ICOT Technical Report: TR-0879

TR-087%

Compositional Adjustment of Concurrent
Programs to Satisfy Temporal Logic
Constraints in MENDELS ZONE

by
N. Uchihira & S. Honiden

June, 1994

& Copyright 1994-6-30 ICOT, JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg, 21F {0313456-3191 ~5

|GDT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



Compositional Adjustment
of Concurrent Programs

to Satisfy Temporal Logic Constraints
in MENDELS ZONE

Naoshi UCHIHIRA and Shinichi IIONIDEN

Systems & Software Engineering Lab.
R & D Center, TOSHIBA Corporation,
70, Yanagi-cho, Saiwai-ku, Kawasaki 210, JAPAN.
e-mail: nchi@ssel.toshiba.co.jp

phone: +81-44-548-5474
fax: +81-44-533-3593

Abstract

In this paper, we examine “program adjustment”, a formal and practical ap
proach to developing correct concurrent pregrams, by automatically adjusting an
imperfect program to satisfy given constraints, A concurrent program is modeled by
a finite state process, and program adjustment to satisfy temporal logic constraints
is formalized as the synthesis of an arbiter process which partially serializes target
(i.e. imperfect) processes to remove harmful nondeterministic behaviors. Com-
positional adjustment is also proposed for large-scale compound largel processes,
using process equivalence theory. We have developed a computer-aided program-
ming environment on the parallel computer Multi-PSI, called MENDELS ZONE,
that adopts this compositional adjustment. Adjusted programs can be compiled
into the kernel language (KL1) and executed on Multi-FSL

KEY WORDS: Concurrent Program, Program Synthesis, 'rogram Adjustment,
(5, lemporal Logic, Bichi Automaton, Finite State Process, Bisimulation, Pro-
gramming Environment.



1 Introduction

1.1 Motivation

As practical parallel and distributed computing graduvally spreads into the industry,
there is an increasing demand for programmers who design concurrent programs.
It is not easy for ordinary programmers to produce correct and efficient concur-
rent programs. In particular debugging concurrent programs requires a great deal
of labor. Some kind of computer-aided concurrent programming environment is

seriously needed.
The difficulty of concurrent program debugging is mainly due to its nondeter-
ministic behavior. We classify nondeterminism into the following 3 types.
¢ Intended nondeterminism: Nondeterministic behaviors which the pro-
grammer intends to implement.

¢ Harmful nondeterminism: Nondeterministic behaviors which the program-
mer does not intend to implement and does not expect.

¢ Perzistent nondeterminism: Nondeterministic behaviors which have no
effect on the results.

For example, Fig.1l shows a simple concurrent program “Seat Booking”, where
two processes read/write a shared memory "Seat” to reserve one seat. This program
has the 3 types of nondeterministic behaviors.

Intended nondeterminism The following nondeterministic behaviors # and #;
derive different results: Py can book the seat ( Status; = ok) in #;, but cannot
(Status; = ng) in ;. However both are correct (intended behaviors).

e h=h—=lg=lg=lj—=ls—=m — my—ms
Result: Status, = ok, Seat = occupied, Status; = ng.

- Egzml—lm:-—rmar—tmqﬂms—iil—ifz—r{s
Result: Status, = ng, Seat = occupied, Statusy = ok.

Harmful nondeterminism The following nondeterministic behavior #3 derives
an incorrect result (double booking). So, this program has harmful nondeter-
minism.

s h=h—-m—=lh—-ms—ly—my—Ilj = my—s— mg
Result: Status; = ok, Seat = occupied, Statusy = ok,
Persistent nondeterminism The following two nondeterministic behaviors have

a same result because !)(write in Status;) and my(write in Status;) are inde-
pendent actions each other. We call such a situation persistent.



- H1=I1—*ml —'-!g ---»13--11--+ Is—tm2—~m5
Result: Status; = ok, Seat = occupied, Statusy = ng.

» 5'5: ml—bI] —*fg—*h—*l’.’—'fs—'m:—-mS
Result: Status; = ok, Seat = pecupied, Statusy = ng.

Pl r2

7 Statusl = ng g
L2: afi(Seat = occupied) gote 15
13: Seat := pccupied ;
14: Statusl := ok ;

: halt ;

i Bratusl = ng
=2: if{Sear = pecupied) gote ms
m3: Seat = oocupied ;

mi: StatuaZ = ak ;

: halt ;

Srarusl [reat Sratuss
(Imitially, Seat = [reel

Figure |: An example of a concurrent program

In our observation of concurrent program development, a programmer first tries
to design and implement processes so as to maximize concurrency, which may in-
clude 3 types of nondeterminism. He then often finds harmful nondeterministic
behaviors in testing and debugs them by partially serializing the critical sections
which interfere each other using synchrenization mechanisms {e.g. semaphores).
Bugs due ta harmful nondeterministic behaviors often account for a considerable
part of all timing bugs. *

We will show that the debugging processes for harmful nondeterministic behav-
fors can be mechanically supported using formal methods. It ean be also regarded
as a practical application of program synthesis techniques to program modification
in debugging.

1.2 Overview of Main Results

We propose “program adjustment” which automatically adjusts (debugs) an imper-
fect program to satisfy given constraints. Here, we consider only timing constraints



for concurrent programs that can be specified by temporal logic. In this context, “an
imperfect program” is regarded as a program which is functionally correct but may
be imperfect in its timing. We call such a program an FCTI program (Functionally-
Correct Temporally-Imperfect program).

A concurrent program is modeled with the finite state process {12] , which can
specify the finite state transition system with liveness conditions. It can not only
represent the transition systems in CCS [13], but also Bichi automata [14]. A target
FCTI program is compositionally constructed from several finite state processes with
the composition operator “|"(ex. P = (P | Pi2}| (Pu | Pr2) in Fig.2{a}).

Basic Adjustment Program adjustment (Basic Adjustment) means to adjust
an FOTI program to satisfy given constraints by adding an arbiter process which is
syachronized with and restricts the behavior of the FCTI program (Fig.2(b})). The
arbiter partially serializes the FCTI program to remove harmful nondeterministic
alternatives which do not satisfy given constraints., We will show an algorithn to
synthesize an arbiter process C; automatically.

