ICOT Technical Report: TR-0871

TE-0E71

Evaluation of the Cluster Structure on the
PIM/C Parallel Inference Machine

by
T. Tarui, M. Asaie, N. Ido, T. Nakagawa

& M. Sugie

April, 1994

© Copyright 1994-4-19 ICOT. JAPAN ALL RIGHTS RESERVED

Mita Kokusai Bldg. 21F (03)3456-3191 ~5

| c OT 4:28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

EVALUATION OF THE CLUSTER STRUCTURE
ON THE PIM/C PARALLEL INFERENCE MACHINE

Toshiaki Tarui*, Machiko Asaic*, Noriyasu Ido*, Takayuki Nakagawa**, and Mamoru Sugie*
* Central Research Laboratory, Hitachi, Lid.
** General Purpose Computer Division, Hitachi, Ltd.
1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo 185, Japan
Email; tarui@crl. hitachi.co.jp

Abstract -- The characteristics of a cluster-structure
parallel computer are analyred and evaluated on rhe
PlMic paraliel inference machineg, which conzisis af
eight-processor sharéd-memory clusiers communicating
through a processor coanecied to a network. To avoid
communication bottlenecks, the mazimum number of pro-
ceszors in a cluster is limited by the ratio of communica-
tion operaiions 1o program-execution operations. Since
thiz ratio can be ax high as 30% on the PIMic, the net-
work receiving operarions should be distributed 1o pro-
cessors in the same cluster.

1. INTRODUCTION

Cme of the most important design issues in parallel com-
puters is the need for a structure efficiently supporting commiu-
nication between processors, and there are basically two ways
to connect paralle]l processors: one with a network architecture
which has high scalability and the other wiith a shared-memory
architecture which enables efficient communication,

A closter structure paralle] computer, in which clusiers of
shared-memaory multi-processors are connected through a net-
waork, has been proposed to take sdvantage of the efficient
communication provided by shared memory [1]. To constroct
a large-scale parallel system, & number of these clusters, each
consisting of several processors and a shared memory con-
nected by 8 common bus, are connected by a notwork. Each
cluster includes a network mterface, such as & communicalion
processor, connected to the netwaork, and the hardware costs in
this cluster architecture can be reduced by limiting each
clusier’s connection o the network 1o one interface. Because
shared-memaory multi-processor technologies make it possible
to develop a parallel computer with a cluster structure effi-
cienily, the clusier siruciure 1s one of the most important tech-
nologies needed 1o develop a large-scale paraliel system.
Large-scale shared memory systems [2] also use the closter
structure.

The paraliel inference machine (FIM) [3] was developed
in Japan's Fifth Generation Computer Project implementad by
the Institute for New Generation Computer Technology
{ICOT). The PIM was designed to efficiently execute pro-
grams wrillen in the parallel logic-programming language KLI
[4], which has AND-paralle]l feature and has dataflow process
synchronization mechanism. Hitachi's PIM model ¢ (FIM/c)
[5] consists of 256 processing elements and is organized into
32 clusters of eight-processor, shared-memory multi-proces-
sors. Each cluster has one extra processor dedicated to network
COMmumurca lion.

The two levels of communication in the cluster structure,
network and commeon bus prevent conventional programs opdi-
mized for & one-level archilecture from being executed effi-
ciently because the two levels have communication overheads
and |atencies that are very different. The structure of & conven-

tional program must therefore be changed for it to work effi-
ciently on a cluster structure, but the characteristics of a pro-
gram to be run on a cluster structure have not yet been clarified
in detail. Having completed the development of the PIM/c
cluster system, we can now evaluate its performance in detail,
including the actual overhead of the shared memory and net-
work communication.

This paper analyzes programming models on & cluster-
structure parallel computer, focusing on network communica-
tion between clusiers. The performance of applicalion pro-
grams running on the PIM/c is measured, and the execution
models are verified by the results. The characteristics and de-
sign issues of the cluster structure are also discussed. Because
this paper focuses on the characteristics of the cluster struc-
fure, il investigates the total sysiem balance in detail and does
not discuss the individual performance of networkfecommon-
bus communication.

