

==1

Figure 47: Inference Rule Menu

The items except the first two are the list of inference rules already defined. We are
suppnsed to select the “++ new =" item if we want to define a new inference rule. If we
want to see or modify a rule already defined then we select the rule name item. Since we
already saw how Lo define a new inference rule in Section 2, we suppose, in the following
sections, that we have a rule and want to modify it.

The rule menu closes when we click the “s% exit *+" item.
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7.2 Defining and Modifying an Inference Rule

By sclecting the rule name item in the rule menu, we can get the functions menu of the rule
which looks as follows.

=>F

copy

edit
delete
cancel

Figure 48: Functions Menu of a Rule

We can change the name of the rule by selecting the “rename” item. Then the input
window will appear and we are supposed to type the new name.

INPUT ]
rename =*E to > SE

Figure 49: Inputting the new name

The old name disappears and new name of the rule appears in the rule menu.

The “copy™ item is for copying the rule and make a new rule. The input window appears
also in this case and we give the name of the new one. The “edit” item is for displaying
and editing the rule and “delete” item is for deleting the rule definition.

When we select the “edit” item, then the rule window like Figure 50 appears.

INFERENCE_RULE :myl¢

<O BB

name: E

a RoB

B

¥% Side conditon %k
¥ Define =%

Figure 50: Inference Rule Window

We can change the name, body part (i.e. assumptions, premises, and conclusion) and the
side condition(s) of the rule. Give a left click on the name field for changing the name, on
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an assumption, a premise, the conclusion for changing the assumption, premise, conclusion,
respectively. Then the input window appears on which the old expression is displayed. We
are supposed Lo modily the expression and put the cursor at the end of the expression in
the line and type carriage return to replace with the new one. The modified expression will
be shown. See also Section 2.7 on what the icons mean and Lhow we can input the name,
premises, and conclusion of the rule.

7.3 Side Conditions

When we select the “#+ Define #*=" jtem with the middle click in the inference rule window,
the side condition editor which is shown in Figure 51 will appear.

*t% 15 free for =x& In P {x)x

£xx 15 bound in =P {xix
ax% Is not free in =P {x)*

¥a¥ is an elgen variable
checker's ®Class_names, sMethod_mame®, *File_namnek

commant is ®Comment*

template_selection: input all_occurrence

0

delete deleta_mll exit cancel

Figure 51: Sule Condition Definition Window

There are four regions in the window. From the top one down lo the lasi, they are side
condition selection menu region, side condition npul region, side condition display region,
and command menu. ln the side condition selection menu region, there are four built-in
elementary side condition items, side condition checker specitication iten1, and comment item.
The expressions between “*” indicate that it is representing a place holder of the condition.
We have to give the contents of these place holders in order to define a side condition. Take
the first condition for an example. The item is “+t* is free for *x* in *P(x)*", which
has three place holders. When we select this item, the prompting messages for these place
holders appear in the side condition input region. Since the first one is “t", we will get the
following prompting message.
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We type the corresponding expression for it. Let us give “T” for “t”, “X” for “x”, and
“P" for “P(x)".

The expressions “T", “X”, and “F" must appear in the expressions used in the definition
of the inference rule. Then we have the side condition in the side condition display region
as follows.

T is free for ¥ in P

We can repeat this procedure of defining side conditions. If we want to give special side
conditions, we can attach a condition checker through the checker specification item. We
will not see the detail about this facility in this article. We can give a comment for giving a
warning, remark, or some message like these.

The region also includes the items for template selection. Template is used for specifying
the occurrences of an cxpression subsumed in the whole expression. We choose one among
the tree items: “menu”, “input”, “all_occcurrence’. “menu” is the default value. These
modes mean as follows. First the “menu” mode indicates that the menu is shown to the
user and he/she selects which one to be chosen. Next the “input” mode indicates that the
user gives the templale expression that specifies which occurrences to be taken. Last the
“all_occurrence” mode indicates that all the oceurrences should be taken.

Using the items in the command menu we can delete all or some of the side conditions.
By selecting the “delete” item we can delete a side condition. We need to select one of the
conditions before using this function. If we want to delete all the side conditions all we have
to do is to select the “delete_all” item. As is easily seen “exit” and “cancel” items are
for closing the side condition window and cancelling all the changes, respectively.

When we finish the delinition then select the “exit” item to get back to the inference
rule window. Be sure to click on the * B " icon of the inference rule editor window and
save the definition data so that the definition actually works as we apply the rule.

7.4 Rewriting Rules

Rewriting rules can be defined with almost the same way as of inference rules. The differences
are the rewriting rule has no assumption, it has only one expression over the line, and it has
no side conditions.

