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Abstract

The applicability of the Multi-Scale Structure Description (M55D) scheme
to the inverse-folding problems was investigaled. An MSISD represents a 3D
profein structure with multiple symbolic sequences, where fine structures are
represenied wilh the sequence al low levels, the middle scale siruclural mo-
tifs at middle levels, and global topology at high levels. Each symbol in the
symbolic sequence denotes a type of local structure of the level scale. The
structure fragments are clossified al ench scale level respectively according to
the shape and the environment around the fragmenis: how the structure is ez-
posed Lo the solven! or buried in the molecule. | modeled the propensity of an
aming-acid sequence lo the structure fragment type (i.e., primary constraint)
at each seale level. The local propensity is, therefore, modeled at small scale
(low) levels, while the global propensity modeled al large scale (high) levels.
Thus, superposing all the primary constraints, a 3D protein structure yields
an amino-actd sequence profile. Evalvating the fit of an amine acid sequence
te the prafile derived from the known 30 profein structure, we can identify
which S0 structure the given ammno-acid sequence would fold tnio, [ checked
whether o sequence idendifies ils oun structure over fwo hundred protein se-
quettces. In many cases, an aming acid sequence tdentified its own S0 profein
siruciure.

Keyword: Multi-Scale, Symbalic Description, 'rotein Conformation, Long-
range Interaction, Primary Constraints, Stochastic Model, Superposed Stochas-
fic Profile, 8D-10 alignmeni



1 Introduction

With the recent rapid increase in the number of known 3D protein structures,
more and more researcher think that the method to identify protein sequences
that fold into o known 3D structure would be more promising than the pure
AD structure prediction. The inverse protein folding problem has been attract-
ing a lot of researchers and many papers have been published on this issue.
This is chiefly becanse of Chothia's shocking declaration that “There would
be no more than thousand protein families!” [Chothia 91]. In any method
for the problem, some kind of scoring function is defined to evaluate the fit
of an amino-acid sequence (1D being) to protein conformations (3D being).
To define the effective scoring function, some focused on the compatibility of
each amino-acid type to the environment around the residue [Bowie et al 91],
some on the empirical potential derived from the known 3D protein struc-
ture [Sippl and Weitckus 92], and other on the statistical potential based on
Bayesian principle [Goldstein et al 94).

Sinee [ found weak but meaningful relationships between the type of local
structure of various sizes and the primary sequence at that region, [ began to
investigate the applicability of the Multi-Scale Structure Description (MSSD)
scheme to the inverse folding problem . An M550 represents a protein confor-
mation at multiple seale levels. At each level, the conformation is described
by a symbolic sequence, each symbol of which denotes a type of local struc
ture of the level scale. Local structures are classilied into several types at each
lcvel respectively according to their shape and the environment. The classi
fication is, therefore, closely related to the secondary structures particularly
at the small scale levels. The description at middle scale level is considered
to represent the supersecondary struclures, and that at high levels represents
the global topology. Since I classified the structures according not only to
their shape but to their environment, two structures with similar shapes but
in the different environments are classified into different types: the helix ex-
posed to the solvent is classified into o diferent type from those buried in the
molecule, Let us call the compatibility of the structure type to the amine acid
sequence “primary constrains” which we regard as the constraints from the
priunary sequence to the choice of structure types. Hence, given an amine acid
sequence fragment, we can roughly estimale which type of local structure it
would form. The 3D structure prediction method based on the MSSD scheme
is discussed in the literature [Onizuka et al 94].

