ICOT Technical Report: TR-0866

TE-0866

A Legal Reasoning System on a Deductive
Object-Oriented Database

by
C. Takahashi (JIPDEC) & K. Yokota

March, 1994

# Copyright 1994-3-15 ICOT, JAPAN ALL RIGHTS RESERVED

Mita Kokusan Bldg. 21F (03)3456-3191 -5

| G DT 4-28 Mita 1-Chome

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology




A Legal Reasoning System on a Deductive Object-Oriented Database

Chie Takahashi Kazumasa Yokola
JIPDEC * ICOT 1t

Abstract

A legel reasoning system is a large-scale knowledge information processing system into which many
technologies such as artificial intelligence, natural language processing, and databases are integrated. From
& database point of view, this application features many kinds of data and knowledge, and provides many
research topics for mext gencration databases: features of very large dotabases and knowledge-boses, their
classification, treatment of partial information, query processing containing high-level reasoning, and a0 on.
Further, it snggests wleas for the boundanes betwesn databases and applications, In this paper, we explain
our experimental legal reasoning system that is based on the deductive object-oriented database system
QI 0TE, and show how the effectiveness of the extended features for next generation databases.

1 Introduction

[tecently, legal reasoning has attracted much attention from researchers in the field of artificial intelligence,
with great expectations for its by application. Legal reasoning systems are very important applications, whose
development, like that of theorem provers, dates back to before artificial intelligence was proposed, (for example,
see [3]). In fact, laws are related not only to the judicial world but also to all social activities. To support
legal interpretation and reasoning in a wide range of situations, many systems have heen developed, including
those capable of planning tax-saving strategies, npegotiation of payment of damsges, waking contract documents,
predicting judgements and supporting legislation. Many works on expert systems for such applications have been
published, while powerful legal database systems have not yet been reported.

In the Japanese FGCS (Fifth Generation Computer System) project, legal reasoning systems were considered
quite critical and two prototype legal reasoning systems were developed: HELIC-1I [5] and TRIAL [6, 11. 9).

For the above systems, we provide database and knowledge-base management facilities: Qurxore[l0] and
Kappa-I' [9]. Qurxore is a deductive object-oriented database (DOOD) langnage and knowledge representation
language, wsed for deseribing and classifying comples bepal data and knowledge, while Kappa-P is 2 parallel
nestedd relational database management system, used to store large volumes of legal data, Especialiy, all data and
knowledge in TRIAL is written in QuzaoTe and some advanced query processing facilities, such as hypothetical
reasoning and hypothesis peneration {abductive reasoning}, are provided for legal reasoning by QuryoTe.

In this paper, we report on the experimental system, THIAL, and illustrate the effectiveness of the advanced
fentures of the DOOD system. Based on our practical experience, we discuss the roles we expect databases to
play in legal applications, and the features that should be provided for next generation databases. This paper
presents new a.p]ﬂicn.tinnﬁ af 1M innglmﬁrﬁ Loy 'k:nnwlnrlgrr information processing h_f presenting an overview
ol the TRIAL system in QuIxoTé as an example and discussing the features that will be required by nexi
generation database systems. In Section 2, we briefly explain the kinds of features needed for legal reasoning.
By way of example, we consider the case of worker's compensation law. In Section 3, we describe some of the
features of Quriaxore, based on the above example. In Section 4, we consider the entire cxampic databasc nsed
in TRIAL. Lastly, we dizgcuss the features demanded of next generation databases, especially those derived from
legal applications.

2 Legal Reasoning
2.1 Basic Model

The analylical legal reasoning process s considered as consisting of three steps: fact finding, stalulory mterpre-
tation, and statutory application. Although fact finding is very important as a starting point, it is beyond the

*Japan Information Procesting Devalapment Center (JIPDEC), 3-5-8, Shibakoen, Minato-ku, Tokyo 0B, JAPAN, e-mail:
jrtaknhaghcot.or jp.

tInatitute for New Gensration Computer Technology {ICOT), 21F., Mita-Kokusni Bldg., 1-4-28, Mita, Minato-kn, Tokyn 108,
J.l’LPﬁNI e=imaal: kyﬂh!l.l.ﬁ'u.‘nl..nr.ip.



capabilities of current technologies. So, we assume new cases to already be represented in an appropriate form

for our system. Statutory interpretation is a particularly interesting theme from an artificial intellizence point of

view. Our legal reasoning system, TRIAL, focuses on statutory interpretation as well as statutory application.
Although there are many approaches to statutory interpretation, we follow the procedure below:

o analogy detection
Given a new case, similar precedents to that case are retrieved from an existing precedent database,

s rule transformation
Precedents (interpretation roles), extracted by analogy detection, are abstracted until the new case can be

applied to them.