The most significant difference between the two kind of rules in application are the
inference rule specifies the whole logical expression whereas rewriting rule specifies one or
more subexpressions in a logical expressions. Since the rewriting rules have one upper
expression and one lower expression, the rule may be applicable repeatedly several times.
We can specify a number which gives the limit of times of application of rewriting rules. See
the reference manual for detail.

8 Axioms
Axioms and assumptions are the starting formulas in a proof, Assumptions are statements
that suppose temporarily and should be discharged. Axioms do not have such conditions.

They stand as themselves. Axioms are declared as such by being put in the axiom definition
window. This section explains how to declare axioms.
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When we select the "AXIOM" item in the function menu of a logic we will get the axiom
window as shown in Figure 52.

predicate_logic
save wff_editor reshape

Mook

Rl (el = i )
mock?
oo (y (dz (Y (z0w=xt {uBwl 1))

exit

Panda{tonton)

Ux{Panda (x)2J0ute (x} )

il

Figure 52: Axiom Window
In the upper part four command items make a line. They mean as follows.

save This item is used when we save the data so thai Lhe axioms in the window wark in
the sheets of thought.

wif editor This item is for calling the tree structure editor {or showing and editing the
axioms.

reshape This item is for resizing the window.
exit This item 15 far closing the axiom window.

In the lower window we can modify the axioms as well as input them. Two lines are used
for specifying one axiom. An odd-numbered line in the window is for naming the expression
in the following line. For example the first line “mock1” in Figure 52 is the name of the
axiom “¥x(m@x=x0x)" in the second line. Leave the name line empty il we do not give a
name to the axiom, When we put an axiom in a sheet of thought, we are supposed to select
an axiom in the axiom menu. In the axiom menu, each item is the name of the axiom if it
is given, otherwise the expression itself is displayed.



9 Proof Construction on a Sheet of Thought

Providing a comf{ortable proof environment is one of the important features of EUQDHILOS.
Since EUODHILOS intends to provide the facilities to let the user deal with as a great variety
of logics, we give up assuming we have one or more efficient theorem prover for them. So, it
is the user to decide what to do in the search process for the theorems and/or the proofs for
conjectures. A sheet of thought is the environment for constructing proofs in EUQDHILOS.

Constructing a proof for a theorem on a sheet of thought starts by pulling assumptions,
axioms, and theorems. Proof fragments will grow as we apply rules, connectl several fragments
into one big fragment, and eventually we might get complete proofs for theorems. Sometimes
we will get new results by combining some results we have already proved. Sometimes we
have a conjecture which 1s waiting to be proved. Giving a prool of the formula is our goal in
this case. If we have a goal Lo be proved, we will apply rules backward to the goal and will
get one or more subgoals to be proved. Since we have a various styles of proof construction,
the reasoning assistant system has to be flexible enough to deal with these all. Therefore the
functions of a sheet of thought are designed so that they are flexible and the proof fragments
on the sheets are easy to recognize. We can derive both forward and backward. We can
make a proof fragment by forward reasoning and soime others by backward and combine
them to get a complete proof. The results we have can be saved as theorems and derived
rules. A theorem can be used just like an axiom and a derived rule as an inference rule in
the following process of constructing more sophisticated results.

In Section 2.8 we learned how to make a simple proof in a very basic way. In this section
we learn some more sophisticated facilities which are quite uselul in proof construction.

A sheet of thought can be opened from several different kinds of menus. The most typical
one might be as follows. When we select the “PROOF” item in the [unctions menu of a logic
(Figure 5, page §), we get the proof group name menu.

PROOF :predi

Xk nmew xx
% oxilt &%
¥ worhk *x%
axamp e
mochk
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Figure 53: Prool Name Menu

We will get a new sheet of thought when we select the “#% new **” item.

The “#* work *+" item and the rest are the list of proef groups. A prool group is a
collection of proof fragments. This concept is useful if we develop several kinds of theorems
in one logic. The “** work **" proof group is a special proof group in which proof fragments
having no proof group name specified are saved. Let us sclect the work proofl group. Then
the proof fragments menu will appear {Figure 54).

The “#* new *+" ttem in the menu can be used also for opening a new sheet of thought.
The “#= exit ##” s for closing the menu. The other items are the list of root formulas of
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Figure 34: Working Prouf Group

proof fragments that belong to the group.
As we select a proof group name ilem in the proof name menu, we have the command
menu for the proof group.

renams
copy
edit

delete

cancel

Figure 55: Command Menu for Proof Group

The functions displayed in this menu have the same meaning to those already described.
If we select the “edit” item then the proof fragment menu just like that of work group
appears.