To apply the MSSD scheme to the inverse protein folding problem, the
primary constraints are used inversely. Given a fragment of amino-acid se-
quence, we can evaluate its fit to the structure types of the fragments. Or
rather, given a structure type at a level, we can obtain an amino-acid se-
quence profile attached to the structure type under my model. The fit of a
given amino-acid sequence o this profile is, therelore, equivalent to the fit
to the structure type, Since the structures are classified according to thelir
shape and environment, my approach is, in some sense, the extension of the
method proposed in the literature [Bowie et al 91], where the compatibility
of an amino-acid sequence to the secondary siructure type and the environ-
ment around each residue in the sequence is considered to evaluale the fit.
The extension, here, indeed concerns the multiple scale evaluation of the fit.
The sequence profile is calculated by superposing all the subprofiles derived



from the structure fragment types in the given MSSD. The fit of a sequence
to the whole 3D structure is not only evaluated at the small scale level in
the MSSD, but at all scale levels available. Chances are that even though a
given sequence does not fit to a MSSD at low levels, the sequence may well
fit at high levels, Thus, we can identify a sequence that fold into an unknown
3D structure but similar to a known 3D conformation, even though the local
fine structures of the unknown one would be quite different from those of the
known one: the fine structures may differ even if the amino-acid sequence of
the twa protein is very similar to each other,

2 Method

This section describes the methods used in my inverse-folding scheme. The
first subsection illustrates the technique applied to the structure fragment clas-
sification at various scales, The second subsection shall define the primary
constraints between the structure types and the primary sequence fragments.
And then I formalizes the evaluation function for the inverse folding problem.
The last subsection shall illustrate the dynamic programming with A™ algo-
rithm applied to the alignment between the sequence profile derived from the
3D structure and the amino-acid sequence,

2.1 Classification of Structure Fragments

Tle classilicalion of structure fragments is the most crucial part of my inverse-
folding scheme. A good classification may produce good results with high
degree of accuracy. In order to incorporate the relationship between a large
structure fragment and the primary sequence at that region, we have to clag-
sify not only the small structure fragments but large ones. However the classi-
fication of those large ones is difficult without some technigue Lo abstract the
structure because large structures have many degrees of freedom. | overcame
the difficulty by introducing linear transformation of structure fragment into
fixed number of numerical paramelers. Here, the fixed number of parame-
ters are extracted from the structure fragments of any scale, and then, they
are classified into several types by sophisticated clustering techniques at each
scale level. Among the parameters representing the structure fragments, some
represent the structure shape, and others represent the environment around
the structnre, how the structure fragment is buried in the protein molecule
or how exposed to the solvent. First, I overview the technique applied to
the parameterization of structure shape. This is detailed in the literature
[Onizuka et al 93]. Then, I am geing to illusirate how to parameterize the
environment around the fragments. The technique applied to the structure
classification will be briefly illustrated. Finally, I will be showing the descrip-
tion examples of protein structure using the classification at multiple scales,

2.1.1 Topological Parameters

In order to represent the shape of structure fragments with small number of
parameters, I applied linear transformation fo the coordinate representation
of a structure fragment. The zet of expansion coeflicients obtained from the



transformation turns out to be, after a slight modification, the set of pa-
rameters representing its abstracted shape. We can restrict the number of
parameters by choosing a cut-off order in the expansion. This transformation
shall not loose the important feature of the large structure because the signif-
icant coefficients wsually appear at the lower orders in the linear expansion.
The cut-off, here, is equivalent to the negleet of the useless information on the
shape at higher orders.
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Figure 1: Abstraction of Structure Fragment

The procedure of the parameterization involves several steps as follows,
First, a set of orthonormal bases for linear expansion is provided. Second, the
set of topological vectors is calculated as the abstracted form of a structure
fragment by linearly expanding the coordinate representation of the fragment.
Then we exiract the orientation invariant parameters from the set of topolog-
ical parameters. Finally, we define a parity parameter that discriminate the
Mmirror images,

The set of bases for the linear expansion in this study must be orthonormal
wn the diserete system. A special set is thus required. One of the simplest set
of bases is defined by polynomials. Let N be the number of components
of the base. Let iy, denote the ith component of the base of kth order.
This is simply defined by a kth order polynomial of x, w1 = pre(z) =
c+ ez +eax? + ey + -+ egx¥. The orthonormal condition for this set is,

N=1
0= wnjipnm 7k

o] (1)
1= 3 (enp)

=il

Let 8; denote the positional vector representing the position of ith residue
in a structure fragment. The operation of the orthonormal base wy i to
the series of the positional vectors 5, yields a topological vector Ty as the



expansion coeflicients of the linear expansion.

