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Abstract

In this paper, we give a formalization for multi-agent reasoning systems
based on shared common knowledge views. We assume that the multi-
agent systems have the following characters: There is a fool agent which
represents the common knowledge base, and other agents are normal
agents. Only fool agent’s knowledge is common knowledge. All the
axioms in traditional logic are regarded as comman knowledge and hence
can be used by any agent. Classical necessitation inference rules are
not included in our logic systems, {W, W4, W5}. All of them share the
same properties. For example: They are inductive, monotonic, complete
and self-closed under inference. We compare their relationship with
the traditional logical system {K1M,S4, 55}, Main conclusions are:
Traditional modal logic inference can be realized by a fool agent. And

our new logic can mimic the traditional logic inference correctly.

1 Introduction

Knowledge representation and reasoning in Multi-Agent Reasoning System (MARS) has
been attracting much more attention in recent years [6] [5] [13] [23]. Generally, the logic
formalizations of MARS are based on classical modal logics, such as S5, 54, and have
formed a class of multi-agent knowledge and belief systems. There are different opinions
about the concepts of knowledge and belief. The main difference are:

1. Should any agent's knowledge have to be true?

That is, shonld the axiom Kip — p be included in the logic formalization? Generally,
it is agreed that if a logic system contains this axiom, then it is called a knowledge system,
otherwise it is called a belief system. So the main difference between knowledge and
belief is that the knowledge shonld be objectively true.

2. Should any agent have negative and positive introspective ability?

This question can be studied in two ways.

2.1 One approach is to discuss whether the positive and negative axioms should be
included in the logic systems.

Where Kip — KiKip is called a positive axiom and = Kip — Ki=~ Kip is called a
negative axiom.

2.2 Another approach is generally discussed in non-monotonic reasoning fields, where
the negation as failure concept was introduced [17] [16].



For example, as in [17], if p is not included in an agent’s conclusion set (AEL exten-
sion), then = Kip is included in the agent’s conclusion set. For pure logic study reasons,
we only consider the first direction in this paper.

The knowledge axiom is included in W5 and W4. The negative introspective axiom is
only included in W5. W, which was first proposed in [23] and improved in [27], contains
only the positive axiom, knowledge distributed axiom and D axiom.

3. Should the real world knowledge be known by any agent?

Does this mean that we should accept the necessitation rule, p = Kip, in our new
logic system?

We do not accept this necessitation inference rule in our logic system class. The
reason is very simple. For example, if agent i knows p, then agent j should not logically
know that agent i knows p.

One of the typical properties of MARS is its societies, in which common knowledge is
an important topic in recent years [1] [5] [6] [7]. According to [5], 6], say p is a common
knowledge in agent group Ag iff

1. Every agent in Ag knows p.

2. For every agent 1 in Ag, i knows that ‘p is a common knowledge'.

Formalization about common knowledge in modal logic S5 can be found in [6] [5], in
which a commeon knowledge modal operator Cla, is introduced. Suppose E,4,p denotes
_;‘l K,p, then the additional axioms and inference rule to 35 are:

FCI: Egqp= A Kip.

i€dg

C2. Caglp — q) — (Cagp — Cagq).

C3. Cugp = Eaglp A Cugp)

RCL p— Epp = p— Cayp.

C3 is called Cy4,'s fixed point axiom, and RC1 is the common knowledge inductive
inference rule.lt is proved in [6] that the common knowledge S5 system ( multi-agent
logic 55 system plus above axioms and inference rule) is complete. The problem with
this research is that they give us the definition for common knowledge, but does not
tell us how to use common knowledge. In fact, one conclusions of this research is that
[?] since there is no safe communication or there are no perfect clocks, i.e. no truly
simultaneous access to communication channels, there is impossible to attain common
knowledge.

In fact, in real life, common knowledge is not so strict. For example, in the broad-
casting system, the knowledge being broadcast can be regarded as common knowledge.

The knowledge in a shared common knowledge base can also be regarded as common



knowledge, since every agent can reach it, and every agent knows that the others can
reach it. So it is necessary to set up a new logic system to describe such kinds of com-
man knowledge. Such kind of distributed knowledge can be described as a set of agents
sharing a common knowledge base. Every agent can have its own knowledge, and the
knowledge in a common knowledge base can be reached by any agent, and every one
knows it. Such a MARS model is called the shared common knowledge MARS model.

What is the main difference between our common knowledge and the traditional
concept? I think there are two [undamental differences.

One is our definition that common knowledge is for use. So, for example, we assume
that tantology should be common knowledge, knowledge distributed axiom, positive
introspective axiom should be common knowledge.

Another difference is that traditional common knowledge emphasizes that if p is a
common knowledge, then every agent knows it, and every agent knows ‘it is a common
knowledge'. That is p is a common knowledge iff For every agent i, 1. i knows p, and
2. i knows ‘p is commeon knowledge’. This is the so-called common knowledge’s fixed
point axiom. Qur understanding about common knowledge is a little different. We say
if p is a common knowledge, then 1. every agent knows it, and 2. ‘every agent knows it’
is also a common knowledge. It is the second difference which makes our logic system a
systemn for using common knowledge.

In this paper, a logic class {W, W4, W5} has been established to formalize the shared
common knowledge MARS model. The commeon knowledge base is characterized by a
fool agent which is first introduced in [15], and also appeared in [10], [23]. Typical
properties of this logic class are:

1. Every axiom in this class is common knowledge ( in form of K0..).

2. Necessitation rule is not included in this class.

3. Safe rule K0p = p is introduced to show that every common knowledge p is true
in the real world.

Logics introduced in this paper can also be regarded as a fool’s logic in a multi-agent
reasoning environment. For example, the knowledge distributed axiom Ki(p — ¢} —
(Kip — Kig) 1= not only a cenclusion of our logic system, but also a comumon knowledge
in our system. This means that every agent can he aware that it and the others know
this knowledge.