# deductive reasoninig
Apply the new case, in a deductive manner, to abstract interpretation rules transformed by rule transfor-
mation. This step may include statutory application because it is used in the same manner,

Among these steps, a strategy enabling analogy detection is esscontial to legal reasoming for moere gfficient
detection of befter precedents. which ultimately determines the quality of the results of legal reasoning. As the
primary objective of TRIAL is to investigate the possibilities of Quzyers in this area and develop a prototype
systern, we focus only on & small target, That is, to what extent shounld interpretation rules be abstracted for a
new case, to get an answer with a plausible explanation, but not for a general abstraction mechanism.

2.2 Example

In this paper, we consider a simplified example related to “kardshi” (death from overwork) to discuss the
applicability of Quryore to legal reasaning. A new case, new-case, is as follows:

Mary, a driver, employed by a company. “5", died from a heart-attack while taking an iniermission
between jobs. Can this case be applied to the worker's compensation law?

3 Features of Quzxore

QuifxeTe is based on several concepts: object identity, subsumplion relalion, subsumplion coustraint, property
inheritance, module, submodule relation, and rule inheritance. From a database point of view, the language is a
DOOD language while, from a logic programming point of view, it is thought of as an extended constraint lopic
pr{]grﬂ.mming la.llgung:t based on !iilljﬁlllll].ll.j.l}[l constranls. There ame some differences from the new F-Ingic{d, 2]:
the representation of object identity, the introduction of subsumption constraints, update semantics, and query
processing. In this section, we cxplain some of its features, used in the above example. See the details of
QurxoTein [9, 8, 10],

3.1 Object Identity and Subsumption Relation

Objects in QurxoTe are identified by extended terms called object terms, that correspond to object identifiers
(oids). An object term consisting of an atomic symbal 1s classified as basie, while an object term in the form of

a tuple is referred to as complez. In the above example, mary, driver, heart-attack aud intermission arce basic,
while orgfneme =87| is complex. Generally, an ohject term is a variable or a term having the following form:

ofly =ty 1y = ] (0 € n)

where o, ;- - -, iy are basic and &, -- -, i, are object terms. 4y, -, I, are called labels,
Object terms are related to each other by a subsumplion relafion (a kind of ia_a relation). Given partial order
hetween the basic ohject terms, it is extended between complex object terms as usual:

mrglname = “§¥ T org.
orglneme = X, president = Y| £ org[name = X, president = X|

As the construction of a lattice from a partially ordered set, like that in [1], is well-known, we can assume that a
set of object terms with fop and bot constitutes a lattice, without losing generality. The meet and join operations

of oy and o3 are denoted by 0y | 02 and o) T 03, respectively.



3.2 Subsumption Constraints and Property Inheritance

The property of an object is represented as a subsumption constraint. The pair constituted by an object term o
and a label [, denoted o.l, is called a dotted term, which plays the role of a variable ranging over the domain of
the object terms. Furthermore, a pair constituted by a dotted term and a label is, itself, also a dotted term. If
f1.1z is an object term or dotted term, then & subsumplion construind is defined as follows:

t; C ta,

That is, a property of an object o is a subsumption constraint with a dotied term starting with o. In other words,
it is defined as a triple constituted by a label, a2 subsumption relation, and a value. For example, the result of
the new-case is represented by the following subsumption coustraint: new-cose result 2 heart-attack.