N-1
Te= ) eniSi . (2)
=l

It is important to know what these topological vectors represent. The
set of topological vectors are the abstracted form the fragment. Considering
the properties of the bases used to calculate these vectors, T representis
approximately the abstracted length of the structure fragment; T3 represents
approximately the ahstracted curvature; Ty obviously represents the twist;
T, represents the meander.

The direction of the topological vectors depends on the absolute orien-
tation of the structure fragment. Thus, we have to extract the orientation
invariant parameters. In addition, we need to define a parity parameter to
discriminate one from its mirror image. Hence, eleven parameters are required
to represcnl a structure: four for the length of topological vectors |T;| six for
the ahsolnte difference between all possible pairs of vectors |T; — T;| and one
for the parity. The parity parameter takes such a value as follows.

s The sign of the parity parameter of a structure is different from that of
its mirror image. If the sign is negative for a structure, positive is the
sign for its mirror image.

s The intensity of the parity parameter is small when the structure is
nearly symmetric, while large is it when strongly asymmetric.

We can obtain such a parameter by calenlating the vector product of topo-
logical vectors., I defined the parity parameter P as ({{T, — Ta2) x (T2 —
Ty)}, Ty — Ta)/L?, where L is a constant specific to the scale of structure
whose dimension is length. L is defined as the mean length ol topological
vertors. Hence, the dimension of all the topological parameters is the length.

2.1.2 Environmental Parameters

In this subsection I discuss how we can incorporate the solvent accessibility
of structure fragments into the structure classification.

More and more biologists are aware of the importance of hydrophobic
interaction between the residucs during the folding process. A protein chain
g0 folds into a tertiary structure that the hydrophobic residues would be buried
inside the moelecule, whereas the hydrophillic residues exposed to the solvent.
The hydropathy of each residue must be a strong factor to determine the
environment around the residue. When a structure fragment is deeply buried
in the molecnle, most residues in the fragment should be hydrophobic, while
hydrophillic when exposed to the solvent. Indeed, when the fragment is half
buried and half exposed, the residues around the buried region shounld be
hydrophobic and other residucs hydrophillic. The propensity of each amino
acid type to the environment is considered even stronger than that to the
secondary structure |Saito et al 93], Considering the propensity, From the
primary sequence, we can estimate how the the structure fragment would
be buried or exposed . In order to characterize the environment around a
structure fragment, I introduce a new parameter attached to each residue,
the Quasi Buried Depth (QBD), which takes positive value when the residue
is buried inside the molecule while takes negative value when exposed to the



solvent. The dimension of the parameter is length so that the calculation with
the topological parameters physically makes sense, First, I give the definition
of QBD, and then I illustrate how to parameterize the solvent accessibility of
a structure fragment.

A residne deeply buried inside the wolecule is surrounded by more residues
than those exposed to the solvent. The number of residues nearby a given
residue within a certain dislance can be considered to measure how the residue
is buried or exposed. This number is given by connting the number of residues
in a sphere with certain radius centered at the position of a given residue. The
predictability of this number from a given primary sequence is discussed in
the literature {Saito et al 93]. The Quasi Buried Depth is derived from the
number, and has the dimension of length.

From the investigation of the maximum number of residues M in a sphere
whase radius is v, [ found that M is almost proportional to the r*%%, and is
caleulated as M = 0.15r%%". This suggests, the residues are not optimally
packed but are suboptimally packed in the sense of fractal dimension. We
can consider that when the actual pumber or residues & in the sphere with
radius v centered at a given residue would be equal to M, the depth of the
residue from the surface of the protein molecule wonld be estimated greater
than r, while the depth would be estimaled around zero when N is a half of
M. The number N can be, therefore, transformed into the quasi depth of the
residue fram the surface. The Quasi Buried Depth d is, therefore, calculated
as d9 = (2N/M — 1)r, where M = 0.15/%%%, When d¥ takes a positive value,
the residue is considered buried, while considered exposed for the negative d9.