2. CLUSTER STRUCTURE

The processing elements (PEs) of the FIM/c (Fig. 2.1) are
connected hierarchically: nine-processor shared-memaory
multi-processors compose & cluster, and 32 cluslers are con-
nected through a crossbar network. Inside each choster, cight
PEs, one cluster controller ({CC) connecied to the neiwork, and
the main memory are connected o & two-way-interleaved
common-bus. The 256 PEs are contained in four cabinets.
Each PE executes the KL1 programs, and the CC handles net-
work commumication, A snooping cache mechanism is used in
the PEs and the CC 1w support efficient shared-memory com-
munications.

KL1 execution resulis in a large firmware overhead for
intercluster communication such as address translation, real-
time garbage collection, and packet construction/deconstruc-
tion. To reduce the communication overhead on the PEs in the
PiM/c, normal system firmware is designed so that all opera-
tons involved in communication are executed on the CC. Ex-
ecution on the CC, however, may become a bottleneck even
when the performance of the network hardware itself is suffi-
cient. To prevent this, the PIM/c has an additional execution

- . — T TR
|2l | [[ero mm’

cluster

common bus
PE: processing slement
CC. cusior oontrolies

Fig. 1. Structure of PIM/c (Paralis! Inference Machine’ Mods C)

mode in which the network receiving operations are dismrib-
uted to the PEs. As will be shown in Section 2.4, the perfor-
mance saturation point is thus increased but the performance
of each PE decreases because the PEs must execute additional
communication operations.

2.2, Choraclenistics

The PEs are connected at two levels of architecture; be-
tween the shared memory in each cluster and berween the clus-
ters in the network, PEs in the same cluster can communicale
by using the high-speed shared-memory system, and PE: in
different clusters communicate through the network interface,
This 18 why the communication overheads and latencies differ
between the two levels,

Compared with a one-level, nerwork-connected, parallel
compuier, & cluster structure has two significant advaniages:
(1} If ewch cluster includes n PEs, network herdware can be

reduced to about 1/n, And swstem hardware costs can be

further reduced by using low-cost shared-memory multi-

[rOCEssors.

{2) Network communication can be reduced by wilizing the
communication locality; that is, by ensuring that the pro
cesses which communicate frequently with each other are
mapped to the same cluster. Sysiem performance is im-
proved because intracluster communications are much
faster than intercluster communications.

The cluster structure also has some disadvantages:

(3} Metwerk throughput per PE is reduced v 1/n because
the n processors share one network path, Thus, the net-
work interface may become a boitleneck if a program has
frequent communications,

(4) Imnterclusier communication latency is high because the
PEs do not have a dircet network path and have to commu-
nicate through the network interface. Furthermore, mes-
sage lalency increases because communication requests
are serialized when several PEs in the same cluster at-
tempt to communicate at the same time,

23. Communication within a Paralle] Program

For & paralle]l program nunning in a cluster structure, net-
work communication can be classified into three types.
(1} execudon dominant

a program reguires liftle commumication, communi-

cation cannot be a significant limit to system perflormance.
This type of program is not evaluated in this paper,
{2) latency dominant

When s program must wait during communication, it be-
comes idle and system performance deteriorates. In this case,
t¥stem performance strongly depends on the spead of
inrercluster communication,
{3} throughput dominant

When a program can hide network Iatency by communi-
cating and executing programs in parallel, or when the pro-
gram has a sufficient number of processes and a lightweight
contexi-swilch mecheanism for communication (like the sus-
pensionfresumption mechanism in KL1) is provided, system
performance is independent of network latency. IT nelwork
throughput becomes overloaded, however, system perfor-
mance deteriorates because of communication-waiting time,
For executing throughput-dominant programs, network
throughput must therefore be high enough o support the com-
munication produced by all of the PEs in all of the clusters.

2.4, Execution Models

Ohur models use the following assumplions:

* Throughput of the network and the common bus is sufficient.

* Shared-memory multi-processor overhead is low enough.

* Hardware latency in the network iz so much smaller than the
overhead in the COC (network interface) that it can be ignored.

Thus, the only communication averhead occurs in the CC. Be-

cause of the large firmware overhead required in KL1 commu-

nication, these assumptlons are appropriate for the PIM/c.

Each PE executes processes that have similar characteristics.