Input: An FTCI program FP.
Input: Temporal logic constraints f.

Output: A arbiter process Oy such that P |y satisfies f.

Compositional Adjustment When a target program becomes large, the ar-
biter synthesis may cause computing cost explosion. Therefore, we propose com-
positional adjustment, in which local arbiters are synthesized in each composition
step, For example, an adjusted program with local arbiters Cg, €4, and C; is shown
as follows (Fig.2(c)).

F:[P“IPHICI}HPN|P22|CE}|C'5'

In each compesition step, the reduction of the finite state process, based on
process equivalence theory, can ease computing cost explosion. We introduce a
new process equivalence relation (#rw—bisimulation) to manipulate liveness prop-
erties because the traditional weak bisimulation equivalence used in CCS cannot.
rrw—bisimulation is used to reduce a finite state process to a smaller and equivalent
one in the compositional adjustment.

It is more feasible for ordinary programmers to adopt the program adjustment
approach compared to other methods which synthesize complete programs from
{(temporal logic) specifications [9){10][26]. The reasons are as follows.



>

D

N N O

Figure 2: Process Composition (a), Basic (b), and Compesitional (¢} Adjustment




o It is not very difficult for ordinary programmers to preduce an FCTI concur-
rent program, which satisfies at least the functional requirements. A more
difficult task is to design and debug the timing of such programs.

+ Many bugs are derived from harm{ul nondeterministic alternatives.
# It is easy for ordinary programmers to specify timing constraints, such as

deadlock-free and starvation-free constraints, as compared with implementing
them.

MENDELS ZONE In order to confirm the feasibility of program adjustment,
we have developed a concurrent programming environment, MENDELS ZONE,
which adopts the compositional adjustment in cooperation with the verification.
In MENDELS ZONE, the programmer first finds existing bugs by the verification
step, then adjusts the program to remove the bugs by the adjustment step (Fig.3).

{ STarT }

“1 Fregrammang
[HEMDEL net Construction)

I
A T | ] - satisflablie
. Verification
K -
Tarporal Laogic LY uneatisnfishle
ConmErminta My
JLFIL formula ——
Ad justment
II.II‘

-~
Synthesizad
Arblters

{ itep ,

Figure 3: Verification and Adjustment in MENDELS ZONE

1.3 Significance of this paper

1. Theoretical Aspect: The traditional CCS framework (composition and
equivalence) is not adequate for finite state processes with the liveness con-
ditions (i.e. Biichi automata). Therefore, we introduce new composition and



equivalence for finite state processes which can preserve liveness properties.
These techniques are essential to the basic and compositional adjustment.

2. Practical Aspect: We introduce the concept of “program adjustment” into
the concurrent programming which is based on the formal method but feasi-
ble for ardinary programmers, and have implemented the programming envi-
ronment (MENDELS ZONE) adopting the program adjustment to show its
effectiveness.

1.4 Organization of the paper

The remainder of the paper is organized as follows. Section 2 defines Finite State
Processes (FSP) and their equivalence relation and composition operator. Basic
and compositional adjustment of FSP iz described in Section 3. An overview of
MENDELS ZONE is briefly shown and its compositional adjustment is explained
in Section 4. Finally, Section 5 shows a simple and nontrivial example of program
adjustment, followed by the conclusion in Section 6.

2 FINITE STATE PROCESSES

The basic model for concurrent programs is the finite state process [12] , which can
specify the finite state transition system with liveness conditions. First, we define
a Vinite State Process (FSP) and an equivalence relation for FSPs. Then, several
_operators (composition, relabeling, and reduction) on FSPs are introduced and their

properties are shown.

2.1 Finite State Processes

Definition 1 (Finite State Process) A Finitc Statc Process (F5P) is a seven-
tuple P = (5,A,L, 6,7, %, F), where:

s 5 iz a finite set of states,

A 13 a finite set of actions,
L is a finite set of synchronization labels,

o b:85x A — Su{Ll} is a deterministic transition function (§(s,t) = L
means the action t € A is disabled in the state s € §),

x: A= (Lu{r}) is a labeling function, (T is an invisible internal action),

o 355 C 5 iz an inifial state, and



e F'C 5 is a set of designated siates.
n

Example 1 (Finite State Process) P = ({so, 51,52, 83}, {t1.t2,8a},{a,b}, 8,7, 50, {s3})
is a finite state process where §(sn, 1) = 51,6(s0.82) = $2,8(s1,12) = 83, 8(s2,11) =
s3,0(83,13) = 80, 7(ta) = a,7(tz) = byx(ty) = 7. (Fig4) m

i b
o'

O
CX A M@

NOTE: action/label; a bold circle means a designated state.

Figure 4: Finile State Process

To begin with, we introduce several notations. Let X be a set. The set of
all finite sequences over X, including the empty sequence ¢, is denoted by X", If
there is no empty sequence £, the set is denoted by X+. The set of all infinite
sequences over X is denoted by X%; w means “infinitely many™. X™ is defined by
X==X"UX"

For a sequence # € X, §[i] means the i-th element in & #(k) means the prefix
subsequence #[1)8(2]...0]k] of 8, and | # | the length of 8.