Likewise the topological parameters which are obinined by lincar trans-
formation, the set of environmental parameters representing how a structure
[ragment is buried or exposed is calculated by transforming the set of residues’
GBI in a structure fragment. The environmental parameter of kth order E,
is calculated as below,

N-1
Bi= 3 pnadl, (3)
i=()
where d? 15 the QBD of ith residue in the fragment. Since the physical dimen-
sion of environmental parameters is length, these parameters can be used with
tupological parameters. In my study, the maximnm order of expansion is five,
and five environmental parameters are to represent the solvent accessibility of
the structure fragment.

2.1.3 Classification of Structure Fragments

The structure fragment abstracted and represented with a few parameters may
be classified by a clustering techniques. I adoptled Leaning Vector Quantiza-
tion (LVQ). LVQ) classifies cach data in the data set according to the nearest
centroid to the data. The distance between two data Dj; 1s, in my study,
defined the Euclidian distance below.

Dy = 1{2{1;.{; = Tju)? (4)
k

where T & is the kth component of the ith data.



The centroids for the clustering here are obtained by the iterative process
as follows. The initial centroids are arbitrary placed in the n-dimensional
space where n is the number of components of the data. Each data in the
set 15 classified according to the nearest initial centroid to the data. Dy this
initial classification, the data set is classified into the clusters represented by
cach centroid respectively, Each centroid in the next step is calculated as the
mean of the data belonging to the clusgter. Then the data set is again classified
according to the new centroids. This process is iterated until the difference
between the population of each new cluster and that of previous one iz less
than 2% of the population, when I consider that the position of each centroid

almost converges.

2.1.4 Description Examples

The data set used in this study was taken from the selected protein structures
of Protein Data Bank by EMBL [Hobohm ¢t al 92|, From the sclection, 1
further selected 245 structure determined by X-ray chrystallography. The
sequence homology between each pair of protein chains is always less than
25%. The radins of sphere to determine the QBLY is 10 A.

The data set at N-residue level is obtained by calculating the sixleen pa-
rameters of all possible structure fragments with N residues in all the selected
protein chains. | classified the structure fragments with 5, 7, 9, 13, 17, 25, 33,
49, G5, 97, 129, and 193 residues and obtained the twenty four types at each
scale. The letiers from A to X denote the structure types. The conflormation
of AFXN {Flavodowxim ) is described in this scheme as below.