This paper is organized as follows. In section 2, we introduce the propositional shared
common knowledge MAR logic class {W, W4, W3}, We discuss the common properties
of this class, and get some important properties. Suppose X € {W, W4, W5}, then the



main properties are: 1. Every X has the deductive property. Suppose T is a theory,
p, q are two formulas, then TU {p} Fx g iff T {p — q). 2. For every formula p,
Fx piff bx KOp. 3. Suppose T is a theory and T = Consy(T), then for every agent
i € Ag, T/Ki = Consx(T/Kt). 4. X is consistent. In section 3, we introduce the
model semantics of X. We prove the soundness of X under these semantics. And in
section 4, we prove X's completeness using canonical X-Kripke structure. In section 5,
we introduce the traditional knowledge and belief systems, 55, 54 and KD4. Some of
the properties are listed without proof. More details ahout these properties proof can
be found in [2]. In section 6, we concentrate our attention on the relationship between
class {W, W4, W5} and class { K D4, 54,55}, Main results are: Suppose f is a map from
{W, W4, W5} to {K D4, 54, 55}, such that f(W) = KD4, f(W4) = 54, f(W3) = 55,3
is a theory and g is a formula which contains no modal operator, then 1. If S Fx g then
Stpxyg. 2. If Sbyx) g then KOS Fyx KOg. The first conclusion says that when we do
not consider common knowledge, our logic system can be expressed in traditional logic;
The second conclusion says that traditional modal inference can be correctly performed
by the fool agent in our logic systems. So the logic class proposed in this paper is much
stronger then traditional knowledge and helief MARS logic.

2 Class of the Multi-agent System based on Fool

Reasoner

Suppose At is a set of primitive statements. Ag = {0,1,....n} is the set of agents, in

which 0 is called the fool agent, the rest is called the normal agent or agent if it is not

confused. Informally, 0°s knowledge is common knowledge, which is known by all agents.
First, we define the syntax of the well-founded formulas based on At and Ag.

Definition 2.1 A well-founded formula based on At and Ag can be inductively defined
as follows:

L. If p € At, then p is a well-founded formula.

2. If p, q are well-founded formulas, ¢ € Ag, then Kip, (-p),(p — ¢) are also
well-founded formulas.

3. All well-founded formulas are defined by the finite compositions of steps 1 and 2.
]

We denote the set of all the well-founded formulas based on At and Ag, by L.



We use special symbols to abbreviate some formulas. We write (pV g) for (~p — ¢},
pAgfor = (p— —gq), p=pfor (p— q) Alg— p). Assume formula P to be a basic
formula if P contains no modal operator.

The axioms and inference rules of W5 are defined as [ollows.

Definition 2.2 W5’ axioms:
Al. KOp, if p is any tautology.
A2, KO(K0Op — K0Kip) .
A3. KO(Ki(p — q) — (Kip — Kig)).
Ad. KO(KOp — p).
A5, KO(Kip — KiKip).
A6 KO Ki—p — = Kip).
AT. KO(Kip — p).
A8. K0(- Kip — Ki~ Kip)
W5's inference rules are:
Modus Ponens: p,p — g = ¢
Safeness rule: KOop=p O

Definition 2.3 W and W4 Logical Systems.
W4 is the logical system of 55 deleting the axiom scheme 8.
W is the logical system of 34 deleting the axiom scheme 7. 0

Netice that, the safeness rule can be excluded from W if we add a new axiom Klp — p
to W.

Suppose X € [W3, W4, W} . Wwe will discuss the common properties of logical sys-
tem X in the following.

Definition 2.4 Extension Consy.
Suppose theory T' € L. We define Consy(T'), the extension of T under logical system
X, to be the smallest subset of L that satisfies the following conditions:

1. TU Axioms(X) € Consx(T)
2. Iftp € Consx(T),p —+ q € Consy(T) then g € Consx(T)
3. If KOp € Consy(T) then p € Consx(T)

(]



Obviously, the concept of extension is well-defined and unique for every theory.

Now, it is not difficult to prove the following theorem.

Theorem 2.1 Constructive property of Consy(T').

Suppose T is a theory. We can inductively construct the following sels:

Consy(T) = Azioms(X) UT, and for alli > 0:

Cms}"l[:T} = Cons' (T')U{q| there are formula p such that {p,p — q} C Consy(T),
or K0g € Cons', (T}

Then Consx(T) = 3 Cons'(T) O
i={l

Suppose T is a theory. As in {2], we can define the prove relationship between T and
well-formed formula p. We denote it by T' by p, where p is called the consequence of T.
Obviously, the consequence set of T is Consx(T). That is, Consx(T) = {p|T Fx p}-

Definition 2.5 [Contradiction]
Say theory T is contradiction in X, if there is a formula p such that Ty —(p — p)
0

Obviously, from the preoof definition, we can get:

Theorem 2.2 Compactness Theorem
p € Consy(T) iff there is a finite subset T of T, such that p € Consy(T) Or equally
Consx(T) = H{Consx (THT' CT and T' 15 fimte } 0O

Suppose T, T' are two sets of formulas. We write T Fx T’ as the abbreviation: for

every p € 1", 1" bx p. From the compactness theorem, we can easily get:

Corollary 2.3 Monotonicity of W.
Suppose T'1,T2,T3 are sets of formulas, if T1 by 72,72 Fy T3 then T1 By T3,
O

Theorem 2.4 Deduction theorem
Suppose T is a theory, p,q are two formulas, then TU{p} Fx ¢ f T Fx p — q.
o



Proof:

If T'Fx p — g then it is obvious that TU{p} Fx ¢. Suppose rl,...tk, (p — g) is a
proof sequence of p — ¢ in theary T under logic X. Then r1, .., 1k, (p — ¢), p, qis a
proof sequence of q in theory T U {p} under logic X.