Let P = (5, AL, 67,30, F) be an FSP. A transition function can be extended
such that § : Sx A* — SU{L),ie., 8(s,0a) < §(8(s,0),a). Note, 6(s,e) = s. Since
a transition function is deterministic, a current state can be uniquely determined
from an initial state and an action sequence, We call an action sequence a behavior,
Similarly, we can extend a labeling function such that # : A* — (LU {r}})", ie.,
x(8) = w(8[1])x(8[2])...x(8]] # []). In addition, #(#) iz defined as the sequence
gained by deleting all occurrences of v from n(#). The set of reachable states from
a state s in P is defined as Rp(s) el {5 € 5|30 € A5 = §(s,0)} and
RA(s) def {s"€ 5|30 € At.s" = §(5,0)}. Also, the set of all possible action

sequences of P is defined as L(P) ry {6 € A® | b{s0,8) # L}, and the set of all

8



possible label sequences is defined as L.(P) = {#(8) € L* |8 ¢ L(P)}. Since
interest is in the infinite behavior of an FSP, we introduce a set of infinite action
sequences L.(P) C (A¥ U A*{A}*) where A means deadlock:

(B e A% |1 < Vk6(se,8(k)) # L}U
1 < Vi € k.8(s0,6(i)) £ L and

{0€ A*{A) | Ik({ Va € A6(6(s0,0(k)),a) = Land })}
8] = A for ¥i > k

L(P) ¥

L (F) is an extension of L(P) into a set of infinite action sequences where if
8 ¢ L(P) is a deadlock sequence (i.e., an inevitably finite sequence), then # is
represented as 8AY & L (P).

LIs*(P) C L(P)is defined as Lisir( Py <f {88 & L.(P) under the fairness condition}
where the fairness condition means whenever a behavior & infinitely often passes
through some state s, every action a enabled at s must appear infinitely often on 8
(i.e.,if s = &(sp,8(1)) for infinitely many ¢ and §(s,a} # L, then s = §(s,0(;)) and
8[7 + 1] = a for infinitely many 7).

Finally, L{P)/A'is introduced by definition: L{P)/A’ %/ {0" | 38 € L(P).Vi.(8'i] =
gif 8li] € A, otherwise 8'[i] = #[1]}} Intuitively, L{P)/A" consists of action se-

quences of P in which all elements of A’ C A are deleted.
' An FSP is a transition system with liveness conditions. In an FSP, liveness
conditions are represented by designated nodes that indicate satisfiable behavior of
an FSP as follows.

Definition 2 (Satisfiable Behavior) Let P = (5, A,L,8,7,50,F) be an FSP.
6 & AY is a satisflable behavior, if §(sg,0(k)) € F for infinitely many k& > 1,
Ly(P) © A“ is defined as a sct of all satisfiable behaviors on . m

Note that a satisfiable behavior corresponds to an accepting run of Biichi au-
tomaton.

Definition 3 (Completeness of FSP) let P = (5, A, L, é,x, 50, £) be an FSP.
P is complete if ¥s € Rp(sg)3s' € Ri(s)and s’ € F. m

A state s € Hp(sg), having no path to designated nodes from s, is called an
unisatisflable state. A behavior reaching an unsatisfiable state is called an inevitably
unsatisfiable behavior.

Lemma 1 If an FSP P is complete, then LI*"(P) C Ly(P). =

This lemma means that if P is complete, then a random transition over P leads
to a satisfiable behavior.



2.2 Equivalence of Finite State Processes

‘We now introduce the notion of 7rw—bisimulation equivalence that is an extension
of Milner's weak bisimulation equivalence [15][13] . mrw—bisimulation equivalence
was originally developed for compositional verification [5] . In this paper, it is used
to reduce an FSP to a smaller and equivalent one in compositional adjustment.

Definition 4 (rw—divergence} Let P = (5, A, L, §,7,50, F) be an FSP. s € § is
rw —divergent (5 1) if Vo > 0.3s" € 5.30 € A(| 8 |= n,7(0) = ¢ and s' = §(s,8)).
u

Definition 5 (rrw—bisimulation Equivalence) Let Py = (51, Ay, L1, &1, 71, 801, F} )
and Pa = (52, Az, L2,82, 72,802, F2) be F5Fs. Py and Pa are xrw—bisimulation
equivalent (P ==pr, P}, if there is a binary relation B C 8§, x 52, such that
(501, %02) € R, end Vs, € 8.V € §2.(57,5;) € R =

e 51 € F iffsa e F3,

e 51l iffsal,
. i £ Al.i'ﬂ'r.?i € SI.{ if 3; - 51[51,f1} then

38 € A3.3s; € Sa.7, (1) = (), 8] = b2(52,8), and (s,53) € R),
o Wiz € Az.Vsh € S of 55 = 6a(s2,12) then

36 € 4738} € Sy.7s(ts) = F1(8),5, = 63(s51,8), and (s}, 5}) € R).
]

mrw—bisimulation is extended so that it can discriminate designated states and
divergence, which cannot be discriminated by weak bisimulation (the weak bisimula-
tion ignores divergences, i.e., 7-loops and 7-circles). The following lemma is derived
from these discrimination abilities.

Lemma 2 If P, is complete and Py =,r, Py, then P; is also complete. W
Definition 6 (Reduction) For a given FSP P = (8,4, L,6,x, 30, F), a reduction
of P, red(P) = (5,,A;, Ly 8.,%, 800, F,), is an FSP such that P =, red(P) and
| S |€| 5] =

The smallest red(P) is constructed effectively by the relational coarsest parti-
tioning algorithm [16][12] such that all states of P that are 77w —Dbisimilar to each
other are brought together into a single state of red(P).

10



2.3 Operators on Finite State Processes

Concurrent programs are constructed as a composition of several FSPs that are
synchronized with each other, The composition and relabeling operators for FSPs
are introduced and their important properties (substitutivity and reflectivity) are
shown.
Definition 7 (Composition Operator) For Py = (51, Ay, L1, 61,71, 810, Fi ) and
Py = (82, Ag, Ly, 63,72, 520, F2), a composition P = Py | P; is defined as follows.
F= (5[ x 5] x {ﬂ, 1}2, [:Aj_u '[“ﬂf}:' KEAZU{idIe}}: -L"I!--;I L21&1 m, (3101 s?ﬂ:ﬂ! ﬂ)! F}:
where
o §:(8 %8y x {0,1}*)x (A U {idle}) = (AU {idie}) — (S1x 52 x {0,131 u{L}
such that
§((s1582, /1y fadi (@, 02)) =
([ (é1(81,a1),62(52,02), fi, f})y when my{ay) = mz(az) # 7, and fy = =1,

fi=1 ifbi(si,ai) € F, -
where fi=0 otherwise , ( for eachi=1,2)