Scale [0 1 N E] i E g
124 COCORCCOCE

a7 AHBEEBRNBAREOBERBBBEDREERERRRRRDEEERERRDRE

(1] CCNRNRNODCCLCE T I 00 CCoCoCCCCoCCOCEEEEREERBCCCOOCCCCCCCoOCCoRCURCCTE

49 | E1116000000000 JLLLLOCECCCLLOCo00ooa00CCCCFFFEEEEEEEE 1) IFFFCCOCOCEERCT

a4 GFFFCIIQQTJLLLLLARRRE I TRRBRERBRERFFFFFITTTI IS IIIFFFEEL TTWWWOP JERBFFFFE

25 GOODPPPPPOGGEEMEN JJ I JLLIKKERKRUTOUUUNTTTLLLCACIKKERRRS J 11 ] 1 JEEEHRIRM

17 AACEELLLLLLLLLFFFERJJS3S3RKIBAEE IIIEREDOUTWW N VEEDDDFFFINILI IHHENNIGEEE

13 | PCAGGGHEKEKKRERKERDDDAIOUINIVLENI INKLMNECRODOVSXWWVRCCCORE ] JEEEE T T T ] JTHME

i WULHARIIIIOOOODOIGOGGREHETTTTHLFFFEHFDDEEBNQVVVIRUULAACCERLABEDDDDDDDD

T WINMNEEPKO0O0000000GGGAEILYQQGLOAFFHDCRRAFCHNVWI L TUNSDEECLLNEABBCGEREEE

5 | WWWWSQJOLEMMHMKHMMMEEEDA JFFPPPPS JDAF [HABAAAFOLWNWIAVYS I JOLQK JBBCDDAAAR

Ns5P | -esssa-asahhhhhhhhhhhbhhhtt---ssaattt--sttttt-neassen==btttb=-ttthhbhh

Seq. | MEIVYWSGTGNTEXHAELIAKGIIESGKDVNTINVSDVN IDELLNEDTLILGCSARGOEVLEESEFEFFT

Scale | 7 ] [] [1] i 2 a
12
a7
G5 | BREE

40 | CC)ICEEEEEEEEENKFFFF
3} | BEBITTHONGGGGFFCITIQOPPFFLLLLLSSSTAG
25 | TEXTUMMNCCCFFFJRRRRAIIEEEEANHQIONNLLLACEERKE
17 | OOCOWTTTVEEAAAGSHHHNMHNMFFITHEG JORARARRKEKEBEHHENNKHA
13 | LGIOOSSIXWRRCCCBEE]JJILITIIDNEED TLOMMATUUUPHOCODIGET TIKK S
0 | DFFQONKVVIWWUULACCOEEEGGGUEEGEERENTRMLGUTWAMHMMEFEERETTITIGG
T | BBFFJFPRWWENEUUSDEIMGERGGGEGEREG ICHUTLEMRRWISHNNAACHERKEKEERGG
5 | KADREFRLTWNWWIVUNKFOOLCEDGCEDGCODROLEEN JOOTWSQOONARBFDGEEGGEEGCA
X55F | hhhatt=tt-sesssesssss-ahihhhhhhbbhktt-4e-a-—esees--ggghhhhhhhbhhbht -
Hog. | EEISTEISCKKVALPCSYCHGDOKWHRDFEERMN GYGCVVVETPL IVONEPDEAEQDC IEFGEY TANT

The lines at “DSSE" denote the secondary structures assigned by DSSP. At
the H-residue level, the site symboled A E G, or M usually takes helical con-
formation dennted by h, and these of VW or X usually take strands denoted



by e. The structure types at the 5-residue level, therefore, well correspond
to secondary structures. The description at high leveis can be considered to
represent super secondary structures, and those at the 65 or 129-residue level
would correspond to the some domains or plobal structures. We can conclude
that the MSSD precisely represents the hierarchical property of 3D protein
structure,

In this way, a protein confurmation described in this multi-scale structure
description scheme shows how the conformation is built up of the substruc-
tures and structural motils,

2.2 Primary Constraints

The primary constraints relate the primary sequence and the structure type
at each region. MSSD) scheme is particularly suitable to model both local
and global factors of structure formation. The primary constraints for short
structure fragments natnrally represent local factors, and those for long ones
represent global or long-range factors, For further discussion, [ define several
notations here.

Let 4 denote a structure type, where normally v = A% 4% = B* Y =
PE Let o denote a primary sequence fragment at the kth level. And we fur-
ther denote w* as the number of residues in the structure fragment ai the kth
level. We denote | € {A¥ B, ... X%} as the variable that takes a structure
type, where ¢ denotes the position in the primary sequence. We also denote
E¥ as the variable that takes a primary sequence fragment. Note that the po-
sition ¢ here denotes the position of the first residue of the structure fragment
in the primary sequence.

The probability of a primary sequence fragment o forming a type of
structure v is represented as FPp(Tt = -T:"|E'§' = o*). Since we assume that
the primary constraint is invariant of its absolute position in the primary
sequence but only depends on the structure type and the primary sequence
at that region, il may simply be represented as Pp{[*[£F),

In the previous literatnres [Onizuka et al 93, Onizuka et al 94], I defined
geometric constraints between the overlapping structure fragments, which is
essential factor for 3D protein structure prediction. In this paper, T don't
discuss on this issue because they have nothing to do with the inverse-folding
scheme using MSST).