The syntactic construct for representing an object term with subsumption constraints is called an affibule
term. Let o be an ohject term, € & set of subsumption constraints, then o|C is an attribute term. For example,
the following attribute term represents that the new-case is that Mary died from a heart-attack while taking an
intermassion:

neu-casel {new-casewhe = mary,
new-casewhile 2 it ermisston,
new-case.resull = heart-atd r.u.k]-

There are some syntax sugars in QurroTe:
ol{ol Ct} & ofji—t] al{oldt} & of[l—t] ol{ol=t} +« ofji =1
Thus, the above attribute term can be represented as follows:
new-casef[who = mary, while = intermission, result = heart-attack]

Votice that there are two kinds of propertics: those that appear in object terms and those as subsumption
constraints. LThe former are infrinsic for an object, while the latter are erfrinsic for an object. Hegarding the
extrinsic properties, the following constraint solver is applied to a set of subsumption constraints:

o0=p == eliminated
o Jdoy = mLCo o Copoe Doy = onCoy
mpEomgmCey —= mCorlae ooy, Coy == mloerCm

Any set of subsnmption constrainte will produce a unigue solution by applying the above rules|7].
CIb s patural o wssuine thal extrinsic properbies are inherited by object terms with respect to C-ovdering.
Consider the following example:

myocardial-in fardion C heart-altack
heart-attack flarterivaclerosis — yes|

Since wyocardial-infarction is a kind of heart-attack and heori-atlack has a property [orteriosclerosis — yea|,
myocardial-in farction has the same property by inheritance from heart-attack.
Property inheritance between objects is defined by the following rule:

onCop = oplC o0l
1:'1“_t| — o d=t

According to the rules, we obtain downward and upward inheritance, multiple inheritance, and exception as
follows:

o fl — t]

oyf[1 — t]

orf[t = t], 03 /[1 — 1]
orf[l = t1 [ ta]

oy f[l 1y T ta]

afl = 4]/ =t]

01 Cog, 0[] — 1]

o Cog,onf[l — ¢

01 € 03,00 C 03,09/[1 = 1]

01 & 09,01 C o3, 00/[l = ta]. o f[1 — 3]
oy Joy,01 Doy, onf[l = t1], 03[l = ta]
o1/l — ta]

Liyail



3.3 Hule and Module
A mle is defined as in constraint logic programming, as follows:

g 4= @y, -+, .|| D

where ay,ay,--+,a, are attribute terms and D is a set of subsumption constraints. ap is called a head,
@y, 0, g, D is called a body, and a; is called a subgoal A rule means that if the body is satisfied then the head
is satisfied. If a body is empty, then the rule is called a fact

For example, the following is a rule for judgement.

judgefcase = X|/[judge — insurance]
«judge[case = X|/[judge — job-causality|,
judge|case = X|[[judge — job-execution)
[[{X C cuse}.

It means that if the judgement of some case, judgefcase = X| where X C case, is job-cousality and job
erecution, then the judgement is insurance.
A madule corresponds to a part of the world (sitnation) or a local database. The module concepts play an

important role in classifying knowledge, modularizing a program or & database, assumption-based reasoning, and
dealing with any inconsistency in a database in Qurreore,
A module is defined as a set of rules as follows:

o {ry, T}

where m is an object term called a module identifer (mid) and vy, - -« ry are rules. m is sometimes used instead

of a module itself, if there is no confusion.
The definition of rules s extended for external relerence of ubjects:

Mg 5 ng 4= T A, Ty ag)| 0}

where mg, my. -+, M, are mids. 1t means that the module my has a role such that if a; and D are satisfied in
the module m; for all 1 <4 < n, then ay is satisfied in the module my. As an attribule term can be separated
into an object term and a set of constraints, the rule can be rewritten as follows:

w1 Jop|Co & g oy, iy 0,0

where a; = o]0 < i €n)and O =Cy U--- LT, U D,
Improrting and exporting rules are done by rule inheritance, defined in terms of the binary relation |written
5] between modules, called a submodule relatton as follows:

iy Jdg g, g My, ma o M == wn oo B U Re, e o

where my, mp are modules and By, B are sels of rules, The right hand side of J5 in a submodule definition may
be & formula of mids with set operations. For example, if we have

my {"‘ngfusrla} Treg = {T-u."u] Mg {1"21.r11] iy g iy Uong
[ma,ma) = ra ms g malmg

then g has {r15.712, 713, T3, T Taz | and ms bas {721,702}
It is possible for inconsistent knowledge to co-exist by making use of the module mechanism. For example,
consider that it cannot be said for certain whether mary has arteriosclerosis. The following shows how such a

problem is handled: . .
new-casey i mary/|arteriosclerosis — yes|.