Suppose T'UJ{p} Fx g, now we proof T bx p — ¢ according q's proof length.

If q's proof length is 1. then there are two cases to get q.

1. qis p. Then we can easy to prove T bx p — ¢, since (p — p) is a tautology.

2. g€ T or qis an axiom of X. Then q, K0(¢ = (p —q).{g—=(p—q)yp—qisa
proof sequence. So Thx p — q.

Inductively, suppose that the above statement holds when the proof length is not
greater than t.

Let g's proof length be ¢ + 1.

There are three cases to get q.

1. qis an axiom or g = p or ¢ € T. Then from above discussion, we can see that
Tkxp—aq.

2. qis get from (pl — ¢) and pl. both of their proof lengths are not greater then t.
According to the deductive assumption we have:

Trx(p—(pl—q)), Tkx p=—pl

Since {p — (pl — g}, (p — p1) Fx (p — g), we get

TExp—aq.

3. qis get from K0g whose proof length is not greater then t. We have

Tty p— K0g. Since bx K0g — ¢, and (p — K0g), (KOg — q) Fx p — q, we get

Trxp—gq

This concludes the above thearem.

Lemma 2.1 For every formula p,q, agent i, Ki(p — q) + (Kip — Kig).

Proof:

The proof sequence is: Ki(p — q), KO(K:i(p — q) — (Kip — Kig)), (Ki{p — ¢) —
(Kip — Kig)), (Kip — Kig)). O

Lemma 2.2 For every formula p, Fx p iff Fx KOp.

Proof:

Obviously, if by KOp then Fx p.

Suppose Fx p, we should prove -y KOp. We prove it by p's proof length.

When p's proof length is 1. Then p must be X’s axiom. So p is in the form of K0pl.
Then K0p's proof is: p, KO(K0pl ~+ K0K0pl), (K0pl — K0K0p1), KOp. So by KOp.

8



Suppose the above statement is true for all formulas whose proof length is not greater
then t.

Let p's proof length be {t4-1). There arc three cases to get p.

1. pis X's axiom. Then we have already proved that -y KOp.

2. p is obtained from (pl — p) and pl whose proof length are not greater then t.
According to the assumption, we have

Fx K0(pl — p) and Fx KOpl.

From Lemma 2.1 we get: +x KOp.

3. p is obtained from K0Op whose length is not greater then t. Then it is obvious
that Fx KOp.

Thus ends our deductive proof. O

Corollary 2.5 For every agent 1, formula p, il by p then & Kip. O
The conveerse is also true, but the proof is not given in this paper.

Theorem 2.6 Suppose T is a theory and T = Consx(T). For any agent i € Ag, let
T/Ki = {p|Kip € T}, then T/K1 = Consx(T/Ki). |

Proof:

Suppose p € Consy(T/K1). According to the compactness and deductive theory,
there are some formulas {pl, ..., pn} C T/Ki, such that Fx (pl — (... — (pn — p)...)).
According to Corollary 2.5 and Lemma 2.1, we get by (Kipl — (... — (Kipn —
Kip)...)). Since {Kipl,..,Kipn} CT, T = Consx(T) ,s0 Kip€ T. So p € T/Ki.

This theorem shows that every agent's knowledge is logical closed. That is, every
agent in logic X has the same inference ability as X.

Corollary 2.7 Suppose pl, ..., pn, q are well-formed formulas, iy, ..., ix are agents. If
ply,onbyx q, then K; K pl, .. K . K,pntx K, ..Kiq. a

Pl‘ﬂ:}f:

Suppose 1" = Consy({K,,..K,pl,.., K;,..K;,pn}), T' = T/K;,.../K;,. Since {pl,
~apn} © T, pl,....pn by q. So, according to Theorem 2.6, g € T'. Hence, K; .. K, g€
T. So K. Ky pl, ... Ky ..Kymbx Ki,..K;,q.

From this corollary, if g is a propositional logical consequence of formulas pl, ..., pn,
then the above statement does also hald.



Corollary 2.8 Suppose T is a theory, p is a formula, if T i p then T'J{-p} is consis-
tent.

FProof:

Suppose TJ{—-p} is not consistent, then there must be a formula q, such that
TU{-p}tx ~(g—q)

By applying the compactness theory, we get T Fx =p — (={(g — ¢)), 850 T Fx (g —
q) = p. So we get T Fx p, which contradicts the assumption T ¥x p. So, TU{-p}

must be consistent. O

Definition 2.6 Suppose P is a modal formula. We define P*, P’s +-translation, as a
formula that contains no modal operator. P* is defined inductively as follows:

1. If P is a basic formula, then P*=P.

2. (P —=QY=(P — Q)

3. {—l P)' =- P,

4 (KaP)*=P* O

For example, suppose p, q are two basic formulas, then ((Kip — ¢q) — (Kip —
Kig))" =(p—q) — (p— q)).

Lemma 2.3 Supposc formula P € Censx({}), then P* is a tautology. O

This lemma depends on the fact that every axiom's #-translation is a tautology.