=1 iféb(si,a)e K,V fi=1, .
B2y nlsee) RVAZIA (e o i=1,2
(81(s1,a1), 82, f{,0), when w(ay) & (L1 N La),ay = idle, and fy = f =1,
fi=1 ifé(s,a)€ Fy,
where fl=0 otherwise ,

where

fi =0 otherwise ,
(51,02(52,82),0, i), when ma(ag) € (L1 N Ly),ay = idle, and fL = fa =1,
shere fi=1 ifé&sy,az) € F3,

fi=0 otherwise

wchare { fi=1 if&(sa)e AVA=1,

=1 ifbis,a) € 3V i=1,

where { 3 =0 otherwise

1, when otherwise |

L

o 7w (AU {idle} x Ay U {idle}} — Ly U Lz U {7} such that

w((ay,1dle)) = m(ay) fa € Ay,

[ #((a1,a2)) = m1(ay) = 7alaz)  if a1 € A, and az € Ay,
w{(idle,az)) = 7a(az) if ay € A,

11

{Jl{ai,nl},ﬁg{s;,agL fi, fi}, when ‘l'f]_(ﬂ;} = H'u[ﬂ‘l} ﬁé Ty and {_f] =0V fg = ﬂ:l,

¢ (E1(s1,a1), 82, f7, f2), when my(ay) € (L1n L2),az = idle, and (fi=0Vv f2=10),

(51162[3?1'“1]1 fl: f;): when I:{ﬂz} ¢ [Ll n Lz],lh = idle, Iﬂﬂd- (fl =0V f? = ‘}}‘4



¢ and F = {(s1,52, f1, f2) | 51 € S1,52 € 2, i = fa= 1}
n

Remark that processes are synchronized at actions with same labels in the above
process composition. This composition is similar to composition of CCS[13] except
for its treatment of designated nodes. The following relabeling operators are used
to relabel actions so that actions which are synchronized in composition have same
labels.

Definition 8 (Relabeling Operator) For P = (5,4, L, ¢, 7,50, F') and a relabel-
ing function f: L — L' U {7}, P’ = P[f] is defined as follows.

n'(a) = f(x(a)) if x(a) # 7,

' ¥ ' .
P =(5AL,8n", 55, F), where { g’(d]—.r if‘;{g}:f,

Example 2 (Composition and Relabeling)

v = E{SU'. Sy '¢‘2}1 ‘[tl Jt2, 13,14, E-5}1 {'111 bl!‘:}! &, 71, 50, {51}} where
br(so,t1) = s,01(s0,12) = sz.di(s1,13) = s2,61(82,8) = 5y, 81(s,1s) =
simi(h) = e, mita) = beym(ta) = by mi(ty) = a, mi(ts) = e

o P = ({s0,31,82},{t1,12, 15,4, s}, {az, b2, d}, f2, 72, 80, {82} ) where
b2(s0.t1) = si,02(30,t2) = s572,82(s81,1a) = s2,82(82.04) = 51,02(82,%5)
sz.ma({t1) = az,ma(ta) = ba,ma(ts) = by, ma(ty) = ag, wa(ts) = d.

o relabeling functions: fi(a) = a, fi(b) = b, and fi(I) = | for other labels
L& {e,d} (for each i=1,2). _

o BALIPalfa] = ({50, 51, 53, 53, s}, A 1) (B2, 12), (T3, ta), (R4, ), (85, 2dle), (2dle, £5)
{':1 b, E:m‘i‘]ﬁ é, 7, 5, '[531 54]‘:' where
&{Eu,{fhh:l} = 51,5[53,{13,11]} = 51,5{51,{!3,13” = 53,5(31*{!5,:“{&}] =
51, '5[5‘-%“{1 ti:'} = 34:5“2: [idzfiti-}:] = 31‘*"5{531-“"1-:4}) = 31:5(53![:'5&‘151:5}} =
52, 6(84, (ta,1a)) = 82, 8(s4, (15, idle)) = 51, 7((t1, 1)) = a,7((t2,12)) = b, 7((ta,ta)) =
b, m((t4,14)) = a,=({15,1dle)) = ¢, x{(idle, t5)) = d.

(Fig.5) =

Definition 9 (Projection) Let Py and 1% be FSPs. A left projection L(Py | Pz) |
left is defined as L(P, | Ps) | left € {8,/{idle] | 30 € L(P, | P2).6[i] =
(62]i),02[1))}. Similarly, a right projection L(Py | P2} | right is defined. In the
same way, projections of L, L‘{f", and Ly are defined. 1

12



Fl:
(- 9,
u.-’n/ \ tl/az \
t2s0l1 2/ b2
t4/d
5 e 1Bl t}I:IE
080 . OO0
e N

thifal td/aZ

P1[f1] |P2[£2]:

(Ll L3} /n o 18 3 ==
(t3. idle) fo ?IM

sl

{ed,td)7a

(idie,t5) /4 (5, idla) /e

< > {e3.t3H/B
fa

Figure 5: Composition and Relabeling

13



Lemma 3 (Reflectivity) Let Py and Py be FSPs. If P = P, | P, then Ly(P) |
left © Ly(Py) and Ly(P) | right C Ly(F:).

Lemma 4 (Substitutivity) mrw-—bisimulation equivalence is preserved by com-
position and relabeling; that is, if P xpry, Q, then VR(P | R =y, @ | R), and

VI(Pf] =new Q[f])- m

Reflectivity and substitutivity are used in the basic adjustment and the com-
positional adjustment, respectively. These adjustments are described in the next
section.

3 PROGRAM ADJUSTMENT

This section proposes program adjustment of FSPs. First, we show that a temperal
logic constraint f can be transformed to an equivalent FSP Py, For an FTCI
process P and a temporal logic constraint f, P | Py is a composed process in which
P’s behaviors against f are disabled by Py (i.e., safety properties are satisfied).
However, P | Fy is not necessarily complete (i.e., liveness properties may not be
satisfied). Program adjustment means to make P | Py complete by adding arbiter
process C' (i.e., the adjusted program = P | Py | C).

