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Abstract

In this paper, a complete logic systen, W, that is based on shared com-
mon knowledge views is proposed. The hasic properties of W are: L.
Every agent is logically closed. That is, every agent knows the con-
clusion of its knowledge. 2. One normal agent’s knowledge need not
necessarily be true in the real world. This means that if 1 is not a ool
agent, it is a normal agent, then Kip A-p is consistent. 3. Common
knowledge is true in the real world. 4. Common knowledge is the so-
called Fool's knowledge, in that every agent knows it, every agent knows
that every agent knows it, and so on. 4. Compared with preciously pub-
lished works on common knowledge, our logic system emphasizes how to
use common knowledge, rather than how to define common knowledge.
This logical system describes a multi-agent reasoning system based on
shared common knowledge views. And, finally, this logical system, W,

is sound and complete.

Key Words: Modal, Logic, Knowledge, Common Knowledge, Dis-
tributed, Agent.

1 Introduction

In recent years, the representation and reasoning of knowledge and commeon knowledge
have become more and more important topics of research in the field of Al. This is
because ‘intelligent agents must be able to reason about their own knowledge as well as
other agents’ knowledge’ [20], and ’reasoning about knowledge is also crucial in under-
standing and reasoning about protocols in distributed systems’ [7].

The building of such a logic system, and fitting it to distributed processing systems s
not an easy task. Many knowledge-based multi-agent logic systems have been proposed,
hut all suffer from their own particular problems, because 'there is no agreement on
exaclly what the properties of knowledge are or should be. For example, is it the case
that vou know what facts you know? do you know what you don’t know? do you know
only true things, or can something you 'know’ actually be false?" [7].

Generally, the main disagreements related to the properties of knowledge-based
multi-agent reasoning systems are as follows:

1. Should each normal agent’s knowledge be true in the real world? That is, should



the statement Kip — p (i is not a fool) be true in the knowledge system? According to
some authors’ arguments, if a logic system does not contain the axiom Kip — p, then
the logical system is called belief system.

2. Should real world knowledge be known by all agents? That is: should the necessity
inference rule of the classic modal logic, p = Kip be included in the knowledge system?
Many interesting multi-agent reasoning puzzles, for example, the Conway Paradox puzzle
[22], and the Three Wise Men puzzle [10] [23], require that real world knowledge not be
known by any agent.

3. Should the knowledge distributed axioms Ki(p — ¢) — (Kip — Kiq) be held in
the logic system? Generally, if we do not consider the logical omniscience problem [8],
then we generally accept this axiom. In fact, most knowledge and belief logic systems
accept this axiom. Such logical systems are referred to as normal modal logic in [16].

4. Should an agent have positive introspective ability? That is, should the axiom
Kip — KiKip be included in the logic system? Most researchers agree that this axiom
should be included.

5. Should the agent have negative introspective ability? That is, should the axiom
- Kip — Ki- Kip he included in the logic system? There is great disagreement on
this point. This axiom has a little relevance to the necessary rule. If we take — Kip as
real world knowledge, which means that an ouisider (or a god) can observe that agent i
does not know statement p, then, according to this axiom, agent i should know that he
does not know statement p. In our opinien, this is too strong a property to assign to an
agent, therefore in our logic, we do not accept this axiom.

6. If we suppose an agent to be consistent, then it is reasonable to believe that if
agent 1 knows — p, then agent i will not know p. So, we believe that an idea logic system
will contain the axiom Ki-=p — - Kip.

Briefly, our opinions about a multi agent logic system are as follows:

1. Tautology should be known by any agent, every tautology being decidable by every
agent.

For example, suppose that i is an agent, and p is a statement. Then, Ki(p V —p)
is true and agent i can prove that pV —p is true,
2. The agent’s knowledge need not he complate.

That is, some knowledge p and its negative = p will not be known by agent 1. So
Kip v Ki—p should not be a conclusion of our logical system.
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The knowledge known by a normal agent i, can be inconsistent with the real world.

This means that, suppose i is a normal agent, (Kip) A—-p is consistent in our logic
system [ref Kxample 3.1]. Then, the axiom in modal logic 55, Kip — p can not

he held in our logic system.

. Real world knowledge should not be known by any agent. This means that the

necessitation rule in modal logic can not be included in our logical system.

One of the basic ideas behind our logic system is: a truc real world knowledge ‘p’
is not necessarily obvious to every agent. In other words, real world knowledge is

not shared common knowledge.