Theorem 2.9 For every X € {W, W4, W5}, X s consistent
Proof:
If X is not consistent, then there must be a formula p such that Fx —(p — p).
According to above lemma, — (ps — ps=) must be a tautology. This 15 a contradiction,
so X 15 conststent, o

3 Model Theory about X: X-Kripke Possible World

Structure

In this section, we study the possible world structure for the multi-agent logic class
X e (W, W4, W5},

10



Definition 3.1 W-Kripke Structure

Suppose L is a language based on At and Ag. = = (W,x,w0, R0, R1,.., Rn} is
a Kripke structure based on L, where W is an non-emply set, called the world set.
wi € W is called an initial world; 7 is a map from W to the subset of At; RO,R1,....HEn
are relations on W. Say structure x is a W-Kripke structure, if k satisfies the following
four conditions:

1. Every Ri {1 = 0,1,...,n) is transitive;

2. Foreweryi=1,..,n, R C KO,

3. RO is refiexive;

4. Every Ri is serial. That is, for every world w € W, every agent 1 € Ag, the set
{w'|(w,w') € Ri} is not empty. O

Generally, we denote an id for the reflexive relation on W, id = {{w, w)|w € W}.

Definition 3.2 W4, W35 Kripke Structure

Say W-Kripke structure x =< W, #, w0, R0, ..., An > is a W4-Kripke Structure, if
for every ¢ € Ag, Ri is reflective;

Say W4-Kripke structure & =< W,x, w0, R0,..., Bn > is a W5-Kripke Structure, if
fur every © € Ag, Ri is symmetric O

Definition 3.3 Suppose & = (W, m,wl, R0, A1, .., Bn) is a X-Kripke structure. We
define the semantics entallement relation s, w [=x p, as follows:

1. If p € At, then &, w |=x p iff p € 7(w)

2. k,w =y op iff w,whep

3. rawbExp—qiffif s, wfEypor s,wkExg

4. For every 1 € Ag, &,w |=yx Kip iff for every w' € W, il {w,w"}) € Ri, then
kauw'Exp O

Definition 3.4 Suppose T is a theory, p is a formula, x = (W, 7, w0, R0, R, ..., Rn) is
a X-Kripke Structure, then

Say formula p is valid in X-Kripke structure &, denoted by & |=x p, if 5,00 |=x

Say theory T is valid in X-Kripke structure x, denoted by & x T if, for every
formula p € T, p is valid in X-Kripke structure s;

Say formula p is a semantic entailment of theory T under X logic, denoted by T' F=x p
if, for every X-Kripke structure &, if & x T then & =y p.

We denote the set of all the semantic entailments of theory T by Thy(T). 0O

11



Proposition 3.1 Every axiom in X is valid in every X-Kripke Structure.

Proof:

Suppose & is a X-Kripke structure, and w0 i3 the initial world.

Obviously, axiom A1, KOp is valid in every X-Kripke Structure when p is a tautology.

We can prove Lhat axiom A2, (KO(K0p — K0Kip) is valid.

That is x, w0 f=x KO(K0p — K0Kip). For every wl, if (w0,wl) € RO, we should
prove &, wl =x (KO0p — KOKip). Suppose r, wl Fx KOp. We should prove x,
wl Ex KOKip.

First we have, for every w2, if (wl,w2) € RO, then k, w2 |=x p. Now we need
to prove k, w? f=x Kip . That is, for every w3, if (w2,w3) € Ri, then k, w3 |=x p.
Because Ri C R0, RO is transitive, so &, w3 Fx p, so &, w] x KOKip. So, k,wl [=x
(KO0p — KO0Kip). Hence x,w0 |zx KO(K0p — K0Kip).

A3, KO(Ki(p — q) — (Kip — Kig)), is valid in X-Kripke Structure x.

k,wh k=x KO(Ki(p — q) — (Kip — Kig)). For every wl € W, if (w0,wl) € RO,
then we should prove x,wl Ex (Ki{lp — q) — (Kip — Kig)). Suppose k,wl Ex
Ki(p — g) {(assumption 1), we should prove s,wl f=x Kip — Kig. Suppose &, wl |=x
Kip (asswmption), we should prove x,wl f=x Kig. That is for every w2 € W, if
(wl,w2) € Ri, then k,w2 f=yx g. From assumption 1, we have x,w2 Ex p — g, from
assumption 2, we have &, w2 =y p, so we have &, w2 =y .

So A3 is valid in any X-Kripke Structure.

Ad, K0(KOp — p), is valid because RO is reflexive.

A5, KO(Kip — KiKip) is valid because every relation fti,z = 0,1,...,n is transitive.

A6, KO(Ki-p — —~ Kip) is valid hecanse every Ri is serial.

AT, KO(Kip — p) is valid in X-Kripke Structure (X € {51,55}) because Ri is
reflective in &.

A8, K0O(=Kip — Ki— Kip) is valid in S5-Kripke Structure x because Ri is symmet-
ric. a

Proposition 3.2 X's inference rules are safe.
Mronf:

Suppose p, p — ¢ are true in the X-Kripke structure &, &,w0 =x p and &, w0 F=x
p — ¢. Then k, w0 f=x q
Suppose &, wl =x KOp, Since (w0, w0) € RO, so k,wl =y p. O

From the above two propositions, we can consequently derive X's soundness.

12



Lemma 3.1 Suppose T is a theory, p is a formula, if T Fx p then T Ex p. (W

Theorem 3.3 Soundness of X.

1, Cﬂnsx{{H 15 valid. That is, Cansxl[{}] _ Thx-l:{}}.
2. For every theory T, we have Consx(T) € Thx(T) 0O

Can we have completeness of X7 That is, Consy({}) = Thx({}) and for every theory
T, Consy(T) = Thy(T). From the above discussion, we already have Consx(T) C
Thy(T). In the next section, therefore, we will prove Consx (T) 2 Thx(T).