3.1 Temporal Logic

The constraints for concurrent programs (safety properties and liveness properties)
are specified by temporal logic. Safety properties include admissible partial order-
ing of actions (i.e., transition firing), and liveness properties include deadlock and
starvation about actions.

Definition 10 (LPTL) Syntax Linear time propositional tempoml logic (LPTL)
Jormulas are built from:

* a sct of all atomic propositions: Prop = {p1, P2, P31 e Pn s
o boolean connectives: A, =, and
o temporal operators: (O)(“next™), U “until”).
The formation rules are as follows.
* An atomic proposition p € Prop is a formula.
v If fi and fr are formulas, so are fi A fa, = fo, Ofi, AU fa.

Semantics The operators intuitively have the following meanings.

14



o -NOT,
o ACANTY
Of (read nezt f):f is true for the nezsl state;

fill fa (read fi until fa):fi ts true until fi becomes true and fz will even-
tually become true.

The precise semantics are given as the Kripke structure/9] .
|

We use §f (“eventually {7) as an abbreviation for true U f and Of (“always
f") as an abbreviation for ~§~f. Also, f1 V f2 and fi = fu represent =(=fi A = f2)
and =f, V fa , respectively. Here, we assume a single event condition under which
only one atomic propeosition is true at any moment.

Theorem 1 Given an LPTL formula f under a single event condition, one can
build an FSP Py = (§,A, L,8,7,50, F) such that L corresponds to a set of atomic
propositions of f, and Ly(FPy) 15 exactly the set of behaviers whose label sequences
satisfy the formula f.
(Proof) It is a restriction of a general theorem [19] .
|

Remark that a label sequence of a satisfiable behavior in I’y corresponds to a
model of LPTL formula.

Example 3 (Temporal Logic Constraints) Let a label set be L. = {a;,02}.
v (1) O&(ay Vaz): Either ay or ag must infinitely oflen occur.

e (2] O{ay > O0O(~ay)): Whenever ay occurs, then a; must never occur.

F5Ps which are generated from (1) and (2} are shown in Fig.6.

In the context of the following program adjustment, we restrict temporal logic
formulas so that Py is deterministic with regard to synchronization labels. In
this case, some formulas, such as $0a, which are translated to nondeterministic
one, become not available. These formulas are suitable for verification, but not for
adjustment {synthesis) because the arbiter cannot lock ahead future behaviors as

indicated by Prueli and Rosner[30][31].



S0 o

Figure 6: FSPs P; of Temporal Logic Constraints

3.2 Basic Adjustment

As temporal logic constraints f can be translated to an FSP Py, we will show how
to make an FSP P = Py | Fy complete for the target FCTI program F,. In the
following explanation, we assume that the target FSP P has already composed with
Py (ie., P = Ps|...), and do not mention Py explicitly.

Problem 1 {Basic Adjustment}

Input: An FSP P =(5A,L,6, 7,5, F) (We assume P= Py | ... ).

Output: A mazimally permissive FSP (' = {Sfad'i-n L. 6. 7, 50:, F.) such that P |
" 15 complete,

“C' is mazrimally permissive”™ means that for every C' if P | C' is complele then

LP|CYCLP|C). =

The arbiter, C, restrains the target FSP P from falling into unsatisfiable states
by eliminating harmful observable transitions.

Algorithm 1 (Single Arbiter Synthesis)

(Step 0) P := P.

(Step 1) Find a set of unsatisfiable states 8, C 8" in P' = (8", &', L&', 7', s F').
If there are no unsatisfiable states, go to Step 4.

(Step 2) Construct a pseuda-arbiter C' from P' as follows. At first, T — closure
Cr 15 defined as
de
Co(s,a) 2 ('] 30.(" = 6(5,8),7(8) = @)} for¥s € §' and Va € L U {¢},

16



Cr(Ssubsa) J;I UJES.ut C,—I:.a,n.] Jor VS, C 5" and¥a € LU {E}-
then
C' = (80, AL L& xl, Co(sh,€), 50), where 8t =25 AL = {ta |a € L} U {ts |
s € 5}, and forVa € L, ¥s' € §,

o 88", t) =Cr(sa)e S if Cr(s'a)N 5, =0,

e §(s 1) = L if Co(s',a) 1 Sy # 0,

o (s ty) =5,
and Tl(t,) = a and 7l(ty) = 7 for Ya € L,¥s' € 5.
Remark that “6L(s",t;) = L if Co(s",a) N S, # D" means elimination of all
behaviors which cannot be distinguished from inevitably unsatisfiable behaviors
by a label observer.

(Step 3) = P'|C’, and return to Step 1.

(Step 4) Let the final pseudo-arbiter ', which is generafed after applying Step 1
- Step 3 repeatedly, be the arbiter C.

If C is empty (i.e., all behaviors are eliminated), C is called unrealizable; other-
wise, O is called reafizable.

Theorem 2 (Main Theorem) [fan FSPC = (5., Ac, L, 6., 7c, 500, F2) 15 realiz-
able for a given FSP P = (S8, A, L, é,7,50, F) in the above algorithm, then P | C i3
complete and C is marimally permissive.

{Sketch of proof) During Step 1 - Step 8, all inevitably unsatisfinble behaviors are
eliminated in the final P'. Therefore, P' 15 complete. Since the transition function
of C' is deterministic about its labels, C' restrains no satisfiable behavior of P,
Therefore P | C is complete and C' is mazimally permissive. =&

Corollary 1
LI (P|C) | left C Ly(P|C)lleft C Ly(F)
(Proof) This proaf is derived from Lemma ! and Lemma 3 with Theorem 2. =

This corollary assures that P, adjusted by C, satisfies its liveness constraints,
whenever its behaviors are made by random transitions over states. Remark that
an arbiter is effective in case L{*"(P) C Ly(P) does not hold (i.e., P has harmful
nondeterministic behaviors).