We select a formula item in the proof fragment menu, so that we get the command menu
for this proof fragment.

delete

copy_to_sheet
cancel

Figure 56: Command Menu for Proof Fragment

The “delete” item is for deleting the proof fragment and “cancel” for closing the menu
itsell. The “copy_to_sheet” item is for copying the data into a sheet of thought. We will
have the selection menu for choosing the sheet where this fragment is copied into.

The "4+ new ==" jtem opens a new sheet of thought and the proof fragment will be
copied into this sheet. The other items are the names of the sheets which are already shown
on the screen. If we select one of them, the fragment is copied into the sheet and the proof
fragment appears as the rightmost fragment in the sheet.
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Figure 57: Menu for Selecting the Fragment where the Fragment is Copied into

In order to close a sheet of thought we have to decide which proof fragments should be
saved and where to be saved. If we want to save all the fragments in the work group then we
just click the * " icon. Then all the proof fragments are saved and the sheet terminates.
If we want to save one fragment, we choose the fragment and give a left double clicks or just
type the return key. Then the following command menu appears (Figure 38).

save_as_theorem/derived_rule
[iavu_as_prnuf_fragﬁént|
instantiate
show_structure
cancel

Figure 58: Command Menu for save_as_proof_fragment

Let us select the second item “save_as_proof fragment”. Then the menu for specifying
the proof group name appears(Figure 59).

proof_nama

xR new ek
k% work %
examp le
mochk

panda

test

Figure 59: Proof Name Menu

Now we select the “#=* new ==" jlem for creating a new group and saving the proof
fragment in the group. Then we select the “** work ==" or the group name item according
to which one we would like to save the proof fragment into.

If we give a click on the “ » 7 icon, then the confirmation window appears for selecting
which fragments to save in the work group and which one to delete{ Figure 60).

1
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Figure 60: Menu for Saving Data as a Sheet of Thought Closes

The uppermost three items are functions we need to choose and the rest below the dotled
line is the list of the results of the proofl fragments in the sheet., If we want to save or nol
to save all the fragments then what we do is jusl select the “NOT SAVE™ or “SAVE ALL",
respectively. Otherwise we select the resulls of Lhe list Lthose are supposed to be saved in
the work group, and select the top function in the funclion items. These [ragments will be
saved in the work group.

9.1 Assumption

A proof on a sheet of thought begius with putting an assumption [or a goal for backward
derivation), an axiom or a theorem. This section deals with assumptions. In order to put
an assumption on a sheet of thought, we first give a left elick in the sheet where the mouse
cursor is not on a expression. LThen we get a hox marker; the nearest available place of
thie cursor. Next we give another click to get the input window for typing the assumption.
When we type the carriage relurn, the expression appears where the box marker was shown,
The assumptlion is parenihesized with [ and ], which indicates this expression is an
assummplion (or a goal if it would be used in a backward derivation). Each assumption has
a number called the assumption ID(identification) number. Two assumptions having the
different ID numbers are (reated dilferently even if they have the identical expressions. On
the other hand, two distinclive assumptions have different 11 numbers.

Il we give a lelt click on a stand-alene assumption, assumption would he surrounded by
a boux marker. If we give another click or type the return key, a command menu appears

(Figure 61).
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edit
input_axiom/thecrem
wff_editor
is_axiom/theorem
ID_numbar
instantiate
show_structure
cancel

Figure 61: Command Menu for Stand-Alone Assumptions

The items in the command menu for stand-alone assumption shown in Figure 61 represent
the following functions.

edit: For modifying the assumption. As we select it, the assuinption would appear in the
ordinary input window and would be waiting for being modified.

input_axiom/theorem: As we choose one of the axioms or theorems the assumption would
be replaced with it.

wif_editor: For modifying the assumption. As we select it the “wff_editor” is invoked.
“wif_editer” is a structurc editor we can manipulate formulas in tree form.

is_axiom/theorem: The system checks if the assumption is an axiom or a theorem. If it
appears to be one of them, its status as an assumption changes to either an axiom or
a theorem according to which one it belongs to.

ID number: This item changes the ID number of the assumption. I the number given to
this assumption has been assigned to other assumplion and the expressions of these
assumptions are not identical, the 1D number can not be changed.

instantiate: Instantiating the metavariables included in the assumption. The metavari-
ables will be displayed one by one in the input window and we are supposed to give
the corresponding expressions to be substituted.

show_structure: Displaying the structure of the selected formula.

cancel: Terminating this menu.
9.2 Derivation

Two kinds of derivations are allowed on a sheet of thought: forward and backward deriva-
tions. Suppose we have an inference rule named “AL" which is defined as follows (Figure 62).
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Figure 62: A-Introduction Inference Rule

In the forward derivation, we have “A” and “B”, and apply the rule to get the resuit
formula “AAB". On the other hand, in the backward derivation we have “AAB” as the goal to
be proved. We apply the rule to this goal formula and get the two subgoals “A™ and “B". In
the following two subsections we will have precise explanations about how these derivations
are achieved hy way of sample constructions.