. Every agent should be positive introspective, and should not be negative intro-

spective.

. Considering the real world knowledge and agent's knowledge, we can assume that

if agent knows — p then that agent should not know p. That is, if an outsider {or
a god) observes that agent i knows - p, then the outsider will assume that agent 1
does not know p.

. Common knowledge should be typical knowledge of our system. Common knowl-

edge should be black board knowledge. In most preciously published papers such
as: [1][71[6], it was assumed that common knowledge should be defined by infinite
deductions. Our opinion about common knowledge is that, common knowledge
should have the infinite deductive properties, but it should not be limitted to and
defined by this property.

Common knowledge should have the {ollowing properties:

(a) First, as in [15], we introduce a fool reasoner and assume that whatever a
fool knows is common knowledge. In this paper we assume that 0 is the fool.
Then, if KOp appears in a theory, p shonld be common knowledge.

(b) Tautology should be commen knowledge.

(¢) Common knowledge should be true in the real world. This means that we
should accept the axiom K0p — p and the safeness rule K0p = p.
Further, if we consider the fact that common knowledge should be true in the
real world, is also a common knowledge, that means , if we accept KO(K0p —
p) as an axiom, then we should also have the safe rule KOp = p be included
in our logical system.



(d) If p is common knowledge, then for cvery agent i, Kip should alse be commen

knowledge.

{e) The Fool should have positive introspective ability. This means that, if p is

common knowledge, then KOp will also be common knowledge.

(f) Compared with the common knowledge definition in [1], one of the most
important aspects of our logic system should be: We take care only of how to
use common knowledge rather than concerning ourselves with what common

knowledge is.

In the past few years, we have tried to devise a logic system that describe the above
properties. This paper presents an improved and complete version that is based on our
findings [22][23][24}[25]. Main reasons undertaking this project are:

1. Previously, there were no logic systems that could satisfactorily reflect the typical

properties of a shared common knowledge distributed knowledge system.

2. Classic and improved modal logic can not (at least, not without great difficulty)
deal with distributed knowledge processing systems, there was, therefore a pressing

need to devise a satisfactory modal logic.

3. Because distributing processing systems are becoming morc and more important
as the scale of knowledge processing increases, it can be clearly seen that there s
an urgent need to find a satisfactory logic model for distributed processing.

Figure 1 simply illustrates a multi-agent system that is based on shared common
knowledge views in which p is same as - p. It includes the real world, the fool agent,
the normal agents, and shows how each is interrelated.

The paper is organized as follows: In section 2, we present a formal logic system,
W, which is an improvement of our logic system presented in [22][23]. W has all the
meta-properties of classic modal logic, including compactness, as well as monotonic and
deductive properties. Important results are: Every agent’s knowledge is closed under W
[ref Theorem 2.7]; If a theory T's *-translation is consistent, then T is also consistent
[ref Theorem 2.10]. In section 3, we present the model theory on which W is explained.
We propose W-Kripke structures, based on the Kripke structure, and provide some
explanations about the W-Kripke structure by means of examples. In section 4, we
prove W's sounduness. In section 5, we prove W's completeness, based on the Canonical
W-Kripke structure. Finally, in our conclusion, we briefly review our work and future
work to be performed regarding W,
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Figure 1: A Model for Shared Common Knowledge
Multi-agent Reasoning System

2 W System

Suppose At is a set of primitive statements. Ag = {0,1,...,n} is the set of agent, in

which 0 is called the fool agent, the rest is called the normal agent or agent if 1t 13 not

confused. Informally, 0's knowledge is common knowledge, which is known to all agents.
First, we define the syntax of the well-founded formulas based on At and Ag,

Definition 2.1 A well-founded formula based on At and Ag can be inductively defined
as follows:

1. If p € At, then p is a well-founded formula.

2. If p, q are well-founded formulas, i € Ag, then Kip, (-p),(p — g) are also
well-founded formulas.

3. All well-founded formulas are defined by the finite compositions of steps 1 and 2.
O

We denote the set of all the well-founded formnlas based on At and Ag, by L.
We use special symbols to abhreviate some formulas, We write (pV g) for (- p — qJ,
pAgfor ~{p— —gq),p=pior(p — g)A{g— p). Assume formula P to be a basic

formula if P contains no modal operator.



The axioms and inference rules of W are defined as shown below. This is an improved
logic system, based on [22] [23].