We use the following notations in oor analysis:

n: number of PEs in each cluster

i: system cycles used by the program to execuls one process

{does not include communication cycles)

c: system cycles used by the communication processing dut-

ing One process (o < i)

e: system cycles used by the communication receiving pro-
cessing in ¢ (&<)

C: communication overhead (cfi)

E: receiving overhead {efi)

Figure 2.2 shows the execution model for the throughput-
dominant program. In the CC, ne cycies are used for communi-
cation during the execution of one process. S$ince communica-
tion and program execution can be performed in parallel, the
execution time for one pmocess is

T1l{n) = max{i, nc}, (1
where each cluster execules n processes. Therefore, the
speedup compared with the execution time with one PE is

Sl{n) =m (when n < 1/C), or

=1C (whenn> 1/C). (2)
Linear speedup can be obtained when execution time in the CC
is legs than the program execution time in the PE (n < 1/C).
When the number of PEs is greater than 1/C, the CC becomes a
bonleneck and system performance saturates,

To prevent this bottleneck the load on the CC must be re-
duced, and one way to do this is to distribute portions of the
communicalion operatdons o PEs in the same cluster, When
this is done, the execution ime for one process is

T(n) = man{i+e, n{c-=)), 3}
where ¢ of ¢ cycles have distributed. The speedup compared
with the execution time with ene PE (the receiving operation i
not distributed} is

52(n} =n/{1+E) (whenn < (1+E)/(C-E}), or

=1/(C.E) {whenn> (1+E)/(C-E)). (4)
Distributing the receiving operation to PEs can increase the
maximum performance and the speedup-saturation point, but
when the number of PEs is low, performance is limited be-
cauzs the workload on eech PE increases because of the receiv.
ing overhead (Fig. 2.4).

Figure 2.3 shows the execution model for the latency-
dominant program. Because communication and program ex-
ecution cannot be overlspped, the exceution time for one pro-
cess is

Tin) =i+ne, ()
where each cluster executes n processes. Therefore, the
speedup compared with the time for single-PE exccution of a
throughput-dominant program is

83(n) =n/(1+nC). (6}
As shown in Fig. 2.4, the latency-dominant program is always
slower than the throughput-dominant program, since PEs be-
come idle during communication.

So far, we have assumed thar the ratio of communication
cycles o program-execution cycles in each cluster is indepen-

H [k 8¢ [n

Fig. 2.2. Execution modal mmmmmmﬂ.

dent of the number of PEs in the cluster. This implies that the
total number of program-execution cycles in ¢ach cluster in-
creases as the number of PEs inereases. In some latency-domi-
nant programs, on the other hand, the total number of program-
execution cycles in each cluster does not increase as the num-
ber of PEs increases. For such programe the execution time for
one process is Lhe same as that given by Eq. (3) but the total
number of program execulion cycles in each cluster is con-
stant. Therefore, the specdup for these programs is

S4(n) =T3H1)/T3m) ={1+C)/ (1 +nl)]
Because the total number of program execution cycles in cach
cluster is independent of n but the number of communication
cycles (nc) increase with n. $4(n) decreases as the number of
PEs increnses. Thus, for each clusier the ratio of communica-
tion cycles 1o program-execution cycles increases as n in-
CTCASES.

3. EVALUATION
1.1, Evaluation Method

We measured the performance of a cluster struciure by
using the PIM/c with large-scale application programs written
in KL1. Although KL1 is designed 1o solve knowled ge-infior.
mation programs, il is a general purpose language that includes
the synchronization and load-balancing mechanisms essential
to parallel processing.

We used two [COT-developed KL1 programs [6] as
benchimark progrums:

+ LST routing program
This throughput-domimant program uses the lookahead
line-search method. For each grid line on the LSI, many rout-
ing processes are created and are used to execute rouling in
parallel. The system therefore has a large number of routing

G = network-communication time :memmim thme
E = rpaiving-communication I.mu program-axeculion time

MEEH Fhroughput I:Iomlnlnt
{PE axacules
[t e wal.bn} J

CC grecules
quwnllon]