8.2.1 Forward Derivation

As the first example, We are going to see how the forward derivation actually goes on a sheet
of thought in this section.

Suppose we have two formulas “A” and “B" on a sheet of thought, and we are going to
apply the inference rule “AI” to these two and to get “AAB”. These formulas may be either
of assumptions, axioms, theorems, or the conclusion(or root) formulas of proof trees{proofl
fragment) already constructed. If the sixth icon from the left at the icon ares in a sheet of
thought is down arrow( 4,—(]], we arc in the forward derivation mode. If it is the up arrow
( -T‘—n:I then click the middle button of the mouse while the monse cursor is on the up arrow
icon and change the mode. Now we give right click to the formula “A” and also give another
one to “B”. The following window(Figure 63) shows how it looks like.

GO DO 085 o

m m
T ——

Figure 63: Two assumptions are selected for forward derivation
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Next we make double left clicks or press the return key. We will get the rule menu list
as shown in Figure 64.

INFERENCE_RULE REWRITING_RULE DERIVED_RULE COMMAND
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Figure 64: Rule Selection Menu for Derivation

The rule selection menu actually consists of four smaller menus. From left to right they
are inference rule menu, rewriling rule menu, derived rule menu, and command menu. We
select the name in the inference rule menu for applying an inference rule, in the rewriting
rule menu for rewriting rule, aud in the derived rule menu for derived rule. We can apply
the rule in a slightly different way with the items in the command menu. Each submenu
allows scrolling to find out the intended rule in the long list of names.

The rewriting rule menu is separated in two. The upper part is the list of the rules for the
application in the normal order, whereas the lower part is for the application in the reverse
order. This makes sense because a rewriting rule is supposed to give a way of replacing an
expression with an equivalent one.

The derived rule menu is for applying a derived rule. A proof fragment can be used for
later proofs in two ways. [f it does nol depend on any assumptions the conclusion formula
of the proof is a theorem. Otherwise the conclusion formula of the proof fragment depends
on the assumptions that have not been discharged. In this case this proof fragment can
be stored as a derived rule where assumptions are considered to be the premises and the
conclusion is the conclusion of the application.

‘The rightmost command menu has various functions.

cancel: Canceling this application.
discharge: Discharging an assumption.

search.rule(input): Searching the applicable rules by giving the conclusion of the appli-
cation. A prompting message for the resulting formula appears and the user input it.
Then the system searches the rules that derive the resull we have typed.

search.rule: Searching rules which has premises matching Lo some or all the results on the
sheet which we have selected as premises just before we called this menuy. Usually more
than one rules can be applicable, so the system makes a list of applicable rules and we
choose one of them.

46



The items arca afler “--call prover--" is for displaying the list of provers which have
been implemented and have been attached to the logic. The detail will be explained in the
next section.

Let us move back to the application of the rule. We have applied the “AI” rule in the
inference rule menu and now we have the proof frazment which has the formula “AAB” as
the conclusion. Figure 65 indicates where we are now.

. SHEET_OF _THOUGHT :mylogic
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Figure 65: A A 11 is derived by forward application

We have seen how we can apply a rule and get a new conclusion in the normal way. The
rule has no assumptions Lo be discharged as it is applied. Now we are going to see how to
apply a rule that has one (or mare) assumption(s). Corresponding to the assumption of the
rule, the proof fragment would have the assumption to be discharged as the rule is applied to
it. Here is how we specify the assumption to be discharged. The middle button elick of the
mouse corresponds to Lhis specification. An underline appears at the specified assumption
as we give the click.

Now let us have a look at the next fizure.

SHEET_OF _THOUGHT :mylogic
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Figure 66: Specifying discharging assumption

In Figure 66 we have selected whole proof fragment as well as specifying an assumption
that is going to be discharged in Lhe next application of a rule. We can sce the underline
Just below the assumption “[A A B]".

Just as we have done in order Lo gel the conclusion formula “4 A B” we make a double
left clicks and choose “3 7 in the inference rule menu. The assumption is now discharged by
this application. Tet us have a look at Figure 67, where the conclusion formula “A A B 3 A”
does not depend on any assumptions.
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Figure 67: Assumption A A B is discharged.

We know this because we see something like “~(2I{})" jusi above the conclusion. Here

“‘[}'" says that the set of depending assumptions of the conclusion is empty.
We can postpone the specification of discharged assumption. Then the asterisk is at-
tached at the name of the rule applied to the derivation to indicate that this derivation is

not complete yet.
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Figure 68: Assumption is not discharged as the rule applied.