Definition 2.2 W's axioms:
Al. KOp, if p is any tautology.
A2. KO(KOp — K0Kip) .
A3. KO(Ki(p — ¢q) — (Kip — Kiq)).
A4, KO(KOp — p).
A5. KO(Kip — KiKip).
A6. KO(Ki~p — - Kip).
W's inference rules are
Modus Ponens: p,p — ¢ => ¢
Safeness rule: Klp =p O

Notice that, safeness rule can be excluded from W, if we add a new axiom KOp — p
into W.

Definition 2.3 Extension

Suppose theory T C [, we define Cons(T'), the extension of T, as being the smallest
subset of I, that satisfies the following conditions:

1. TU Axioms C Cons(T)

2. If p € Cons(T),p — g € Cons(T) then g € Cons(T)

3. If KOp € Cons(T) then p € Cons(T) O

Obviously, the concept of extension is well-defined and unique for every theory.

Now, it is not difficult to prove the following theorem.

Theorem 2.1 Constructive Property of Cons(T).

Suppose T is a theory. We can inductively construct the fufia-iuing sets:

Consg(T) = Axioms UT, and for alli > 0:

Consigy(T) = Cons;(T) U {q] there are formula p such that {p,p — ¢} C Cons;(T),
or KOg € Cons;i(T)}

Then Cons(T) = 1_?5: Cons;(T) O

Suppose T is a theory. As in {2], we can define the prove relationship between T and
well-formed formula p. We denote this by T F p, where p is called the consequence of
T. Ohviously, the consequence set of T is Cons(T'). that is, Cons(T) = {p|T I p}.
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Definition 2.4 [Contradictory]

Say theory T contradicts the agent sequence < iy, .y it >, if there is a formula p, such
that both p and K,,...Kiz—p can be proven under T. If k=0, say T is contradictory
(or inconsistent). If k =1, say T is contradictory about agent t;. ] '

Say theory I' is consistent, if il is not contradictory. Say T is consistent about agent
sequence < ij, ..., i >, if it is not contradictory about < 1y, ...,1x >. Obviously, if theory
T is consistent aboul agent sequence < iy, ...,i; >, then it must be consistent.

If theory T is not consistent, then for every well-formed formula p, we have T F

={p — p).

Theorem 2.2 Compactness theerem
p € Cons(T) iff there is a finite subset T of T, such that p € Cons(T) Or equally
Cons(T) = U{Cons(T)|T' C T and I" is finite } O

Suppose T, T" are two sets of formulas. We then write 1"+ T' as the abbreviation:
for every p € 1", T & p. From the compactness theorem, we can easily get:

Corollary 2.3 Monntonicity of W,
Suppose T1,T2,T'3 are sets of formulas, if T1FT2,T2F T3 then T1 F T3, O

Theorem 2.4 Deduction theorem
Suppose T is a theory, p,q are two formulas, then TU{p} F g if and only o ThHp—
q. ]

Lemma 2.1 Suppose p is a tautology, il,...,in are agents, then F K. K, p holds. m|

Whether this lemma holds depends only on axioms Al, A2, It shows that every
agent knows the tautology, and that every agent knows that other agents (include itself)
know the tautology, and so on.

Lemma 2.2 For every formula p,q, agent i, Ki(p — q) - (Kip — Kig). O

Whether this lemma holds depends only on axiom A3. Notice that this lemma does
not mean {Kip — Kig)  Ki(p — g). Cenerally we do not have (Kip — Kiq) F
Ki(p — g).

Lemma 2.3 For every formula p, p € Cons({}) iff KUp € Cons({}). O



Whether this lemma holds depends only on the following two assumptions:
1. Every axiom of W is in the form of K0(...);

2, Knowledge distributed axiom A3 is needed.

Notice that this lemma does not mean p = KOp.

Corollary 2.5 For every agent i, if p € Cons({}) then Kip € Cons({}). O

Theorem 2.6 For every well-formed formula p, g, agent 1, we have
+ KO(Kip A KO(p — q) — Kig) and
FKG{KD}JJ“\ Ki{p— q) — Kig) a

This theorem shows that the fact that every agent can do modus ponens reasoning

based on its own knowledge and common knowledge is, itself, common knowledge.