I7



Example 4 (A single arbiter synthesis) Fig.7 shows a simple single arbiter syn-
thesis. In the target process P, only 0 = tstgt; is an inevitably unsatisfiable behavior.
Since {tatgly,taty} is a set of behaviors which cannot be distinguished from & (i.c.
have the same label sequence “ab”™), t4 and ty are eliminated. From the remainder,
the arbiter C' can be constructed.

P (Targat Programy):
e (<% ]

7

° 8 'kf%

martady urnatabehie bahaior

LTl Wi
G (Arbiter):
T

OO

Figure 7: Single Arbiter Synthesis

3.3 Compositional Adjustment
When a target program that is composed hierarchically with many processes be-
comes very large, the arbiter synthesis may cause the following problems,

1. The synthesis results in computing cost explosion,

2. A single arbiter is too restrictive to control the whole program precisely.

Therefore, we propose compositional adjustment, in which local arbiters are syn-
thesized in each composition step. The reduction of an FSP can ease the computing
cost explosion in each step,

18



Theorem 3 If Py =y, Fa, then C is an arbiter of Py iff O is an arbiter of Py,
(Proof) From Lemma 2 and Lemma {, €| Py 1s complete iff C' | Py s complete.
L

Corollary 2 If Cis an arbiter of red(P), then C is also an arbitcr of P.
]

Algorithm 2 (Compositional Arbiter Synthesis) For simplicity, we explain
compositional adjustment for the following target program that is constructed by
two-level compasition f."_'fg'..ﬂfc)}, This algorithm can be extended easily to arbitrary
targel programs.

e Target Program:

(Piy[h11] | Pralhaal)Ba] | (Paulhar] | Paalhaa])[Re]

where jJI.'l'lPl'Z!P'Eh and _P_v-g are FSFSJ and h]l,hm,hm,hjz,hl and hg are
relabeling functions.

s Temporal Logic Constraints:
f1.fa. fo are temporal logic constraints for each composition level.

The compositional arbiter synthesis is done in a bottom-up way (Fig. 8).
(Step 1) Low level arbiters C1 and (' are synthesized for subprocesses Pylhyy] |

Pra[hyz] | Py, and Pulhai] | Paglhas] | Py, respectively. We denote P def
(| Pulha] | Pazlhaz] | Py k] and Pa o (Cz | Palhn] | Pralhaa] |

Py, )[hz].
(Step 2) Reduced subprocesses red(Py) and red(Pa) are made from Py and Fy.

(Step 3) A top level arbiter Cy is synthesized for a target process red(Fy) | red(Fa) |
Py, .

Corollary 2 assures that reduction preserves all information necessary for each
local arbiter synthesis. The reduction in each step can cut down the synthesis cost.
As the ratio of internal actions in the process increases, so does the effectiveness of
the reduction. Note that it is possible to synthesize directly a single arbiter C' for
the target programs. However, C' is too restrictive because it has less controllable
actions compared with local arbiters, and its synthesis cost is more expensive with-
out reduction. Process reduction by weak bisimulation equivalence has been already
proposed and shown its effectiveness in compositional verification by Clarke et. al.
[27]. However, the reduction preserving liveness properties by zrw-bisimulation is
our ariginal work.

19



Figure 8: Compositional Arbiter Synthesis

4 MENDELS ZONE

4.1 OVERVIEW

MENDELS ZONE is a programming environment for concurrent programs. The
target concurrent programming language, MENDEL [23], is based on a high-level
Petri net, It is translated into the concurrent logic programming language KL1
[24] and executed on the parallel machine Multi-PSI [25). MENDEL is regarded
as a user-friendly macro language of KL1, whose purpose is similar to A'UM [17]
and AYA [18] . However, MENDEL is more convenient for programmers to use to
design a state-transition-based distributed system. MENDELS ZONE supports (1)
synthesis of MENDEL atomic processes (7], (2} graphical process interconnection
[6], (3) compositional adjustment of interconnected MENDEL processes based on
theories described in Section 3, and (4) performance design[8]. This adjustment
procedure, which needs relatively high computing power, is implemented by KL1
and executed on Multi-PSI to achieve an effective speedup.

20



4.2 MENDEL NET

MENDEL is a concurrent programming language based on a high-level Petri net.
If a programmer constructs a program using only the MENDELS ZONE's graphic
editor shown in Fig.9, he does not have to learn the detailed syntax of MENDEL. He
is required only to know a graphical representation of the high-level Petri net, called
MENDEL net. Therefore, we omit an explanation of MENDEL itself. MENDEL
net is extended from a Petri net in the following aspects.

e Modularity is introduced. A module of MENDEL net represents a process.

« Synchronous (i.e., hand-shake) communication between processes is introduced,
in addition to asynchronous {i.e., dataflow) communication.

o Each transition can have an additional enable condition, which must be sat-
isfied when the transition fires, and an additional action, which is executed
when it fires. Both are written by KL1.

MENDEL net is graphically represented like a Petri net (Fig.10). The basic
conventions are as follows.,

s FEach “place” is represented by a circle.

¢ Fach “transition” is represented by a square.

¢ Each process is represented by enclosing places and transitions belonging to
the process with a line.

e A “synchronous (hand-shake) communication™ is represented by a dotted line
between transitions.

e An “asynchronous (dataflow) conununication” is represented by an arrow be-
tween a transition and a place.

Our program adjustment method is only applicable to finite state programs.
When program adjustment is applied, the target MENDEL net is restricted ta heing
a bounded one without asynchronous communications, which can he translated
into FS$Ps. Furthermore, KL1 codes attached to transitions are ignored in the
adjustment.

4.3 MENDEL NET CONSTRUCTION

A programmer can construct a MENDEL net using the graphic editor and the
program library as follows.