We may discharge this expression whenever we like by specifying the appropriate as-
sumption by middle click and execute discharging by giving a double left clicks.
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IPigure 69: Dhischarging assumptions.

Now we get the theorem as is displayed in Figure 67.



0.2.2 Backward Derivation

We can change the direction of the derivation by clicking the [orward/backward icon for
derivation. Lo make a backward derivation, first select an assumption with a right click.
Then the assumption is highlighted in a black bex. This shows that the assumption is
selected by a right click. The assumption Lo be selected may be the one standing alone, may
he a leaf of a proof fragment.

Figure 70 shows when an assumption is selecled.

SHEET_OF _THOUGHT : mylosgic
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Figure T0: Assumption is selected for backward derivation.

Next give a double left clicks on the sheet, and the rule sclection menu appears. If we
select Lhe appropriate rule in the menu, the rule is applicd and the premise(‘premises’ if
the rule has more than one premises) of the rule appears as the assumption of the proof
fragment.

SHEET_OF _THOUGHT tmylogic
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Figure 71: Rule AT has heen applied backward.

We usually apply one rule in one application. However we have three ways to make the

applications shorter.
The first way is to call a prover. The last ilems alter “==call prover==" in the appli-
cation rule menu are the list of provers which we have implemented and attach to the logic.
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System calls the prover we have selected. If the prover program fails in searching a proof in
the current situation, then it fails. If the prover has succeeded and returns the proof data
then the data is displayed in an ordinary proof tree form. If it does not give the proof data
and just returns in success, then the system treats the conclusion as 2 theorem without proof
structure.

The second way to shorten the application is to use a derived rule. A derived rule is a
sort of “macro-facility” in ordinary programming languages. A proof fragment can be seen
as a rule the assumptions the conclusion Ifrnr_\t formula) of the proof fragment depends on
are premises while the conclusion formula of the fragment is the conclusion formula of the
rule. If we store a fragment as a derived rule and give a name to it, then this pattern of
proof can be treated as one application of a rule.

The third way is to use a theorem. A theorem can be interpreted as a derived rule which
has no assumptions the conclusion depends on.

Actually, there is one more way to reduce the number of applications. It is the repetitive
applications of a rewriting rule. When we apply a rewriting rule the system tries to apply
the rule up to the himit number of times. The initial limit number is three, but we can
change it through the customizing window.

9.3 Metavariables

A metavariable is a symbol which represents a class of expressions such as formulas, terms,
numerical expressions, and so on. An expression that includes one or more metavariables
is called a metacxpression. For example, a metaformula is a formula expression which in-
cludes one or more metavariables. We can substitute another expression for a metavariable
in an expression. The expression we get in this way is called an instance of the original
metaexpression. We can instantiate several variables simultaneously as well. A metavari-
able should be substituted with an expression having the same type as of the metavariable;
e.g. a formula for a metavariable declared as a metaformula, a term for one declared as a
metaterm. We will call an instantiation as a ground instantiation if the resulting formula has
no metavariables in it. A metaexpression is considered to represent the collection of all the
ground instances of the expression. A proof fragment which includes metaexpressions can
be called a proof schema also. A proof schema represents the set of ground proof fragments
which can be obtained by instantiating it.

Metavariables are conceptually equivalent to the normal {or object) variables in a logic.
However, in EUODHILOS, we use metavariables as “place holders” which are used for repre-
senting the schematic expressions, whereas the ordinary variables are used as parts of logical
expressions which we can not substitute expressions without explicit applications of rules to
them, e.g. a-conversion rule in the A-calculus. So, we can instantiate any metavariables at
any Lime we want and the whole expression or even the whole proofl [ragment be instantiated
with this substitution.

Metavariables are supposed to be declared as non-terminals whose names begin with the
string “meta.”. If we want to declare a symbol *A” as a metavariable for “formula” (i.e.
metaformula), we can do it by adding the following clause in the syntax declaration.

meta formula --> "A"
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Note that the correspondence between the syntax for “formula” and “meta_formula” is
left to the user. An easy way to do is put the following clause in the declaration.

formula --» meta formula

On a sheet of thought assumptions and axioms can be schemata. Almost all the inference
rules naturally should be the schematic relations between premises and conclusions,

9.3.1 Instantiation

What we have to do first for instantialing metavariables in a proof fragment is to seleci the
object. The objects that we can select for instantiation are proof fragments, subtrees of
proof fragments, or a node expression in a proof fragment. We give a left mouse click on
the root formula for the first two cases and on the formula for the third case. Then a box
surrounds the whole {or sub) proof fragment that the root formula represents. For the third
case we need to give another left click on the same formula. Then the bax changes itself to
surround the specified formula. Figure 72 shows how the proof fragment having “P A Q" as
its root is selected.