Theorem 2.7 Suppose T is a theory and that T = Cons(T). For any agent 1 € Ag, let
T/Ki = {p|Kip € T}, then T/Ki = Cons(T/K1). O

Praof:

Suppose p € Cons{T/K1i), then, according the compactness and deductive theory,
there are some formulas {pl,...,pn} C T/K4, such that F (pl — (... — (pn — p)...}).
According to Corollary 2.5 and Lemma 2.2, we get - (Kipl — (... = (Kipn — Kip)...})).
Since {Kipl, .., Kipn} CT, T = Cons(T) ,s0 Kip€ T. Sop € T/Ki.

This theorem shows that every agent’s knowledge is logical closed. That is, every

agent has the same inference ability as W.

Corollary 2.8 Suppose pl, ..., pn, q are well-formed formulas, and that 1,,..,1; are
agents. If pl,...,pn kg, then K, .. K, pl, .. K, .. .K,pn+ K; .. K.q. (m|

Proof:

Suppose T = Cons({K,,...Ki,pl, .., Kiy.. Kyypn}), T' = T/ K, .../ Ki,. Sinee {pl,...,pn} C
T', pl,...,pn = q. So, according to Theorem 2.7, g € 1. Hence, K; ..K;,q € T. So
K. Kipl,.. K. K,pnt K. K.q

From this corellary, if q is a propositional logical consequence of formulas pl, ..., pn,

then the above statement dees also hold.

Corollary 2.9 Suppose T is a theory, p is a formnla, if T p then TJ{=p} is consis-
tent.

Proof:



Suppose T'U{—p} is not consistent, then TU{=p} F ~(p — p). By applying the
compactness theory, we get T —~p — (=(p — p)), so T+ {(p — p) — p, so we get
T - p, which contradicts the assumption 1"/ p. So, TU{=p} must be consistent. O

Definition 2.5 Suppose I’ is a modal formula. We define P*, P's =-translation, as a
formula that contains no modal operator. P* is defined inductively as follows:

1. If P is a basic formula, then P*=P.

2 (P —Q)=(P"—= Q) and (= F) =—F"

3. (KiPy =P O

For example, suppose p, q are two basic formulas, then ((Ki(p — ¢) — (Kip —
Kig))* = (p - q) = (p — 4)).

Lemma 2.4 Suppose formula P € Cons({}), then P* is a tautology. U

Whether this lemma holds depends only on the fact that every axioms’ =-translation
is a tautology.

Theorem 2.10 Suppose T s a finite theory, if T+ 15 consistent under propositional

calculus, then T is consistent ebout every agent sequence <11, .., ih > u

Proof:

Suppose T" is consistent under propesition caleulus. We can prove that T is con-
sistent about every agent sequence < il,..,ik > (k > 0). Tf T is not < il,..,tk >
consistent. Then, there must be a statement p, such that pA K1l...Kik(=p} € Cons(T).
According to the deduction theorem and Lemma 1.4, we have T — (pAKil. Kik{=p)) €
Cons({}), and T* — (p = A—=p*) is a tautology, So =T+ must be a tautology, which
contradicts the assumption that T's is consistent under propositional calculus, So, T is
consistent about every agent sequence < il,...,1k >,

Corollary 2.11 Cons({}) is consistent about every agent sequence < 1l,..,tk > 0O

Cenerally, a theory T can be divided into n+2 parts. T = T.UTUT ... UT,, Where
for ¢ € Ag, T; denote all the Ki(...) formulas in T, T is the rest formulas of T, Some
times, we denote T; by Ki{p|Kip € 1;}. We call p is common knowledge, if K'ip € Tj;
p is agent i's knowledge if Kap € Ti: else p is regarded as real world knowledge.
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Example 2.1 [Conway Paradox]

During a card game, both Max and Pat have an ace. If either is asked whether they
have any knowledge about the other person’s cards they will answer 'no’. Their answer
will not change if the question is repeated. But, if someone tells them “at least one of
you has an ace”, a fact they can infer from their own cards, the answer will be ‘no’ the
first time they are answered{Max), and ‘Yes, he/she has an ace’ the second time (Pat).
How can we deal with this kind of reasoning? O

Suppose p is the statement ‘Max has an ace’, and q is * Pat has an ace’. Then, the
Conway Paradox 's formal description as a theory is follows:

70 = {p,q, K0(p — Klp), KO{—~p — Kl-p),

K0(g — K2¢), KO(~q — K2-4q),Klp, K2¢} =

{p,q}V ;system knowledge

K0{p — Klp,~p— Kl-p,q— K2q,~¢ — K2~ g}V ;common knowledge

K1{p}V ;agent 1 (Max)'s knowledge

K2{q} ;agent 2 (Pat)'s knowledge

According to theory TO, we can not obtain any new information by repeating the
inguiring. That is, TO is consistent with the formulas set Rp={K0- K1q, K0-~ K2p}.