H r-'-_-
i !
T Latency Dominant
PE::WW slemant
GG clusiar controller

G
Nmummmmme !
2.4, Pcﬂwmmmnf hput-dominant
P and latency-dominant mpmgrm

PE1

Fig. 2.3. mmmmmm

processes, and the suspension/resumption mechanism of
KL1 makes it possible to hide communication latency.
* Logic simulation program
This larency-dominent program is & conventional time-
whee! version of the paralle]l logic simulation program. Sev-
eral {1-8) simulation engines are placed on each cluster and
execute the simulation in parallel. Each simulation engine
must synchronize once per simulation cycle by sending a
message (o the time manager, This 15 done simultaneoasly by
each PE in the cluster, 5o the simulation engines become idle.
We measured the relationship between the number of
working PEs in & cluster and the speedup. Execution fime was
measured by & software-controlled timer, and the number of
PEs in each cluster was adjusted by changing the sctive PEs in
the routing program or changing the number of simulation en-
gines in the logic simulation program. The number of clusters
was eighl (maximum 64 PEs).

3.2 Resulis

3.2.1. Effect of the Number of PEs in a Cluster

Table 3.1 summarizes the PIM/c execution time for each
benchmark program, and Fig. 3.1 shows the relationship be-
tween the number of PEs in each cluster and the speedup of the
routing program. Because these results are consistent with the
analytical results shown in Fig. 2.4, the execution model of the
throughput-dominant program discussed in Section 2.4 applies
to the PIMJc.

With normal exccution stralegy, in which all receive op-
eralions are axecuted on the CC, the speedup saturates at shout
three PEs. With more PEs, the utilization of the CCs (observed
uzing a real-time performance meter) is 100% while the wiili-
zation of the PEs is only 60-80%:; that is, the PEs become idle
because of the CC bottleneck. On the other hand, when the re-
ceive operations are distributed to the PEs, mn almost linear
speedup can be ohiained. For four or more PEs, the execution
tirmie is faster than that with the normal strategy, bul when there
are only one or two PEs the distributed stralegy is 10-20%
slower than the normal sitraiegy. With the distributed strategy
the niilization of the PE= i= almost 100% and the utilization of
the CCs is aboutr 50%. This confirms that communication
boitlenecks om the CC pecurring when executing a throughput-
dominant program can be prevented by distributing the receive
operations o the PEs.

The communication overhesd and other parameters dis-
cussed in Section 2.4 can be cstimated from Fig. 3.1. The com-
munication overhead C is 0.3 and the receiving overhead E
is 0.15; that is, network commumication takes as much as 30%
of the program execution time and about half of this is for re-
ceiving. Thus, the number of PEs for which performance satu-
raies is three when all communications are executed on the CC
and eight when the receiving operstions are distributed to the

Table 3.1. Execution time of benchmark prD!irlll'll.)

8 (M. B4 PEs)

Table 3.2. Humber of multi-processor events per PE.

FEs. (Those values of course vary with the application pro-
gram.)
Figure 3.2 shows that the speedup of the simulation pro-
gram decreases as the number of PEs in each cluster increases,
These experimental results are equal 1o the speedup S4(n) de-
rived analylically in Section 2.4. In this program the total num-
ber of execution cycles in each cluster is independent of the
number of PEz bacause the number of the simulation gares is
constant. The communication from each cluster to the time
manager, on the other hand, increases as the number of PEs
{simulation engines) increases. System performance thus de-
creases because the ratio of communication cyeles 1o program-
exccution cycles increnases as the number of the PEs increases.
3.2.2. Multi-processor Overhead in the Chister

The speedup of the routing program saturates at around
three PEs when all network operations are performed on the
CC. Although the execution model in Section 2.4 predicts that
constant performance should then be obtained, the experimen-
tal results show that speedup decreases slightly when thera are
more than six PEs. This is becaose the shared-memory muld-
processor overhead inside the cluster degrades performance.

Table 3.2 shows, for four PEs and far eight PEs, the num-
ber of comman-bus transaction per PE {measured by the hard-
ware bus monitor). For four PEs there are more cache accesses
and bus-busy cycles because each PE does twice the work, On
the other hand, the lock-waiting time is moch greater with
eight PEs, despite the small workload on each PE. Common-
bus utilization is only 5.8% and common-bus throughput is
sufficient. This indicates that when the number of PEs in the
cluster is close to eight the shared-memory multi-processor
overhesd increases rapidly because of lock concentration,
which decreases system performance even though the com-
mon-bus throughput is sufficient.