QU DAL 06 v

1 2
Pl

fLAT LI, 23 )
AQ

Figure 72: The whole proof lragment is selected.

Here we make double left clicks or press the return key. We have to be careful that we
are in the pencil mode. The fourth icon from the right in the icons area indicates if we are
in the pencil mode or the eraser mode. We have the command menu window as shown in
Figure 73.

The items in the command menu mean as follows.

save.as.theorem/derived.rule: Save the proof fragment as either a theorem or a derived
rule. If the root expression does not depend on any assumptions it would be saved as
a theorem, aotherwise as a derived rule.

save_as_proof fragment: Save the proof fragment in the prool group area. We can choose
a proof group name where the proof fragment is saved.

instantiate: Instantiate the metavariables that appear in the specified box; the proof
fragment or the expression.



COMMAND

sava_as_theorem/derived_rule
save_as_proof_fragment
|in3tantlate|
show_structure
cancel

Figure 73: Command menu for a proof n a group

show_structure: Display the structure of the expression we have sclected in a tree form.

cancel: Terminate the menu without doing anything.

Let us select the “instantiate” item in the menn. Then the system searches the whole
expression and collect the metasymbols used in the expression(or sub-proof). We need
to answer to the each enquiry and specify what expression is to he substituted for each
metasvimbol. Figure 74 shows how this enquiry looks like.

substitute for P >A8B

substitute for O =T

F"ig:n*e T4d: Flnquiring the expressions {or substituting the metavariables

In this example, we have two metasymbols in the prool [ragment, say “P" and “Q”.
Figure Enquiring the expressions for substituting the metavariables says we are substituting
“CANBT for *P" and “C" for “@". As the result of these substitutions we have Figure 75.

SHEET_OF _THOUGHT :mylogic

DO

3 4
[AAB] [C]
={al {3; 41 )

AABAD

Figure 75: Expressions A A B and (7 are substituted.

If we select an expression for instantiation the metavanables appearing only in the formula
are instantiated.

52



9.4 Editing Proof Fragments

We have learned some basic features of sheel of thought so far, such as how to put assump-
tions and how to apply rules to gel new results. In this section we will see other editing
facilities sheel of thought provides,

9.4.1 Deleting Proof Fragment and Node Expression

The first thing we do for deleting an object is to select it with the left mouse click at the
root of the subfragment to be deleted. By the first click the subfragment (or the whole
prool fragment if we give a click on the root of the fragment) is highlighted with an ordinary
marking box. If we want to delete only the root formula then give another right click on
the root formula. Then the box surrounds enly the formula we have chosen. The third icon
from the right indicates the mode either insertion (the pencil icon “ ﬁ ") or deletion (the
eraser icon “ ¥ "}, Finally give a double left clicks for doing the action. Figure 76 shows
that an assumption is selected for deletion.

SHEET_OF _THOUGHT :mylogic

SOOI 0 B

1 2
[[A3] B
(Al {1,2}3
1=}

Figure 76: An assumption is selected to be erased.

If we delete the assumption “[A]" then it is impossible the remaining parts of the proof
fragment form a single valid proof fragment. So the remaining parts, “[B]” and “AAB” make
separated proof fragments (Figure 77).

“SHEET_OF _THOUGHT :mylogic

vl al

2 3
[B]l [ARAB]

Figure 77: Assumption “[A]” is erased and the rest are separated in two.
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9.4.2 Copying Proof Data

We specify both “which one to be copied” and “where will it be copied” for copying. The
third icon from the right indicates which one of copy ( WE ) or move ( ‘.é ) mode we are in.
By making a middle click on the icon we can change it from one to the other. Select the
tree to be copied by a right click and make a box marker where the tree will be copied into

by a left click (Iigure T8)

SHEET_OF _THOUGHT :predicate_logic

[~3xA(x) ]
(~E{4,5))
i

{~I {5} }
~0{ad

(I {5} }

W (B ) )

- L=] 4
~Th () S a~A (%) B

Figure 78: A subproof is going to be copied.

As we make double left clicks or press the return key and give the command ezecuie we
get the result as is shown in Figure 79, where the subproof that was selected has been copied

to the next of the original proof fragment.

SHEET_OF _THOUGHT :predicate_logic

0 ODani%E >
4
[Bia)]
(3T {4} ) 5
A=) 3w (=) ]
(~E {4y 5} )
L
—{~1 {5} )} 4
~A(al) [Afal]
(DI {S}) (AT 4a}) k=
M {~f{x)) EFIAES ] [~Fwfi{x)]
=2Ify)y —~Ef4,5)
~=Awh(m ) SR {x) 1

Figure 79: The subproof has been copied.