Now, if we tell the players “at least one of you has an ace”, which means if we add
K0(pV g) into TO, and get theory T1 = T0U {KO0(pV ¢)}. Then, after we add the first
answer KO- K1g to T1, and get theory T2, then we can conclude K2p from T2 *. The
proof is as follows:

T2+ K2p

01. KO(K1=pA KO(=p— q) — Klg) ...... Theorem 2.6

02. KO- Klg.....T2

03. KO- Kl-pV-K0{-p—q)) ....c. 1, 2, corollary 2.8

04. KO(pV q) ...... T2

05. KO(=p=g) ... 4, corollary 2.8

06. KOKO{—~p — ¢) ......5, axiom 1, and safeness rule

07. KO- K1=-p .....03, 06 and corollary 2.8

08. KO(-p— Kl-p) ...... T2

09, Kop ...... 7.8, and corollary 2.8

10. KOK2yp ...... 9, axiom 1

'n fact, to prove A 2p, we should first prove K 0p, meaning that, under theory T2, even the fool ean
conclude that p is true.
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11. K2p ......10, safeness rule

Hence T2 + K 2p.

From Theorem 2.10, we can prove that T1 is consistent because T'1* is consistent.
To prove T2's consistency, we have Lo find a model for T2. This is given in the next

section,

3 Model Theory: W-Kripke Structure

Definition 3.1 W-Kripke Structure

Suppose L is a language based on At and Ag. ~ = (W,m,w0, 10, R1, ..., HRn) is
a Kripke structure based on L, where W is an non-empty set, called the world set.
wl € W is called an initial world; = is a map from W to the subsct of At; RO,R1,....Ikn
are relations on W. Say structure & is a W-Kripke structure, if x satisfies the following
four conditions:

1. Every Ri (i =0,1,...,n) is transitive;

2, For every ¢ = 1,...,n, Hi C I,

3. RO is reflexive;

4. Fvery Ri is serial. That is, for every world w € W, every agent ¢ € Ag, the set
{w'|(w,w") € Ri} is not empty. O

Generally, we denote id for the reflexive relation on W, id = {{w,w})|w € W}

Definition 3.2 Suppose x = (W,n, w0, R0, {1, ..., in) is a W-Kripke structure. We
define the semantics entailment relation &, w = ¢, as {ollows:
1. If pe Af, then k,w = piff p € n(w)
2. kawkE-pill s,wEp
3kwEp—gillifswlporsuwlg
4. For every i € Ag, £, w |= Kip iff for every w' € W, if (w,w'} € Ri, then s, w' = p
o

Definition 3.3 Suppose T is a theory, p 1s a lonnula, for every W-Kripke structure
w = (W, m, wl, RO, RL, ..., Bn), we define:

Formula p is valid in x, denoted as & |= p, if K, w0 |= p;

Say theory T is valid in W-Kripke structure s, denoted as & = 1" if, for every formula
p €T, pisvalid in &;

12



R1/RO
wil wl

RO RI/RO
Figure 2

Say formula p is a semantic entailment of theory T, denoted as T' |= p, if for every
T's valid W-Kripke structure x, p is also valid in «;
We denote the set of all the semantic entailment of theory T by Th{(T). O

Example 3.1 Suppose At = {p}, Ag = {0,1}, then theory T" = {p, K1-p} can be
satisfied. One of T's W-Kripke model is x = (W, =, w0, RO, R1}):

W = {wo,wl}, w(wd} = {p},7{wl) = {}, B0 = {(w0, w0}, (w0, wl), (wl, wl),
Rl = {(w0,wl)}, (wl,wl}}.

Above W-Kripke model can be described by Figure 2, where every node is the world,
the link denoted by Ri from node w to w' express that (w,w') € Ri. O

Example 3 is adapted from [20] [5].

Example 3.2 Suppose At = {p}, Ag = {0,1,2} where 1 is agent Alice and , 2 is agent
Bob. The statements in [20] [5] are:

p is true;

Alice doesn't know whether p is true or false;

Bob knows thal p is true;

Alice knows that Alice doesn’t know about p, but Alice knows that Bob knows
whether p is true or false;

Bob knows that he knows p, bt he doesn't know whether Alice knows p;

Alice knows that Bob doesn't know whether Alice knows about p.