4 X’'s Completeness

In this section, we will prove that the X logic system is complete. The proof demands

the application of some special techniques. First, we present the following concepts.

Definition 4.1 Say theory T is X-complete, il T = Consy(T) and for every formula
pe L,either p€ T or —p € T. Obviously, L is a X-complete theory. 0O

Theorem 4.1 Suppose T is a theory, then
I. If T s confradiction in X, then Consy(T) s X-complefe.
2 If T 1s consistent in X, then T must have a consistent X-complete superset theory.
3. If T s consistent X-complete |, then for every agent i, there must be a consistent
X-complete set T’ such that T/K:1 C T'. o

Froof:

1. Since T is a contradiction in X, there must be a formula p such that Ty = (p —

p). Since every formula g is a logical consequence of ~{p — p), Consx(T) = L
must be X-complele.

2. Suppose T iz consistent. Now we prove that T has a consistent X-complete superset
T T" is constructed as follows:
Suppose pl, p2,... is the enwmeration of all the formulas in L.
To=T, for every i = 0, we define
Tigr = Consx(T:) if pi € Consx(T,) vr =pi € Consx{(T;)
Tigr = Consx (T;) U {—pi} else
Suppose T' = 1.I_,!LM’I',-, then it is easy to prove that T' is a consistent X-complete
supersel of T, =0

13



3. Suppase T1 = T/K1. It is easy to prove that T1 is also consistent.

If T1 is not consistent, then there must be some formulas {pl,...,pn} € T1 such
that {p1,...,pn} Fx ~(p — p). So, we can prove that Fx (Kipl — ... — (Kipn —
Ki(—(p — p})...). Since Ki(—~(p — p)) Fx = Ki(p — p), we have bx = Kipl v
..V = Kipn. Notice that Kipl € T, ..., Kipn € T, T is a contradiction. This is a
contradiction to the assumption. So, T1 is consistent in X.

According to item 2 of this corollary, we can conclude that T1 has a consistent
X-complete superset T", such that T/K: C T".

Corollary 4.2 Suppose T is a consistent theory in X. Then, for any formula p, if
p € Consx(T), T must have a consistent X-complete superset T' such that - p e T".

Hint: Supposing that the formula p1 in the enumerated sequence of the above theo-
rem is q, then we can obtain this corollary. [m]

Now, we can construct the Canonical X-Kripke structure, based on consistency theory
T in X, as follows:

Definition 4.2 Canonical X-Kripke structure over a X-consistent theory T.

Suppose T is an X-consistent theory. We construct the Canonical X-Kripke structure
& = (W, 7, w0, RO, ..., Rn) as follows:

L. W = {T'|T" is the consistent X-complete set }, and w0 € W, is a consistent
X-complete superset of T.

2. For every w € W, we define x{w) = {p|p € At and p € w}

3. Forevery wl € Wiw2e W, (wl,w2) € Riifwl/KiCw2 O

Then it is easy to prove:

Proposition 4.3 Every Canonical X-Kripke structure x =< W, #, w0, R0, R1, ..., Bn >

is a X-Kripke structure.
Proof:
1. Every Ri is transitive.

If {{wl, w2}, (w2,w3)} C Ri, then we should be able to prove (w1, w3) € Ri. For
every Kip € wl, since wl = Consx(wl), so KiKip € wl. Since (wl,w2) € Ri,
so Hip € w2. Since (w2,w3) € Ri, so p € w3. So (wl,w3) € R1.
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N

. For agent i € Ag, i C RO

Obviously, if (wl, w2} € Ri then, for every formula p, if Kip € wl, then p € w2,
Now, we can prove that if KOp € w1 then p € w2, Since K0p € wl and wl =
Consw(wl), so Kip € wl, so p € w2. So Ri is a subset of RO.

RO 15 reflextve,

This is obvious, for every w € W, if K0p € w, since w = Consx{w), then p € w.
So (w,w) € RO.

. For every agent 1 and every world w, the set {w1|(w,wl) € R1} is not empty.

This is true according to the Theorem 4.1 items 3.

. When X € {54,555}, then every Ri is reflective.

For every w € W, w = Conzx(w). If Kip € w, then p has a proof in w. The
proof is Kip, KO(Kip — p), Kip — p, p. So p € w. So (w,w) € Ri.

. When X = 55, then every Ri is symmetric.

Suppose wl € Wiw2 € W, (wl,w2) € Ri. Now we prove (w2,wl) € Ri. If
not, then there is a formula p such that Kip € w2, p & wl. Since wl is con-
sistent S5-complete, so -p € wl, -+ Kip € wl. According the axiom 8, we have
Ki- Kip € wl. Since (wl,w2) € Ri, 7 Kip € w2, and w2 is inconsistent. This is
a contradiction. So (w2,wl) € R

Lemma 4.1 Suppose w € W, and p is a formula. If Kip ¢ w, then there must be a
w' € W, such that {w,w'") € Ri and -~p € o',

Proof:
First according to theorem 4.1 items 3, T'1 = {g|Kiq € w}is consistent. According

to theorem 2.6, T1 is closed. Since Kip ¢ w, w is closed, so p ¢ T1. According to
Corollary 4.1 items 2, T1 has a consistent X-complete superset w’, such that —p € w'
and (w,w') € Ri.

O

Now, it is easy to prove our main statement:

Theorem 4.4 For every formula p€ L, x,w = p iff p € w. O
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This proof is based on the induction of formula p's length.
1. If p € At, then it is obvious that k,w |= p iff p € w.