9.4.3 Moving Proof Dala

Moving a data is almost the same as copying. The only difference in the process is that after
the new data is created the original dala will be erased in the move mode whereas it will
remain unchanged in the copy mode. Select the tree Lo be moved by right click and position
the place where the tree will be moved into by a left click. Figure 80 shows where we are.

BUDATLE R

e

[~3=A{x) ]
-(~E {3, 5} )
4

(~L {Sh)
~fi (@)
(YL {5}
bs {~f1 () )
[=IR T
~Ixh (xIoUx~fixd ]

Figure 80: The subproof having “ L" as the root is selected for moving,

When we make double left clicks ur press the return key while we are in the pencil and
move mode we will get Figure 81.

SHEET_OF _THOUGHT :predicate_logic

OG>0y

B
(L]
AL {G) )= 4
~A{a) [Afa)]
— {0 {E) ) (AT {4} 2 S
Bwnf{xd) EETTES [~T=fxd]

{21 {6} Yk —0 —(~F {4, 5}}

i w ) SR {x) L

sheat i

Figure 81: The subproofl has been moved.
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8.4.4 Connecting Proof Fragments

Connecting two proof fragments by attaching a root mode and a leal node can be achieved
by copying or moving. We select a whole proof tree by clicking the right mouse button on
the root expression of the tree. We also select a leaf of a tree by clicking the left mouse

button on the assumption (Figure 82).

SHEET_OF _THOUGHT :predicate_logic

OO %E

&
L]
A=I {5} )%
~flal [Afa)]
—(HL {G} 2 (3144}
e {=-Aix)) A {x) [~Fxcf{x)]

=it (~E{4,5})

~FAmA(x) oWx=-A{x) 1

T ———

Figure 82: A root and a leal are selected for connection.

Making double left clicks under the the pencil mode induces the result as shown in
Figure 83.

SHEET_OF_THOUGHT :predicate_logic

& OO Td05em

1

[A{al)]
(31 {1k 2
EET-T4 8] [=FA=xfA{x)]
E—— S N 1R
i
Tl {12 0% 1
~fii{a) [Aga}]
—i{vIiL. 2y (3L T1} 2
el {363 Axd(x) [~3x0{x)]
(DI f1.2V 3% ———{~E{1.,2}3}
RO ) D () 1

Figure 83: Connection has done in the copy mode.

The tree selected by right click remains after connecting if we are in the copy mode and

it will be erased if we are 1n the move mode,
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In Figure 83 we see two “+7's in the proof. These “+"'s indicate thal the applications of
the rules have not been completed (i.e. not yet discharged). Therclor we need to discharge
these assumptions for completing the proof. In order to discharge these assumption, first we
need to specify that they are the assumptions to be discharged by |:;|14-|,[-;ing a middle click on

each of the assumptions. Now we have Figure 84,

SHEET_OF _THOUGHT :predicate_logic

ARV e bl ol liihig
i
Jainl1
AT {5 ) 2
EPT-RETS Tadefixll
— {~E{1.2})
1
=141, 2 & 1
~f{ml [ada)]
UL L. 2 ) L ISR 2
A {x) dxhix) [~3=xA (=) ]
(3T {12y ) — 7 {~E{1,2}}
A () DB () 1

Figure 84: Assumptions going to be discharged are selected.

Let us make a double left clicks for discharging the specified assumptions.

SHEET_OF _THOUGHT :predicate_logic

G OO -
1
IGEEED!
(3T 41) ) 4
EFT:E6"S] [~Fxhi{=xd]
(~E{142}3
1
(=1 {2}3 1
EGIGE [Aia}]
(EPL P28 (RSN 2
Hawfi (X} AxA(x) [~xhix)]
{21y ———{~E{l.3})
w0 (%) D0 (3] 1

Figure 85: Discharging has done and the prool completes.

Here, in Figure 85 the stars are erased. Sinee the conclusion formula does not depend
on any assumptions we know that the proof of the conclusion has been completed and the

conclusion is a theorem.
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9.5 Other Facilities of Sheet of Thought

We see some other useful facilities of sheel of thought that have not been explained. They
are the facilities of the structure displaying, changing an assumption into an axiom or a
theorem, and saving proof fragment as theorems or derived rules,

9.5.1 Displaying the Structure of an Expression

If we find something wrong, such as an application does not work that should be good as
far as we see, then one possible reason can he that the expression we are dealing with is
parsed differently from that what we are expecting. So providing the facility of displaying
the structure of an expression in a proof is helpful for us to find out what is wrong. For
displaying the structure, first we select a root of a proof tree by giving a left click two times

while the mouse cursar is on the root expression (Figure 56).