The above statements can be described by theory T as:

T={p,~Klp,~Kl-p K2p, K1-Klp, K1- K1-p,

K1(K2pv K2-p), K2K2p,~ K2(Klp Vv K1-p),

K1=K2(Klpv K1-p)}

one of T's W-Kripke madels x = (W, 7, w0, R0, R1, R2) is:

W = {w0 = {p},ul = {},u2 = {p})

R1 = {(w0,wl), (wh, w?2), (wl,wl}, (wl, w2), (w2, w2)}

R2 = {(w0, w0), (wd, w2), (w2, w?2), (wl,wl)}

13



R2/RO

Fi 3
igure w0
RIRI/RG
H1/EO
RIRO
wl w2
li-..________\—
' R1/RO
R2/RI/RD RZ/R1/RO
RO=1dU R1 U R2.
% can be described as shown in Figure 3. o

Example 3.3 Let's consider Example 2.1 in the previous section.

T0 = {p,q, KO(p — K1p), KO(~p — K1-p},

Ko{qg — K2¢), K0(—q — K2-q), Klp, K2g} has the following W-Kripke structure
models:

k) = (W, r, wl, RO, R1, it2)

W0 = {w0 = {p,q}, wl = {p}, w2 = {g},wd — {}}

R1 = {{w0,w1), (w1, wl), (w2, w2), (w2, wi), (w3, wd)}

R2 = {(w0,w?), (w2, w), (wl,wl), (w1, w3), (w3, wd)}

RO =id U R1U H2U {{wl, wi)}

We can see that = K0(p V g), K0~ K1lq, K0~ K2p, K1~ K0(pV q), K2-K0(pV ),
K2q, K2- Klp, K1- K2g are satisfied in model x0.

k0 can be described by Figure 4.

T1=T0U{K0(pV¢q)} has the following W-Kripke structure model:

k1 = (W1, n, w0, H0, &1, 2]

W1={w0= {p,q},wl = {p} w2 = {q}]

R1 = {{w0, w0}, (w0, wl}, (wl,wl), (w2, w2)}

R2 = {(w0, w0}, (wh, w2), (w2, w2), {wl,wl}}

14



RI/RI/RD

Figure 4 RZ/RI/RO
R2/R1I/RO R2RI/RO RZ/RI/RO
Ri/RO Q R2/RO 8
N \—
wl wi w2
Figure 5

RO =1d U R1U K2

We can see that K0(p v ¢), = K0=Klg, “K0=Kl~gq, ~ K0~ R2p,

= K0= K2-p, KO- Klg — KO0g are satisfied in model x1.

%1 can be described by Figure 5.

T2 =T1U {K0- Klq} has the following W-Kripke structure model:

K2 = (W2, 7, w0, RO, R1, R2)

W2 = {w0 = {p, g}, w1 = {p}}

R1 = {{w0, w0}, (w0, wl), {(wl,wl)}

R2 = {(w0, w0}, (wl,wl)}

RO =1idU R1U R2

In this model, formulas K0(p Vv g), KO- K1g, Klp, = K1g, ~K1-q, K2q, K2p are
satisfied.



RZ/R1/RO RERI/RO

Ri/RO

wil wl

Figure 6

k2 can be described by Figure 6.
(]

4 W’s Soundness

In this section, we consider the soundness of logic system W,

Proposition 4.1 Fvery axiom in W is valid.

Proof:

Suppose & is a W-Kripke structure, and w0 is the initial world.

Obviously, Al is valid.

Now, we can prove that A2 is valid., That is &, w0 | KO(AK0p — K0Kip). For every
w', if (w0, w') € [0, we should prove k, w' | (K0p — K0Kip). Suppose &, w' = Kop.
We should prove s, w' = KOKip.

First we have, for every w”, if {(w', w") € RO, then , w"” |= p. Now we need to prove K,
w" k= Kip . That is, for every w"', if {w”, w") € Iti, then &, w" = p. Because R RO,
RO is transitive, so &, w'™ }= p, so &, w' |5 KOKip. So, r,w' = (K0p — KOKip). Hence
k,wl = KO{KOp — KOKap).

A3 is valid because s, w =p — g iff k,w fEpor K, w [ q.

A4 1s valid because RO is reflexive.