2. Suppose the above statement is true for every formula p whose length is not greater
than t.

3. Suppose p is a formula whose length is greater than t. Then, we can prove the
above stalement by following situations.

(a) pis =g, where g’s length is not greater than t. Then,
ko =y pifl kywex qiff ggwiff ~gewiff p € w.
(b) pis g — r, where both formula q and r's length are not greater than t.

sawkypiff cwbEx g—=rifx,wExqorrswkxrifgéworr € will
“geworr€wiff g »rewiff p € w.

{c) pis Kig, where q's length is not greater than t. Suppose s, w [=x Kig. Then
for every w' € W, if (w,w') € Ri then ¢ € w'. Now, we prove Kig € w. If
Kig ¢ w then, according to Lemma 4.1, there must be a consistent complete
superset w', such that (w,w') € Ri and = ¢ € w'. This is a contradiction, so
Kig € w.

On the other hand, suppose Kig € w. For every w', if {w,w') € Ri, it is
obvious that ¢ € w'. According to the induction step, s, w’' =x g. Hence,
k,w f=x Kig. That is &, w |=x p

Theorem 4.5 Suppose T is a consistent theory. Then, for every Canonical X-Kripke
structure of T, k = (W, 0,w0, RO,..., Rn) is a X-Kripke model of T.

Proof:

First by proposition 4.3, x 15 e X-Kripke structure.

Notice, Since T € w0 and wl is a consistent X-complete superset of T, so by theorem
4.4, we have kw0 Ex T. O

According to corollary 4.2 and theorem 4.3, we get:

Corollary 4.6 If p @ Consx(T), then we can choose an initial world w0 for the Canon-
ical X-Kripke structure of T, such that kK, w0 =y =p O
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Suppose theory T is a X-consistent theory, Canx(T') is the set of all the Canonical
X-Kripke structures of T. Obviously, it is a subset of the models of T. From corollary
4.3 and theorem 4.5, it is easy to see that Consx(T) = {p|p is valid in all structures of
Cany(T)}. So, we get the following theorem:

Theorem 4.7 Completeness of X.
Suppose T is a X-consistent theory. Then, all the semantic entailment of T is the
consequence conclusion of T. In other words, Thy (T} C Consy(T). a

Theorem 4.8 Complete Theorem
1. Formula p 1s X-consistent off p has a X-Kripke structure.
2. For every X-consistency theory T, Thx(T) = Consx(T). o

5 Traditional Multi-agent Knowledge Logic Sys-
tem S5, S4, KD4.

In this section, we briefly introduce the traditional knowledge systems 85, 54, KD4. In
the next section, we will discuss the relationship between our X logic systems and logical
systems proposed here.

Notice that there is no fool reasoner in traditional multi-agent logic systems. So we
will discuss the language L1 based only on normal agent set Agl = Ag— {0} = {1,...,n}
and propositional set At. Obviously, L1 is a subclass of the language L which we
discussed in scction 2,

Definition 5.1 [The Traditional Multi-agent Knowledge system S5].
For every L1°s formulas p, q, agent 1 € Agl.
=4's Axioms:

AS1: p, if p is a tautology.

AS2: Ki(p — q) = (Kwp — Kig)
AS3: Kip — KiKip

AS4: Kimp — = Kip

ASS: Kip—p

AS6: - Kip — Ki— Kip.

55's Inference Rules:

Modus Ponens: p,p — g = ¢
Necessitation Rule: p = Hip. =
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Generally AS5 is called knowledge axiom or T-axiom, AS2 is called K-axiom, or
distributed axiom, AS3 is called positive introspective axiom or 4-axiom, AS4 is called
D-axiom, AS6 is called negative introspective axiom or 5-axiom.

Definition 5.2 S4, K4
54 is the logic system 35 without axiom ASE.
KD4 is the 54 logic system deleting the axioms AS5. O

Suppose Y € {4, 54,55}, we define the proof relationship between a theory T
and formula q as in [2], and denoted as T -y g, and denote Consy(T) as {q|T Fy g¢}.

Definition 5.3 Y-Kripke-structure
Say Kripke-structure k =< W,n, R1,..., Bn > is a Y-Kripke structure, if
1. W # {}, W is called a possible world set.
2. 7 is a map from W to 24¢,
3. R, ..., Rn are relations on W such that

1. Every Ri is transitive and serial.

2. Every Ri is reflective if ¥ € {54, 55}.
3. Every Ri s symmetric if ¥ — 55.

O

Definition 5.4 Suppose x =< W,n,Rl,..., Bn > is a Y-Kripke structure. For every
formula ¢ € L1, every world w € W, we definc &k, w |=y ¢ as follows:

L. k2w =y g ifl g € m(w), if g € At.

2. 8w b=y g iff K, wlsy g

3. kaw =y p— qiff k,wleyp or k,w Yy g

4. For every 1 € Agl, x,w =y Kip iff for every w' € W, if (w,w') € Ri then
ko' ey p O

Definition 5.5 Suppose x =< W, R1,..., Bn > is a Y-Kripke structure, T is a theory,
p is a formula;

Say p is valid in x, denoted by & =y p, if for every world w € W, k,w =y p.

Say T is valid in «, denoted by x |=y T, if for every formulap € T, & =y p.

Say p is a Y-entailment consequence of T, denoted by T" =y p, if for every Y-Kripke
structure s, if T is valid in &, then p is also valid in k. We denote all the Y-entailment

consequence of T is Thy (1), 0O
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Theorem 5.1 For every theory 5 and formula g in L1
1. SEgpea f Stepag
2, Sl=gaq ff Sksag
3. SI"—-"SSQ iff Stgag O

Modal logic Y does not have the deductive properties. For example, p by Kip, but
Ky (p — Kip). In the following section, we will study the relationship between class X
and class Y.