new-cnaey 2 mary f[artericaclerosia — noj.

where new-casey and new-casey are not related by submodule relation.
A datebase or a program is defined as the triple (§, M, R) of a finite set of subsumption relations §, o set of
submodule relations M, and a set of rules R



3.4 Query Processing

Query processing basically corresponds to resolution and constraint solving in constraiol logic programming, One
of the main featnres of data and knowledpge in knowledge information processing, such as legal reasoning, is that
the information is partial, that is Lo say, sufficient information need nol necessarily be given. For example, a new
case might lack some important facts. So, query and an answer is extended for treating partial information.

A query is defined as the pair (A, Py (written 7-A;; P) of a set of attribute terms A and a program F, where
A is referred o as the goal and P as a hypothesis,

Consider a database DB. A query 7-A;;F to DB is equivalent to a query 7-4 to DEUF (I DB =
{S1. My, Ry ) and P = {5;, M2, Ry) then DB U P = {5 U 5;. M; U M, By U Ra)). That ia, P is inserted into DI
before A is procesged. In other words, P works as a hypothesis for 7-4. As hypotheses are incrementally inserted
into a database, nested transactions are introduced to control such insertions. See the details in [10].

An answer is defined as the triple (D, V, E} of a set of subsumption constraints D that cannot he solved
during query proeessing, a set of variable constraints V' that are bounded during query processing, and the
corresponding derivation How E. D lacks information in the database, obtained by abduction, V' is an answer in
the sense of constraint logic porgramming and E is the explanaiton,

3.5 Quixore System

& QurroTe system consists of a client as a user interface in C on UNIXTY and a server as a knowledge.
base engine in a parallel logic programming, KL1, which was designed and developed by 1COT to run under
UMIX. A server and clients are connected by the TCP/IP protocol. OUne of the user interfaces is (macs using
GNU-Emacs, while others are windows that are implemented using X-Window and which display some figures
graphically. The overall architecture is shown in Figure 1, while Figure 2 shows an example of a praphical fipure.

Quixete Client rf Quixote Server
C, X, GNU Emacs .l KL1
|

. Qmacs fa,_ !

“eai K Data J| terprate
u 1| L]+ |Manager """
s ' WF Constraint Solver
e &
r <A Persisten

)

L

s 4 Manager
Qshell * 4 5
Y h! v [Kappa
ay]

Figure 1: Arclutecture of QuixoTe system

4 Legal Reasoning on Quzxore

In this section, we explain our legal reasoning system, TRIAL, written as a QurxoTe system, The overall
architecture of the system, written in KL1, is shown in Figure 3. QurrorTe supports the functions of rale
transformation and deductive reasoning as native functions besides the database component, while TRIAL
supports analogy detection besides the interface component. Al data and knowledge in the database component
is written in QuTxyoTE.

A new case, new-case, (in the New Case Database), is represcated as the module new-case in Quryore as
follows:

new-case ;o {new-case/|who=mary,
while=infermission,
result = heart-attack]; ;
relation|state = employ, employee = mur';.r]
[/la ffilation =organi zation[name= “5"],
job— driver])



Figure 2: A window display of a lattice

TRIAL

Interface Component

" Query Registration ,,wu
Interface Interface Illwrl’-wp

an.mn&r (‘mmmnmt

: Analogy Rule L‘reductwe
: Detector Transformer Rea.mnor

,/

H

QHIA'G‘TE Da-!-aha.st* Component (" Dictionary )

Statute Theory Precedent New Case
Database Database Diatabase Database

Figure 3 Architecture of TRIAL

where “:" is a delimiter hetween rules. Assume that there are two abstract precedeots ! of job-cousality and

job-erecution:

casey it judge[case = X|/[judge — job-ezecution|
relation|state =Y, employee = Z| /[couse =X], X
[|{ X C parm.case, Y C parm. state, # C parm.employee};;
casey i fudge[case = X|/[judge — job-causality
= X/|while = ¥V, result = Z],
||{ X L. parm.case, ¥ [ parmwhile, ZC parm result ]

MNote that variables X ¥V, and Z in both rules are restricted by the properties of an object parm. That is, they
are already abstracted by parm and their abstract level (the range of variables) is controlled by parm’s properties.
Such precedents are retrieved from the precedent database by analogy detection and are abstracted by rule
transformation.