A5 is valid hecause every relation Ri,i = 0,1, ..., n is transtive,

Af is valid because every Riis serial. U

Proposition 4,2 W's inference rules are also safe.

Proof:

Suppose p, p — g arc true in the W-Kripke structure &, &, w0 = p and %, w0 Ep—aq.
Then, it is casy to prove that x,wl |= ¢ .

Suppose &, wl |= KOp. Since (w0, w0) € RO, so s, wl =p. O
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From the abave two propositions, we can consequently derive W's soundness.

Lemma 4.1 Suppose T is a theory, and & is T's valid W-Kripke structure. If p €
Cons(T), then k,wl |=p. O

Theorem 4.3 Soundness of W.
1. Cons({}) is valid. That is, Cons({}) € Th({}).
2, For every theory T, we have Cons(T) CTh(T) O

Can we have completeness of W? That is, Cons({}) = T'h({}) and for every theory
T, Cons(T) = Th(T). From the above discussion, we already have Cons(T) € Th(T).
In the next section, therefore, we will prove Cons(T') 2 Th(T).

5 W’s Completeness

In this section, we will prove that the W logic system is complete. The proof demands

the application of some special techniques. First, we give the following concepts.

Definition 5.1 Say theory T is complete, if T = Cons(T) and for every formulap € L,
either p € T or —p € T. Obviously, L is a complete theory. O

Lemma 5.1 Suppose theory T is consistent, if p € Cons(T) then {=p} UT is also
consistent.

Proof:

If {=p} UT is not consistent, then {~p}UTF={p—p). So TF-p— ~(p—p).
Since -p — = (p = p)F (p — p) — p and - (p — p), so we have T + p. This
contradicts the assumption p € Cons(T'), so {-p} U T is consistent. O

Theorem 5.1 Suppose T is a theory, then

1. If T is tnconsistent, then Cons{T) is complete.

2. If T is consistent, then T must have a consistent complete superset theory.

3. If T ts consistent complete, then for every agent 1, there must be a consistent
complete set T such thet T/Ki CT". ]

Proof:

1. Since T is inconsistent, such that there is a formula p such that -p e T,p € T.
Since every formula g is a logical consequence of p A = p, therefore every formula
g € Cons(T'). So, T is complete.
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2. Suppose T is consistent. Now we prove that T has a consistent complete superset

T T is constructed as follows:

Suppose pl, p2,... is the enumeration of all the formulas of L.

Tp=T, for every i = 0, we define

Ty = Cons(T;) if pi € Cons(13) or "p1 € Cons(1})

Tier = Cons(T;) W {~pi} else

Suppose T' = T]mjf',-, then it is easy to prove that T" is a consistent complete
i—0

supersct of 'L :

3. Suppose T1 = T/Ki. Tt is easy to prove that T1 is also consistent. If T1 is
not consistent, then there must be some formulas {p1,...,pn} € T1 such that
{pl,..,pn} + =(p — p). So, we can prove that I (Kipl — ... — (Kipn —
Ki(=(p — p))...). Since Ki{=~(p — p)) b~ Ki(p — p), we have F - Kipl v
...V = Kipn. Notice that Kipl € T,..., Kipn € T. T is not consistent. This is a

contradiction. So, T1 is consistent. According to item 2 of this corollary, we can
conclude that T1 has a consistent complete superset T7, such that T/KiCT.

Corollary 5.2 Suppose that T is a consistent theory. Then, for any formulap, if p € T
and —p & T, T must have a consistent complete superset T’ such that ~p € T".
Hint; By supposing that the formula pl in the enumerate sequence of the above

theorem is g, then we can oblain this coreliary. U

Now, we can construct the Canonical W-Kripke structure, based on consistency

theory T, as follows:

Definition 5.2 Canonical W-Kripke structure [ref [16] [6]

Suppose that T is a consistent theory. We construct the Canonical W-Kripke struc-
ture k& = (W, o, w0, RO, ..., An) as follows:

1. W = {T"|T" is a consistent complete setT}

2. wd € W is a consistent complete superset of L.

3. For every w € W, we define o(w) = {p|p € At and p € w}

4. For every w1 € W,w2 € W, (wl,w2) € Ri il wl/Ki Cw2. D

Then it 15 easy Lo prove:
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Proposition 5.3 « is a W-Kripke structure.
Proof:

1. Every Ri is transitive.

If {{wl,w2), (w2, w3)} € Ri, then we should be able to prove (wl,w3) € Ri.
Suppose Kip € wl, since wl = Cons(wl), so KiKip € wl. Since (w1, w2) € R,
so Kip € w2. Since (w2, w3) € Ri, s0o p € wd. So (wl,wd) € Ri.