In the field of molecular biology, the sequence profiles are frequently used
to analyze the relationship between a sequence pattern and the structure or
function al that region, where the frequency of each amino-acid type is counted
with respect to the position. This technique is directly applicable to model
the primary constraints at small scales, though it requires large number of
parameters, again, for the primary constraints al large scale, For example,
at five-residue level, the number of parameters representing the frequency is
100 = 20 = 5 where 20 is the number of amino-acid types, and 5 is the number
of residucs in the structure fragment at that level. At the large scale levels,
where the number of residues are more than 100, more than 2000 parameters
are required. In this case, however, we can compress the sequence profile using
the same technigue as I applied to the structure abstraction. We can always
reduce the number of parameters into 100 using linear expansion again.



2.3 Inverse-folding Scheme

Given an MBSD representing a 3D protein structure, we can estimate the
most probable sequence from the M55I) using the inverse primary constraints
Fr{Z|T'}, which is simply glven by calculating the fit of a sequence to a profile,
Pu(T'|5) is calenlated by applying the prior P} to P21

Let ¢ denote a position in the sequence. Let 1 denote an aminc-acid
tvpe, and let T4 he a variable that takes one of the amino acid type t4. We
can derive the probability P(T = t4) of the amino-acid type occurring at
the position 2, from the structure fragment type covering the position . Let
Pr(TA = t411';) denote the probability of the amino-acid type t* occurring at
the position ¢ in the fragiment. To superpose the Pr(TA), we have to divide
this value by the prior 17(13 = t), because the prior is donbly or triply
caleuluted. Thus, Py(T?) is calculated as below.

PT = t4T;)

TA _ Ay _ prdy
P(T* = t4) = P(t4) e

Al T j coverang ¢

(5)

In this case, however, the prior P(t") does something unpreferable. The
probability P{TA = t4) almost always suggests that Alanine is the most
probable amino-acid type at any position. This means that the inverse pri-
mary constraint Pr{T/|Z;) is much weaker than the prior. Hence, I adopt
CHTA = 1) = P(TH = t4)/P(t") instead of Fy(T* = t4). This value is
greater than 1.0 when the amino-acid Lype stochastically occurs more than
random level.

The superposition of all the inverse primary constraints from the MSSD
derived from the given A1) structure yields a stochastic sequence profile. The
fit of & sequence to this profile is considered the it to the given conformation
represented by the M5SI) and by turn the fit to the given 31 structure.

2.4 3D-1D Alignment

The alignment between the sequence and the profile is carried out simply by
dynamic programming. The dynamic programming scarches for the oplimal
alignment that minimize the score F below. Some appropriate gap penalty
should be used when we permit gaps.

E== Zlng CHT? = t*) + gap penalty. (&)

We consider the resultant score /7 as the fit of amino-acid sequence to the
sequence profile Cp(TA) derived from the MSSD representing 3D structure.
Hence, given a primary sequence of a protein whose 3D structure is un-
known, we can scarch for the most compatible 3D structure in the pro-
tein strocture database. T'his is far simpler than that of those schemes ns-
ing Sippl potential [Sippl and Weitckus 92, Jones et al 92, Yuke and Dill 92,
Skolnick and Kolinski 92], where it is necessary to apply the double dynamic
programming that requires large amount of calculation.