We must consider the labor-law (in the statute database) and a theory (in the theory datebase) as follows:

UIn this paper, we omit the rule transformation step and assume that abstract interpretation rules are given.



labor-law - rrrgn.l'u' zeal im[ru;m,e: X}
/|[responsible — compensation[object =Y, money = salary]]
+judge[case=C] [|judge — insurance),
relation[state = Z, employee =Y
/|affiliation = organization[name = X]|
H{C T ense}.
theory =: judge[case= X|/[|judge — insurance|
=judge|case = X|/[judge — job-causality],
Judge[ense = X|/[judge — job-ezecution)
[[{X E case}.
Furthermore, we must define the parm object as follows:
parm i pamf[f'mf: = raare, atate = relation, while = job,
result = discase, employee = peraon),

This ahject resnlts from abstracting precedents and is used for the control of predicting judgements.
To use parm for ciesey and cosez, we define the following submodule relation:
parm Jg case; U caseg.
This information is dynamically defined during rule transformation, beecause the choice of precedents is experi-
mental.
Furthermore, we must define the subsumption relations:

CILEE _ TEW- LIRS JrET E0TL | TRLETY
relation  J  employes job-causality J insurance
disease 1 heart-altack joleezecution 2 insurance
Jab O intermissio

Then, we can ask some questions with a hypothesis to the above database:
1} I new-case inherits parm and theory, then what kind of fedgment do we obtain?

" new-case ; judge|case=new-case|/|judge = X|;
feein-caae g puerri L them-y.

We get three answers, in which the first is returned unconditionally, while the latter two are answers with
assumptions:

o XL jolrcousality
¢ if new-case: judgelouse =new-case] has judge C job-execution, then X Cinsurance
e if new-case: relation|state = employ, emplayes = mary| has cause =new-case, then X Cinsurance

2} If new-case inherits labor-lew and parm, then what kind of reaponsibility should the organization to which
Mary is affiliated have!

T- nem-case : organization|nome = “ 87| /[responsible = X|;;
new-case Jg parm U labor-law.

We get two answera with assumptions:

o il reecw-case: judy r:[r:u:a-: :vu:'w-cust_'] has judge C job-ezeculion,
then X C compensation|obj =mary, money = salary|

s if new-case: relation|state = employ, employee = mary| has
CAUSE = NEW-CAsE,
then X C compensation|obj = mary, money = salary|

For analogy detection, the parm object plays an essential role in determining how to abstract rules, as in
canaey and casey, which properties or ahjects are to be abstracted using the properties of parm, and which values
are to be given for the properties of parm. In this experimental system, which adds to the basic functions of
QuIroTE, we have experimented with not only hypothetical reasoning and abduction, but also such abstraction,
that is, analogy detection.

For TRIAL's uscr interface, Quiryore returns explanations (derivation graphs) with corresponding answers, if
necessary. The TRIAL interface diaplays this graphically according to a user’s request. By judging an answer on
the basis of the validity of the assumptions and the corresponding explanation, the user can update the database
or change the abstraction stralegy.

The TRIAL system was implemented for four months by two persons. This highlights the productivity of
Quzxore for such knowledge information processing systems.



5 Concluding Remarks

Knowledge information processing applications will play an important role in future information processing
ayatems, including future generation databases. Lepal reasoning systems, one such a.pphca.tmn, show typical
requirements for future database systems.