2. For agent 2 € Ag, Il C RO.

Obviously, if {wl,w2) € Ri then, for every formula p, if Kip € wl, then p € w2,
Now, we can prove that if K0p € wl then p € w2. Since K0p € wl and wl =
Cons{wl), so Kip € w1, so p € w2. So Ri is a subset of RO.

3. RO is reflexive.

This is obvious,

4. For every agent i and every world w, the set {w'|{w,w') € Ri} is not empty.

This is true according to Theorem 5.1(3).

O
Proposition 5.4 For every formulap e I, s,wE=piffpew. O

It's proof requires the application of the following lemmas:

Lemma 5.2 Suppose w is a consistent complete theory, and p ie a formula. If Kip & w,
then there must be a consistent complete theory w', such that (w,w') € Ri and ~p € w'.
Proof:
According to Theorem 2.7, suppose T'1 = {q|Kig € w}. Since Kip & w, w is closed,
so p & T1. So, T1 is closed and consistent. According to Corollary 5.2, T1 has a

consistent complete super set w', such that —p € w' and (w,w') € Ri. ]
Now, it is easy to prove our main statement:
For every formulape L, x,wp iff p € w.

This proof is based on the induction of formula p's length.

1. If p € At, then it is obvious that x,w | p iff p € w.
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2. Suppose the ahove statement is true for every formula p whose length is not greater

than t.

3. Suppose p is a formula whose length is greater than t. Then, we can prove the

above statement by applying the following.

(a) pis =g, where q’s length is not greater than t. Then,
rawkpifrwpfqgifggwit ngew ifl p € w.

(b) pis ¢ — r, where both formula q and r's length are not greater than t.
wow b piff kow =g — 7 iff 5w fEgor kow f=riff g € worr € wilf
~gcworr €wiffg—rcwiff pew.

{¢) pis Kig, where q's length is not greater than t.
Suppose x,w = Kig. That is, for every complete consistent superset w',
if (w,w') € Ri then ¢ € w'. Now, we prove Kig € w. If Kig € w then,
according to Lemma 5.2, therc must be a consistent complete superset w',
such that (w,w') € Ri and =g € w'. Thisis a contradiction, so Kig € w.
Ou the other hand, suppose Kip € w. For every w', if (w, w'} € Ri, then it is
ohvions that p € w'. So, according Lo the induction siep, K, w' |= p. Hence,

= p

ryw = Kig. That is &, w

Notice w0 is a consistent complete superset of T, T © wi. From proposition 5.3, 5.4,

we can get theorem 5.5

Theorem 5.5 Suppose T is a consistent theory. Then, for every Canonical W-Kripke
structure of T, & = (W, 0,10, R0, ..., Rn) is @ W-Kripke model of . O

Lemma 5.3 If p € Cons(T), then we can choose an initial world wi for the Canonical
W-Kripke structure of T, such that k,w0=-p O

Suppose theory ‘L' is a consistent theory, Can(T) is the set of all the Canonical W-
Kripke structures of T. Obviously, it is a subset of the models of T. From Lemma 5.3,
it is easy to see that Cons(T) = {pl|p is valid in all structures of Can(T)}. So, we get

the following theorem:

Theorem 5.6 Completeness of W.
Suppose T is a consistent theory. Then, all the semantic enlmiment of T is the
consequence conclusion of T. In other words, Th(T) € Cons(T). O
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Theorem 5.7 Complete Theorem
1. Formula p is consistent iff p is satisfiable.
2, For every consistency theory T, Th(T) = Cons(T). D

6 Conclusion

There are great differences between logic system W and preciously developed knowledge
or belief logic systems based on a multi-agent reasoning system. The main differences
are: 1. W does not contain the necessary rule. 2. W allows an normal agent's knowl-
edge to be inconsistent with the real world knowledge. 3. W is specially designed for
multi-agent systems based on shared common knowledge views. So, it provides com-
plete axioms about common knowledge’s properties and how to use common knowledge.
There are also many works on W, including its abilities, relationship with other knowl-
edge systems, and algorithin about its consistency etc. Related research results will be
published in the future [26] [27].
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