21



i 2wtk

whhribules @mil

et anbIutE

amit
180 g laar 3 [T Flmam parnat wutiliky amik
ERl. wins]  rafessh tul
PRE_r
FmiE_d
FRE_®
L 19 smar = i S 1_:........,.@
Rakat 4 Haksk ap H L
reRiaL # Renlnw LR Lot
i » Arm — H I
FEFSENTE w Fapwamem ___: Il‘l-r I
dawslapmant & Oevelap i T ] i
Trand b NTRRERAE J i L
T elesr ##vm oeit anit — — 1 | N
Vi Pt
EE AmpLIE 4@ § H

GO fga i rWpui_svEe i awpni_d)

B! Crtéas TEL strispismmir
twiFgEtor

IT1E)

'__“..._\_\l

O,

Figure 9: MENDELS ZONE

| (Y —
b
,
o] e,
d
"
i
i
i
1
1
L
o
A
| S
Trs T

Figure 10: MENDEL net

22



« (Step 1) Construct atomic MENDEL processes basically by software reuse [1].
If the library has no suitable reusable MENDEL processes, MENDELS ZONE
can synthesize it from a given algebraic specification[7] . It is also possible for
the programmer to construct the atomic MENDEL process by himself using
the graphic editor.

» (Step 2) Interconnect MENDEL processes with communication links using
the graphic editor to make a new compound MENDEL process. A large-scale
program can be constructed in this compositional way.

Constructed programs are FCTI because a programmer reuses programs whose
possible behaviors he may not fully understand; so communication links may be

incomplete.

4.4 MENDEL NET VERIFICATION AND ADJUST-
MENT

After constructing an FCTI MENDEL net, the programmer specifies safety and
liveness properties that must be satisfied by MENDEL net, These properties are
specified by temporal logic.

The verification and adjustment procedure (Fig.3} in MENDELS ZONE is as
follows,

1. The programmer can give an LPTL formula for a MENDEL net of each com-
pound process. _

2. MENDELS ZONE checks whether a MENDEL net satisfies a given LPTL
formula by the model checking method for LPTL [20] .

3. When it does not satisfy the LPTL formula, the adjustment method is invoked.

4.5 COMPILATION TO KL1 AND EXECUTION

The adjusted MENDEL program is compiled into a KL1 program, which can be
executed on Multi-PSI. The programmer can check visually that the adjusted pra-
gram satisfies his expectation. If not, he should consider two types of bugs: (1)
Bugs in the temporal logic constraints, and {2) Bugs in the KL1 code attached to
transitions (i.e., its enable conditions and additional actions), which are ignored in
translating to FSP.

23



5 EXAMPLE: The Machine Control Program

In this example we synthesize a single arbiter using MENDELS ZONE. The problem
may be stated informally as follows. The target program must be designed to con-
trol machines which cooperatively process (i.e., etch) printed circuit boards (Fig.11).
The coating machine applies resist to boards. The exposure machine exposes hoards
to the light. The development machine develops boards. The arm machine moves
boards from one machine to another. The target program is composed of 6 processes
( Resist, Ezposure, Development, Arm, and Trans x 2) which control correspond-
ing machines. Trans represents board transportation. Each process is displayed as
a MENDEL net, shown in Fig.10. With no arbiter, this system is FCTI because it
falls into deadlock when an action label sequence of Arm “get_r — put_e — get_r"
occurs. We give the following temporal logic constraints:

f =04 F(getr V puie V get.e V put_d)

which means Arm never falls into deadlock. An arbiter ' is synthesized as fol-
lows: first, FSPs representing 6 subprocesses are relabeled by relabeling functions
fes fes fan fos fur, and fio, and are reduced, and FSP Py (Fig.12) representing tem-
poral logic constraints f is generated. The target process F (Fig.13) is composed
from these FSFs (including F;). Finally, the arbiter C shown in Fig.14 is synthe-
sized from P, according to Algorithm 1. We can see that the adjusted program
“C' | Py | Resist|f,] | Ezposure[f,] | Development{f;] | Arm[f,] | Trans[fy,] |
Trans(f:,|” satisfies the above constraints. Figure 15 shows this adjustment visu-
ally in MENDELS ZONE. You can see the target program (left) is auntomatically
transformed into the adjusted one (right), where the arbiter process is unfold in the
top level,

6 CONCLUSIONS AND RELATED WORKS

Program adjustment comnsists of partially synthesizing programs to remove bugs
that are due to harmful nondeterministic behaviors, In the proposed framework,
program adjustment is defined as the synthesis of arbiter processes which control
target processes with synchronization to satisfy their temporal logic constraints.
We have had some experience in state-transition-based software construction, using
compositional adjustment in MENIIELS Z0NE. For example we have constructed
a control software for a power plant (about 4,300 steps) and evaluated MENDELS
ZONE|28).

Our previous works[1][3]{4] had proposed program synthesis methods based on
temporal logic. However, these methods generated a global stale transition graph

24



Resist Devslopment

Figure 11: Machine for Processing Printed Circuit Boards

pet_r.pu_s,
o8l apud o

paLr 3 pat_e
pul_d D pulLe

Figure 12: FSP Py for LPTL formula f

]
o



Figure 13: Target Process P{displaying only labels)

15T

tgel_rigey_r \w_d-h-rl..d
1Exr  putadd e ° - =2
Qﬁ‘h’r

Figure 14: Synthesized Arbiter C

26



prian
T
1
Py

CAFEa. W nr s il
e —

— " i« QO] mas r———r = -

LI g [ —— [Tl ]

P P

[TLTL]
Fealay
wrw
ARpEEETE

ArEnE

LI LT ]

& Rahed IR

@ Epunabs

dewpinpminn 5 Beralen
TR

et s S () e Jwb '? SR LT,

! saasimsn 8 rsesiwm

& Awmern B

demailm Tl i wwi
B Bk v, gul
L]

P ——— — R I P Tt
- O e —esouiey . --\_4:---:“_;.-—. Tt
. B - Phbe asmasisan wl o
. S wekivem,,, .
Target Program Adjusted Program

Figure 15: Program Adjustment in MENDELS Z0ONE

based on the assumption that all process actions are visible (not internal) and
controllable. This assumption is restrictive, and the state transition graph often be-
comes huge, and its generation is expensive since it cannot be done compositionally.
In this paper, we intraduce a CCH-like compositional framework to achieve composi-
tional adjustment utilizing process reduction. Abadi, Lampert, and Wolper[21] pro-
posed a compositional program synthesis wsing the CCS5-like compositional frame-
work, where failure equivalence is adopted instead of our rrw—bisimulation equiv-
alence. However, their approach is a top-down program refinement, which differs
from our bottom-up program adjustment approach. From another view, arhiter syn-
thesis can be regarded as a control problem of discrete event systems which are well
surveyed by Ramadge and Wonham[22] . However, while these works mainly con-
sider safety properties, they showed no compositional synthesis methods satisfving
liveness constraints.