From the experiences of TRIAL, we can list several requirements for next generation database systems, which
need ol uH‘.mril}' bie unl}' for ]{-gﬁl :-L];Jplir.n.l,iu:m:

¢ Processing partial information
As data and knowledge are often not given in & perfect form, unlike conventional applications, we must
consider ambiguous or erroneons data as well as null values and logically incomplete information such as
negation and digjunction. In Qurrors, we use subsumption constraints to handle ambiguous and partially
lacking properbics. They are usceful not only Lo knowledge databases but also Lo scientific databases,

¢ Realizing an enwmronment for thinking experiments
Answers are not necessarily given unigquely in knowledge information processing, but are refined by
repeating trial-and-error querying with the users. In this sense. the features of hypothetical reasoning and
hypothesis generation are very important,

& Framework of very large database and knowledge-base
Classification mechanisms are very important for storing large databases and knowledge-bases. Subsump-
tion and submodule hierarchies contribute to such classification. Especially, a framework that allows
inconsistent data and knowledge to co-exist is needed,

o [ntegration of heterogenvous date and mowledge
Even if we consider only one application, we can find various kinds of data and knowledge within it
For example, legal data includes large amounts of text data as the primary data, and abstracted data
or knowledge (including rules) ns the bigher level data. Although we have not integrated such data
and knowledge into TRIAL, the integration of such heterogeneous data and knowledge will hecome very
important.

o Knowledge discovery in databases
To classify large databases and knowledge-bases, two kinds of knowledge discovery will be needed: how to
find erroneouns and lacking information: how to find new knowledge (abstracted rule in the above example).

& Integration of technologies in related arens
Database technologies have been spreading: for example, we now have deductive databases, database
programming languages, deductive object-oriented databases, and very large knowledge-bases. More tech-
nologies in many areas such as artificial intelligence, programming languages, and operating systems,
should be embedded into database systems,

ervore and p-OuzxoTe systems, which run under UNIX, have been released as ICOT free software.
We have been extending the features of the aystems as next generation database systems and a framework of
hetorogenecus, distributed, cooperative problem solvers to enable their application to a wider range of knowledge
information processing applications such as natural language processing and genetic information processing
systems.

Acknowledgments

The aunthors wish to thank Nobuichiro Yamamoto [Hitachi, Ltd.) for designing and implementing the TRIAL
system, and all the members of the QuzxoTe project for their valuable advice.

References

[1] H.ASt-Kaci. “An Algebraic Semantics Approach to the Effective Resolution of Type Eguations”, Theoretical Com-
puter Science, no.45, 1986.

[2] A.J. Bonner and M. Kifer, “Transaction Logic Programming”, Proc. Intl Logic Programming, 1993,
2] L.O. Kelso, “Does the Law Need a Techuological Revolution?”, Rocky Me. Law Rev., vol .18, pp.3T8-392, 1046,

[4] M. Kifer. G. Lausen, and J. Wu, “Logical Foundations of Object-Oriented and Frame-Based Languages”, SUNY TR
93/06, June, 1993.



[5] K. Nitta. Y. Ono, T. Chino. T. Ukita, and 8. Amano, “HELIC-II: A Legal Reasoning System on the Parallel
luferenee Machine”, Proe. Int. Conf. on FGCS, ICOT, Tokyo. June 1-5, 1992,

[6] N. Yamamoto, “T'RIAL: a Legal Reasoning System (Extended Abstract)”, Joint French-Japanese Workshop on Logic
Programming, Renne, Franee, July, 1991,

H. Yasukawn and K. Yokota, “Labeled Graph as Semantics of Objects”, Proc. Joint Workshep of SICDBS and
SIGAT of IPS], Nov., 1990.

[8] H. Yasukawa, H. Tsuda, and K. Yokota. “Objects, Properties, and Modules in QuixoTe”, Proe. Inl. Conf on
FGCS, 1COT, Tokyo, June 1-5, 1992,

[9] K. Yokota and H. Yasukawa, “Towards an Integrated Knowledge Base Management System — Overview of RD on
Databases and Knowledge-Bases ju the FGCS Project”, Proc. Int. Conf. on FGCS, ICOT, Tokyo, June 1-5, 1882,

[10] K. Yokota, H. Tsuda, and Y. Morita, “Specific Features of a Deductive Ohject-Oriented Database Langnage
Quixore”, Workshop on Combining Declarafive and Objeet-Oriented Dotubuses, [ACM SIGMOD 93 Workshap ),
Washington DO, May #1983,

[11] K. Yokotn and M. Shibasaki, “Can Databases Prodict Legal Judgements?”, Joint Workshop of IPSJ SIGDSS and
IEICE SIGDE (EDWIN), Nagasaki, July 21-23, 1993. {in Japanese)