When the applicetion program has sufficient parallelism,
this multi-processor overhead does not degrade performance

: Murmbar of | Mumber of | Numbar ol L
Benchmark Routing Program Sirmulation PEs Cacha Bus Bus-Busy Walling
Program TTT axeciies PE axaculaos Proxram in a Clusted Accosses | Accosses | Cycle Tima |Cycis Time:
- recahe recehe [ﬂ'ﬂﬂ!“,_"ﬂ _{ihusand cycles)
1 129.9 1528 S4.0 47 558 540 4,164 406G
MNumber of =5 710 86.2 104.0 -
PEsina |- o€ o5 510 31,564 554 3458 3,114
8 PE 3.4 225 190.0 Hodting program, CC ik —

because the speedup is then more significant. When cluster
performance saturates, however, increasing the number of
working PEs beyond the saturation point degrades system per-
formance because of the shared memory overhead. The num-
ber of PEs that can perform efficiently in each cluster is there-
fore limited.

4. DISCUSSION
4.1. Co

When a communication processor is placed in each clos-
Ler, the maximum number of PEs in one cluster is limited by
the network overhead: the ratio of communication operations
i program-execution operations must be controlled 1 avoid
communication bottlenecks. As a result, total system perfor-
mance strongly depends on the communication overhead. I it
is large, the number of execuling processors in the cluster
should be limited to minimize the shared memory overhead.
Since network hardware performance in a normal parallel
computer is usually sufficient, the communication overhead is
prunarily caused by the software involved in network commu-
nications and depends on the communication characteristics of
the application program.

But because the communication overhead for 2 KL1 pro-
gram on the PIM/c is as much as 30%, system performance is
limited by CC bottlenecks. Some effort to reduce the commu-
nication overhead should therefore be made. One approach is
to distribute some of the communication operations to PEs.
Another approach is 1o reduce interclusier communication, by
using the communication locality of the program. A roughly
20% speedup of the LST muling program can be obtained by
optimizing the process distribution [7].

4 [icat

Halancing the system |oad hetween the

4.5

communication processor and the com-

putation processors is crucial, and the

following strategy is appropriate for
cluster siruclures.

* When the number of computation pro-
cess0rs I a cluster is small or the com-
munication overhead is not large, all
communication operations should be
performed on the communication pro-
cese0Ts in order 1o reduce the overhead

5 on the computation processor.
i i i * When the number of computation pro-
" : [cassors in 2 cluster is large or the com-
F — r = 3 hu d 7 4 : > s - mumication overhead is large, some of
MNumber of PEs in Cluster Humbar of PEs in Cluslar the communication operations shoukd
Fig. 3.1. Ralationshlp betwean Flg 3.2 Relationship betweesn he distributed o the computation pro-
speadup of routing program spaeadup of logle simulatlon program CEESOTE.

and the number of PEs. and the numbear of PEs.

« Since communication overhead varies with programs, the
system should be designed so thal communication processors
seldom become the bottleneck. When they do, utilization of
the computation processors decreases dramatically.

When & communication bottleneck occurs, reducing the com-

‘munication overhead in the nerwork processor is of primary

importance, Communication-related processing must thercfore

be performed in the computation processor, even though this
ties up the computation processor during this processing.

Cm the PIM/c the communication overhesd is so heavy
that, when all of the communication operations are performed
on the CC, system performance saturates at only three PEs. An
improved execution stralegy, in which the receiving part of the
neiwork operation is distzibuted to the PEs in the cluster,
should therefore be used. With this strategy, CC utilization de-
creases (o about 50% and network bottlenecks are avoided.
The maximum number of PEs in the cluster ean be increased o
eight, but below the saturation point (one or two PEs), the luter
strategy is 10-20% slower than the former strategy because the
PEs must execute additional communication operarions. Since
the final goal of a parallel compuier is o provide high perfor-
mance with a large number of processors, the later srategy
should be used despirte its poor single-processor performance.