Briefly, the main difference between class X and class Y are:

1. Logic class Y has Necessitation Inference Hule: p = Kip. But X does not have
this inference rule, X has only Safeness Rule K0p = p.

2. Xhasa foc:i.rea.s-:-ner, but Y does not.

3. Every axiom of X can be viewed as the fool's common knowledge, but axioms of
Y can only be viewed as agent’s knowledge.

4. In X, the knowledge axiom only holds for foal reasoner, that is only K(p — p hold
in X. In 54 and 55, the knowledge axiom holds for every agent. Of course in KD4,

no agent has the knowledge axiom.

5. X has a good computational property, the deduction properties [Ref Theorem 2.4},
but Y does not have this property [ref [2]}.

6 Relationship between Class X and Class Y

Suppose [isamap f : {W, W4, W5} — {K D4, 54,55}, such that f(W) = KD4, f(W4) =
54, f(W5) = 55, In this section, we will study the relationship between X and f(X).

Theorem 6.1 For every theory T of L1, and formula q of L1, if Sk=yq then Sk 0.
Proof:
Suppose the above statement is nol true. Then there are some theory S and formula
q on LI such that S|=,q but SH pixy9-
Since Sbéﬂx]q, there must be a f{X)-Kripke-Structure k =< W,x R1, ..., Bn > such
that Ki=p )5 but mfE gy q. So there must be a world w' € W such that k,w'l=,  ~q.
Now, we construct a X-Kripke-Structure vy =< Wi, w0, m, R0y, R1y, ..., Bnq > as
following:
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LWy =W, wd=w', 7y =m, Fori=l,...,n, Ri, = Ri.

2. RO, = trans{id U R1U ..,URn) ! if X € {W,W4}.

3. RO, = trans-symmetrie (id U R1U ...,URn) ? if X = W5,
It is easy to check that k, 1s a X-Kripke-Structure.
Inductively on formula's length, we can prove that:

Lemma 6.1 For every formula q in L1, every world w € W, x,wls; g iff
KLwEyg. O

If q is an atom, then it 15 obviously true.
Suppose the above statement is true for the formulas whose length is not greater than

If ¢ is ~p, and p’'s length is not greater than t, then for every world w € W,
g, w0 f B, wiE e iffwe W, K, Wi o p iff k1, wExg.

If g is pl — p2, pl,p2's length is not greater than t, then it is also easy to prove the
above statement.

If g is Kip, then for every world w € W, &, wl= g iff for every {w,w') € Hi,
#, W'k xyp Uf for every world (w,w') € Ri, ry,w'xp iff K1, wh= g

So we have inductively proved our main statement.

Since k, W'y )" ¢ and Kl gy, 5, s0 k1, wll=y =g and k1, w0=x 5.

Since S =x q and k1, w0}=,S, 50 k1, wlE=yq.

Obviously it is a contradiction and hence we prove our theorem. O

Corollary 6.2 For every theory S and formula q on L1, if Skxq then Skgxyg. O

Theorem 6.3 For every theory S and formula g on LI, if we have SI:I{qu then
K0Sk, K0q.

Proof:

Suppose there are theory § and formulas g on L1 such that Sk= 5, and K0S, K0q.

We can find a X-Kripke structure x =< W, m,w0, R0, R1, ..., Rn > such that:

1. For every k,wi}=, K05.

2, k,wl x KOg.

Suppose W, = {w|(w0,w) € RO}. Then we can find that:

3. For everyw € Wi, k,w Ex S.

Vtrans(S) is the least transitive relation containing the relationship 5
Y rans-symmetric($) is the least transitive and symmetric relation containing the relationship 5
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4. There 1s a w' € Wy, such that x, 0w}~ p.

Now we construct a f(X)-Kripke Structure k, =< W}, 7y, R1y,..., Rny > such that
m1=yx)S and k10

f{X)-Kripke-Structure xy =< Wi, m, R, ..., Bny > s constructed as follows:

1. W, s defined above.

2 m=m

3. For everyi=1,..,n, Ry = Rin{W; x W;).

Obviously, kappa; is a f{X)-Kripke structure.

It is easy to prove (by inductive on formula's length) that:

For every formula p € L1 and w € W), &, wi=yp ifl 51, wl=; x,p.

For everyw € W, k,w |=x S, we have k1= xS There is a w' € Wy, x,w'leyg,
we have K[ p x1q. Since § =pix) q, from k) =y S, we get Ky Fyxy g This is a
contradiction to kappa, f=; y,q. And hence we prove our theorem. o

Then we get the most important conclusion:

Theorem 6.4 for every theory 51, formula p of L1, we have
1. If Sk ¢ xyq then KOSk x K0Og.
2, If Skxq then Sk pixa. O

7 Conclusion

From above discussion, we have seen that traditional knowledge and belief modal logic
systems about multi-agent system only reflect our fool’s inference ability. Our new logic
class has more advantages than traditional logic. First is the inductive property. Second
is that it has no necessary inference rule. So real world knowledge may be not known
by any agent. Third, every normal agent's knowledge can be inconsistent with the real
world knowledge. For example, suppose i is a normal agent, then pA Ki=p is valid in W,
p A Kipis valid in W4, W5. Fourth, it gives an especially complete account of what is
common knowledge and how to use common knowledge. In contract to the research in
6] and [5], where they try to find what is commen knowledge in traditional S5 systems,
we only describe what is common knowledge, and then we concentrate our attention on
how to use it.