I applied the A* algorithm to the 30-1D alignment, which was first applied
to the protein sequence alignment in the literature [Araki et al 93]. This
algorithm finds the optimal solntion while the caleunlation amount is mnch
smealler than that of conventional dynamic programming algorithms, though
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the implementation is much difficult. The choice of the gap penalty has not
yet established. In most cases, there are three parameters concerning the gap
penalty: 1) the slide gap penalty is the cost for the offset between the two
sequence; 2} the initial gap penalty is the cost to put & gap in a sequence; and
3) the incremental gap penalty is the cost for the length of each gap. When
the initial gap penalty equals to incremental one, the dynamic programming
turns out to be quite simple with a simple network. Thus, I adopted this
penalty. The slide penalty should be zero to allow any offset between the
gequence and profile without costs,

3 Results

[ used the same data set of protein stroctures as that used for structure
classification. To cross-validate the result, the data set was divided into five
groups randomly so that each group would contain forty nine structure data. I
obtained [vur sets of primary constraints, where each set was derived from the
structure data in four gronps. When a structure yields the sequence profile,
I did not use those primary constraints that are derived from the structure
group including that structure.

First, as a preliminary experiment, [ investigated how a protein sequence
fits its own 3D structure evalnating the Z score. Here, T did not align the
profile and the sequence: the gaps are, thus, not considered. We can obtain
the Z score of a sequence to a profile by normalising the score E by the mean
score <) B o = and the deviation op of random sequences to that
profile, where E is defined as below,

rordos

E==%"logCy(TA = t1). (7)
Thus, Z score Ez is,
F— < E.. -
Ez — E il H‘(.I-‘I'TJ- = , {8:]
G-E'\dhdﬁ-rl

I investigated the fit of sequences to the structures at only one scale level,
in order to see which level best corresponds the sequence. The plot below
shows the mean Z score with respect to the scale level. The correspondence is

! Lo ]

Scale (Number of Residues in Fragments)
Figure 2: Z Score versus Scale

the best at the lowest 5-residue level and it decreases monotonously with the

10



increase in the level. This suggests that a local sequence strongly influence the
formation of the secondary structures at that region, because the classification
at the S-residue level well corresponds the secondary structures, Probably due
to the over-learning, the scores at the high levels are below zero.

Second, | checked whether a sequence would identify its own structure.
The hit-ratio of the scll-identification direclty suggests the performance of my
inverse-folding scheme. | checked whether the fit of a sequence to its own
structure would scores the best among all sequence-profile combinations. We
selected 188 protein structures from the data set which T used to model the
primary constraints, because the other structure data contain residue-lacks or
unacceptable bond lengths, I investigated the hit-ratio of self-identification.
When the compatibility score of the sequence to its own structure obtained
from the 3D-1D alignment scores the best, I consider that the identification
hits. 1 did exhansting 31-11) alignment for 188 = 188 times. When only the
J-residuc level is considercd, the number of hits is 63. The ratio is, thus,
(1.335, while the number of hits tnrns out to be 90 when all scale levels are
incorporated. The ratio is 0.478, This result suggests that the performance
of self-identification is better when many scale levels are incorporated.

4 Discussion

In this paper. | proposed the multi-scale evaluation scheme to solve the inverse
protein [olding problem. | incorporated the compatibility of sequences to 30
structures not only at the small scale level but also at the large scale levels,

The results show that the multi-scale compatibility scoring works better
than the single scale one, even though the compatibility seores at large scale
levels poorly corresponds the fit between the structures and sequences better
than those at small scale levels,

One of the difficult problems unsolved is how we can determine the gap
penalty. Why can we insert gaps in the alignments? T'he gaps in a structure
may change the structure, and then, the different environment may be formed.
The seli-identification with high gap penalty might result better performance,
though it does not allow the robust identification. The length of exlerior loops
of a protein structure is variable. Fven the main chain topology looks alike,
we have to permit the gaps in the 3D-1D alignment. However, the robust
identification by turn produces worse self-identification hit-ratia.

Considering the poor mean 7 score at high levels, the 3D-1D correspon-
dence at high levels does not seem to be stochastically modelable. Thus, we
should not incorporate those levels in order to obtain better self-identification
hit-ratio.

I investigated the applicability of MSSD scheme to the inverse folding
problem, and found that the multi-scale scoring works {ar better than single
scale scoring. This means that the score at high levels does o great deal to
enhance the performance.
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