The concurrency control of database transactions [29] is much related to the
program adjustment. Both are intended to remove harmful nondeterminizm. The
program adjustment can be regarded as the extended concurrency contrel applied
to compositional (hierarchical) concurrent programs.

ACKNOWLEDGMENTS

This research has been supported by ICOT. We would like to thank Ryuzou
Hasegawa of 1COT for his encouragement and support. We are also grateful to
Sadakazu Watanabe and Kazuo Matsumura of the Systems & Software Engineering
Labaratory, TOSHIBA Corporation, for providing continuous support.

27



References

[1] N. Uchihira, et al., Concurrent Program Synthesis with Reusable Components
Using Temporal Logic, COMPSAC'ST (1987).

[2] 5. Honiden, et al., An Application of Structural Modeling and Automated
Reasoning to Concurrent Program Design, 22nd HICSS (1989).

[3] N. Uchihira, et al., Synthesis of Concurrent Programs: Automated [leasoning
Complements Software Reuse, 2ind HICSS (1990).

[4] N.Uchihira and 5.Honiden, Verification and synthesis of concurrent programs
using Petri nets and temporal logic, Trans, [EICE, Vol.E73, No.12 (1990).

[3] N. Uchihira, PQL: Modal Logic for Compositional Verification of Concurrent
Programs (in Japanese), Trans. IEICE Vol.J75-DI, No.2 (1992).

[6] N.Uchihira, et.al., A Petri-Net-Based Programming Environment and Its De-
sign Methodology for Cooperating Discrete Event Systems, IEICE Trans.
Vol.ET5-A, No.10 (1992).

[7] S.Honiden, A.Ohsuga, N.Uchihira, An integrating environment to put formal
specifications inte practical use in real-time systems, Proc. IWSSD'91 (1991).

[8] 5.Honiden, N.Uchihira, K.Itoh, An Application of Artificial Intelligence to Pro-
totyping Process in Performance Design for Real-Time Systems, ESEC'91,
LNCS 550 (1991), also to appear at IEEE Trans. on SE.

[9] Z.Manna and P.Wolper, Synthesis of Communicating Processes from Temporal
Logic Specification, ACM Trans. Program. Lang. & Syst., Vol. 6, No. 1 (1984).

{10] E.A.Emerson, E.M.Clarke, Using Branching Time Temporal Logic To Synthe-
size Synchronization Skeletons, Science of Computer Programming 2 (1982).

[11] J.W. de Bakker, et al. (ed.), Stepwise Hefinement of Distributed Systems, REX
Workshop, LNCS 430 (1989).

(12] P. C. Kanellakis, 5. A. Smolka, CC5 Expressions, Finite State Processes and
Three Problems of Equivalence, Information and Computation 86 (1990).

(13] R.Milner, Communication and Concurrency, Prentice Hall (1989).

[14] J.R.Biichi, A decision method in restricted second order arithmetic, Proc. Inter-
nat. Congr. Logic, Method. and Philos. Sci. (1960), Stanford University Press
(1962).

[15] D.Park, Concurrency and automata on infinite sequences, Lecture Notes in
Computer Science Vol. 104, Springer-Verlag (1981).

28



[16] R. Paige, R.E.Tarjan, Three Partition Refinement Algorithms, SIAM J. Com-
put. 16, No.6 {1987).

[17] K. Yoshida, T. Chikayama, A"UM -Stream-Based Concurrent Ob ject-Oriented
Language -, FGUSES (1988).

[18] K.Suzaki and T.Chikayama, AYA: Process-Oriented Concurrent Programming
Language on KL1 (in Japanese), KL1 Programming Workshop'dl (1991).

[19] P.Wolper, et al., Reasoning about Infinite Computation I'aths, IEEE FProc. of
24th FOCS (1983).

[20] M.Y.Vardi, P.Wolper, An Automata Thearetic Approach To Automatic Pro-
gram Verification, LICS36 (1986).

[21] M. Abadi et al., Realizable and Unrealizable Specifications of Reactive Systems,
16th ICALP (1989).

[22] P.J.Ramadge and W.M.Wonham, The control of discrete event systems, Proc.
IEEE, Vol.77, No.1 (1989).

[23] S.Honiden,N.Uchihira,T Kasuya, MENDEL: Prolog Based Concurrent Object
Oriented Language, COMPCON86 (1986).

[24] T.Chikayama, et.al., Overview of the Parallel Inference Machine Operating
System (PIMOS), Proc. FGC5'88 (1988).

[25] K.Taki, The FGCS Computing Architecture, ICOT TR-460 (1989).

[26] A.Pnueli, R.Rosner, Distributed Reactive Synthesis are Hard to Synthesis, 31th
FOCS (1990).

[27] E.M.Clarke, F.E.Long, K.L.McMillan, Compositional Model Checking, Proc.
4th Logic in Computer Science (1989).

[28] MENDELS ZONE, Demonstration at Internat. Conf. Fifth Generation Com-
puter Systems (FGCS'92) (1992).

[29] F.A.Bernstein, N.Goodman, Concurrency Control in Distributed Database Sys-
tems, ACM Computing Surveys, Vol.13, No.2 (1981).

[30] A.Pnueli and R.Rosner, On the synthesis of an asynchronous reactive ﬁud-
ule,16th ICALP, LNCS 372 (1929),

[31) A.Pnueli and R.Rosner, On the synthesis of a reactive module, ACM POPL
(1989).

29