There are fundamental relationships between our logic class and the traditional class.
Our logic class is much better than the traditional logic, since traditional logic can be
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expressed in our new logic. Logic proposed in this paper correctly models the multi-
agent reasoning system based on shared common knowledge view. It can solve most of
the problems in this field. Some examples, such as the conway paradox, can be found
in (23], [27). In further upcoming papers, we will describe our logic’s proof theory, the
common knowledge concept here and the concept in [1] [5], and the least information

extension problem which was discussed in {5].
Acknowledgments

The author wounld like to thank Professor Kazuhiro Fuchi, pre-director of the ICOT
research center, Dr. Shunichi Uchida, the director of the ICOT research center, Professor
Koichi Furukawa, pre-vice-director of the ICOT research center for their encouragement.
Special thanks go to Dr. Katsumi Nitta, manager of the second research laboratory, Dr.
Akira Aiba and all the colleagues of the second research laboratory of ICOT for their
discussion and valuable suggestions. Great gratitude goes to Mr. K. Narita for his great

help while the author worked and lived in Japan.

References

[1] Barwise, J., Three Views of Common Knowledge, TARK’S8, pp.365-380.
(2] B.F. Chellas, Modal Logic, Cambridge University Press, 1980.

(3] Fagin, R. and Halpern, 1.Y., Reasoning about Knowledge and Probability: Prelim-
inary Report, TARK'SE, pp.277-293.

(4] Fagin, R., and Joseph Y. llalpern, Belief, Awareness, and Limited Reasoning: Pre-
minary Report, ILTJCAT'85, ppa91-501.

[5] Fagin, R., Halpern, J.Y., and Vardi, M.Y., A Model-Theoretic Analysis of Knowl-
edge, JACM Volume 38, Number 2, 1991 April, page 382-428,

[6] Halpern, J.Y. and Maoses, Y., Knowledge and Common Knowledge in a Distributed
Environment, in Proc. 3rd. ACM Symp. on Principles of Distributed Computing,
ppa0-61, 1984, A revised and expanded version appeared in JACM Vol. 37, No. 3,
July, 19490, pp. 549, 587.

(7] Halpern, 1.Y. and Moses, Y., A Guide to the Modal Logic of Knowledge and Belief,
LJCAT'85, pp.480-490.

22



[8] J. Hintikka, Impossible Possible Worlds Indicated, J. Philosophical Logic 4 (1975),
pp.4T5-484.

[9] J. Hintikka, Knowledge and Belief, Cornell University Press, 1982.
[10] Konolige,K., Circumscriptive Ignorance, AAAL-82, pp202-204.

[11] Konolige, K., A Computational Theory of Belief Introspection, 1IJCAI'85, pp502-
508,

[12] Lewis, D., Convention, A Philosophical Study, 1969, Harvard U. Press.

[13] D. Lehmann, Knowledge, Common Knowledge, and Related Puzzles, in Proceedings
of the 3rd Annual ACM Conference on Principle of Distributed Computing, 1984,
pp 62-67.

[14] Levesque, A Logic of Implicit and Explicit Belief, in Proceedings of the 1984 Na-
tional Conference on AL, AAAL-R4, pplB98-202.

(18] J. McCarthy, M. Sato, T. Hayashi, S. Igarashi, On the Modal Theory of Knowl-
edge, Computer Science Technological Report STAN-CS-78-657, Stanford Univer-
sity, April 1978.

[16] Marek, V.W. and Truszezynski, M., Non-monotonic Logic, Context-Dependent
Reasoning, Springer-Verlag, 18994,

(17] R.C. Moore, Semantical Considerations on Non-monotonic Logic, Artificial Intelli-
gence, 25:75-94, 1885,

[18] Nakashima, H., Peter, S., and Schutze, H., Communication and Inference through
Situations, IJCAI'9L, pp.76-81.

[19] Schiffer, S., Meaning, 1972, Oxford University Press.

[20] Yoav Shoham, Yoram Moses, Belief as Defeasible Knowledge, [ICAT'89, 1168-1172.
A extended and completed version of this paper has been published on Journal of
Artificial Intelligence 64 (1993) 299-321.

121] Vardi, M.Y. A Model-Theoretic Analysis of Monotonic Knowledge, [JCAT'S5,
pp509-512.

23



[22] Vardi (ed.), Proceedings of the Second Conference on Theoretical Aspects of Rea-
soning about Knowledge, 1988.

[23] Wang Xianchang et al., W - A Logic System Based on Shared Common Knowledge
Views. In the Proceedings of IJCAI'93, pp410-415.

[24] Wang Xianchang and Chen Huowang, On Assumption Reasoning in Multi-Reasoner
System, In the Proceedings of Pacific Rim International Conference on Artificial
Intelligence, 1990.

[25] Wang Xianchang, Non-Monotonic Reasoning and Non-Monotonic Reasoning Sys-
tem -WMJ. Ph.D. Thesis, 1991, Changsha Institute of Technology, P.R. China.

[26] Wang Xianchang, Knowledge and Common Knowledge : Their Representation and
Reasoning, Journal of Computer Science, (in Chinese}, vol. 1, pp9-16, 1993.

[27] Wang Xianchang, Yuan Li-Yan, You Jia-Huai, On the semantics of A shared Com-
mon Knowledge Distributed Logic System, Submitted to Journal of Artificial Intel-
ligence.

[28] Wang Xianchang, Relationship Between Multi-agent Logic System W and Weak 55
Systems. Institute for New Generation Computer Technology (ICOT), 1994,

24