GO0 L %GER

1
[ainl]
3{1}) 2
ERLTES [~3=A{x) ]
(~E{1,2})
4
—{~11{2})
~Ain)
(HTI2) )
O (B (%))
(=21{}?
L=z SUx~Ax]]

Figure 86: The root formula is selected for structure displaying.

Then make double left clicks or press the return key while we are in the pencil mode so
that we can get the command menu as in Figure &7.

save.as.theorem/derived_rule
save_as_proof_fragment
instantiate
[show_structures|
cancel

Figure 87: The “show_structure” is going to be selected in the command menu.



Select the “show_structure’ item. We will get the structure displaying window as in

Figure 58,

WFF

I
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| | | Il
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5L

~JmA ()} o x~8{x})

Figure 88: Structure displaving

9.5.2 is_axiom/theorem

It sometimes happens that we have an logical expression which has been put on a sheet of
thought as an assumption but we begin to wonder and want to check if it might be an axiom
or a theorem. EUODHILOS has a facility to help users to check if an assumption if either
an axiom or a theorem. We are supposed to use the function “is_axiom/theorem” in such

situation.
What we do for invoking this function is first we select the assumption by giving a left
click while the mouse cursor is on the assumption. Figure 8% shows that the assumption is

surrounded by a box marker.

OO DAL B o

=l
(Tt (B ( 37 {0 { ZOWE o (LyBauy ) F 3 ) J

Figure 83 An assumption is selected for checking if it is an axiom or not.

Next let us make a double left click ar press the return key while we are in the pencil
mode so that we get the command menu for this assumption. Figure 90 shows the command
menu for a stand-alone assumnption.
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edit
input_axiom/theorem
wif_editor
|is_axiom/theorem|
ID_number
instantiate
show_structure
cancel

Figure 90: Selecting “is_axiem/theoren” item in the menu.

Next let us select the “is_axiem/theoren” amang the items in the menu. If the assump-
tion actually is either an axiom or a theorem the brackets and the assumption 1D would
disappear as is shown in Iigure 91.

SHEET_OF _THOUGHT :predicate_l¢

GOttt o

magka2
b (Hy {3z (b (2Buw=w8 (yDw) ) 3 ) )

Figure 91: The assumption has changed 1o axiom.

In this example, the axiom (or theorem) has a name. The name is displayed at the upper
right corner of the expression. If the axiom {or the theorem) has no name attached to it,
only the axiom (respectively the theorem) body is displayed.

9,5.3 Saving as Theorems or Derived Rules

It 1= possible to see a proof fragment as a package that can he used in a big proof. So it
would be quite useful to save proof fragments and use them as if they are axioms or inference
rules. EUODIILOS provides the facility to save and use a proof fragment so that it can be
userd as a part of other proof. How can we discriminate theorems and derived rules, then?
If the root formula of the proof fragment depends on one or more assumptions then it can
he used as a derived rule, otherwise, i.e. it depends on no assumptions, as a theorem.

In order to save a proof fragment and let it be used as a theorem or a derived rule,
first we need to give a left click at the root formula of the fragment and have a box marker
surrounding the whole proof fragment. Next we make a double left clicks to get the command

menn as i1s shown in Figure 92,
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COMMAND

[save_as_theorem/derived_rule|
save_as_proof_fragment
instantiate
show_structure
cancel

Figure 92: Command menu for saving as Ltheorem or derived rule,

Select the “save_as_theorem/derived rule” jtem. Then we get a prompting window for
the name of the theorem or the derived rule. We do not have to give a name for a theorem.
If we just type the return key then the theorem has no name. The theoremn body itself will
be displayed in a list of theorems when needed. Once defined, the theorem can be used just
like the same way as an axiom.
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A Appendix

Here are some samples of logics stored in EUODHILOS. Sce [Sawamura 91b] for more sam-

ples.

A.1 First-Order Logic

The first-order logic formulated with natural deduction[Prawitz 65] is the first example, The
sample problem is & prool of the unsolvability of halting problem. Ordinary logics are well

defined as is shown in the following figure.
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A.2 Category Theory

4

This 1s a formulation of elementary category theorv¥mostly using inference rules. Mathe-
matical reasoning is also well formulated in the EUODIIILOS framework of defining logics.
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A.3 Hoare Lngic

Hoare logic[Hoare 69] is a kind of programming logic on which we can prove, for example,
the partial correctness of a program.
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A.4 Relevant Logic

lielevant logic[Anderson 75] is the logic which allows only the “relevant” proofs. The treat-
ment of dependency relations is different from the logics shown above. In our formulation,
the dependency relations are represenied in the “tag” part of the formula.
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