4,3, Programming Model for the Cluster S tructure

In & eluster structure, throughput-dominant programming
is needed to hide communication latency and provide high per-
formance. If the program has latency dominant characteristics,
however, processor utilization decreases as the number of PEs
in each ¢luster increases. This is because communicalion re-
quests from PEs in a claster are serialized on the CC and com-
munication latency increases with the nember of PEs. Further-
more, if the program has no commuonication locality, so that
communication overhead of a cluster increases with the num-
ber of PEs, sysiem perfirmance decreases as the number of
PEs increases. The logic simulation program evaluated in this
paper is one such program, for which even if the cluster has
several PEs only onc PE in the cluster should be executed,

T avoid the performance degradation that sccurs with a
latency-dominant program., the algorithm should be changed w
& throughpui-deminant algorithm. For example, a time-warp
glgorithm suitable for paralle]l execution has been proposed [6]
for the logic simulation program. Synchronization through the
time manager is not used in this aigorithm, so thai parallel ex-
eeution of simulation and communication is possible,

5. CONCLUSION

This paper clarified the characteristics of the cluster struc-
ture by analyzing and measuring the performance of a clusicr-
struc ture paralle] computer. A cluster-struciure architecture re-
duces the amount of hard ware needed to construct & large-scale
parallel computing system, but throughput bouleneck and in-
creasing latency in the network interface must be overcome in
designing a high-performance parallel system,

The main resulls oblained from our investigation are as
follows.

(1) In a cluster-structure parallel computer, the maximum
number of processors in each cluster is limited by the
communication overhead (the ratio of operations required
for communication o those required for program execu-
tion). System performance saturates when the number of
processors exceeds the limitation,

Since the communication overhead for KL1 inference
operations on the PIM/fc is as much as 30%, the number of
PEs in & cluster is limited to three if the communication
processor (CC) performs all of the communication opera-
tions,

{2) To prevent bortlenecks in the communication proces-
s0Ts, some communicalion operations should be distrib-
uted to program-execuling processors in the same cluster.
This enables the maximum number of processors in a
cluster © be increased.

Om the PIM/c, the workload on the CC can be suffi-
ciently reduced by distributing the network receiving op-
erations to the PEs so that the maximum number of PEs in
a cluster can be mcreased to eight.

{3) The programming algorithm on a paralle] computer
should be designed 1o hide communication latency, be-
cause processor ulilization deereases when a processor
has o wait because of this latency. Latency hiding is -
dispensable in a clusier structure because the communica-
tion requesis from processors in the cluster are serialized
in the network interface.

ACKNOWLEDGMENTS

We thank Dr. Shunichi Uchida, Director of the ICOT Re-
search Center, for his guidance and support, and we thank Dr.
Takashi Chikayame and other ICOT members for their helpful
discussions. This research was sponsored by the ICOT.

REFERENCES

(1] N. Hamenaka, J. Nakagoshi, and T. Tanaka, “Reducing
Neiwork Hardware Quantity by Employing Multi-Proces-
sor Cluster Structure in Distributed Memory Parellel Pro-
ceszors,” Parallel Processing: CONPAR 92 - VAPP V,
Springer-Verlag 634, 1992, pp. 25-30.

[D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A.
Gupta, J. Hemnessy, M, Horowitz, and M. Lam, “The
Stanford Dash Multiprocessor,” [EEE Computer, Vol. 35,
No. 3, 1992, pp. 63.79.

[3] 8. Uchide, “Summary of the Parallel Inference Machine
and its Basic Sofiware,” Proceedings of the [nternational
Conference on Fifth Generation Computer Systems 1992,
Pp. 3349, .

[4] T. Chikayama, “Operating System PIMOS and Kemel
Language KL1," Proceedings of the International Confer-
ence on Fifth Generation Computer Syntems 1992, pp. T3-
B8,

[5] T.Nekagawa, N. Ido, T. Tarui, M. Asaie, and M. Sugie,
“Hardware Implementation of Dynamic Load Balancing
in the Paralle]l Inference Machine PIM/fc,” Proceedings of
the International Conference on Fifth Generation Com-
puter Systems 1992, pp. 723-T30,

[6] H.Date, Y. Matsumoto, K. Kimura, K. Taki, H. Kato, and
M. Hoshi, “LSI-CAD Programs on Patalle]l Inference Ma-
chine,” Proceedings of the International Conference on
Fifth Generation Compuser Systems 1992, pp. 237-247.

[T] M. Asgie, T. Nakagawa, T. Tarui, N. Ido, and M. Sugie,
“Evaiuation of Load Balancing Strategy using LSI Rout-
ing Program on Parallel Inference Machine PIM/c,” Pro-
ceedings of Joint Symposiwn on Parallel Processing 1994
{in Japanese),

