_ICOT Technical Report: TR-0863

TR-UE63

Evaluanon of the Cluster Structure on the
PIM/c Parallel Inlference Machine

by
T. Tarui, M. Asaie, N, Ido, T. Nakagawa
& M. Sugie (Ilitachi)

@ Copyright 1984-1-20 1COT, JAPAN ALL RIGHTS RESERVED

Mita Kekusa Bldg. 21F (0313456 31915

|GDT 4-28 Mita 1-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Evaluation of the Cluster Structure
on the PIM/c Parallel Inference Machine

Toshiaki Tarui*, Machiko Asaie*, Norivasu Ido*,
Takayuki Nakagawa**, and Mamora Sugie*
* Central Research Laboratory, Hitachi, Ltd.

** General Purpose Computer Division, Hitachi, Ltd.

1-280, Higashi Koigakubo, Kokubunji-shi, Tokyo 185, Japan
Tel: +81-423-23-1111
Fax: +81-423-27-7743

Email: tarvi@crlhitachi.co.jp

Abstract

The characteristics of a cluster-structure parallel computer are analyzed
and evaluated on the PiIM/c parallel inference machine, which includes eighi-
processor shared-memory clusters communicating through a communication
processor connected to a network. To avoid communication bottlenecks, the
maximum number of processors in a cluster is limited by the ratio of
communication operations to program execution operations. On PIM/c, since
this ratio is as high as 30%, the network receiving operations should be

distributed to processors in the same cluster to achieve efficient eight-

processor cluster operation.

Key Words

parallel computer, cluster structure, shared memory, network,

communication overhead

1. Introduction

Parallel processing is the most promising technology for developing high-
performance computer systems. In parallel computers with multiple
processors, a mechanism to efficiently support communication between
processors is one of the most important design issues. The two basic ways to
connect parallel processors are with a message-passing mechanism using
network communication and with a shared-memory architecture using a
common bus.

With the message-passing architecture, a large-scale parallel computer
can casily be developed because the network has high scalability. However,
message-passing programming is not so easy as sequential programming, and
communication overhead is not insignificant because packet communication
which includes packet construction/deconstruction is required. For these
reasons, the message-passing architecture is used mainly on large-scale
paraliel supercomputers with large-grain communications. With the shared-
memory architecture, on the other hand, fine-grain communication between
processors can be efficiently performed; however, the number of processors is
limited by the common-bus throughputr. The shared-memeory architecture is
therefore mainly used for small-scale systems with approximately ten
Processors,

A parallel computer, in which clusters of shared-memory multi-
processors are connected through a network, has been proposed to take
advantage of the efficient communication provided by shared memory [1]. This
machine can be used to develop a large-scale parallel system. In this cluster
architecture, the parallel processing overhead can be reduced by utilizing the
communication locality of the program, in other words, by mapping groups of
processes with frequent communications to the same cluster. Furthermore,
hardware costs can be reduced by limiting each cluster's connection to the
network to one interface, such as a communication processor. With this

architecture, processors in the cluster have no network connection and thus

have to communicate through the network interface. This requires inner-
cluster communication through the shared memory as well as packet
communication through the network interface. With a large-scale shared
memory system [2], the network interface must be able to support complex
operations, such as directory managements. Shared-memory multi-processor
technologies, such as snooping cache, make it possible to efficiently develop a
parallel computer with a cluster structure. The cluster structure is therefore
one of the most important technologies needed to develop a large-scale parallel
system.

The parallel inference machine (PIM) [3] was developed in Japan's Fifth
Generation Computer Project driven by the Institute for New Generation
Computer Technology (ICOT). The PIM was designed to efficiently execute
programs written in the parallel logic-programming language KL1 [4], which
allows a separate process to be defined for each step in an algorithm and which
can synchronize communication between the processes. Hitachi's PIM model ¢
(PIM/c) [5] consists of 256 processing elements (PEs) and is organized into 32
clusters of eight-processor, shared-memory multi-processors, each with a
snooping cache mechanism. Each cluster has one extra processor dedicated to
network communication. This processor is connected to a crossbar network. In
the PIM/c, the communication processor must support the rather heavy
overhead of operations involved in KL1 communication, such as address
transferring, as well as the data handling.

Because the cluster structure has two levels of communication, network
and common bus, conventional programs optimized for a one-level
architecture (such as for a one-level, network-connected parallel computer)
cannot be executed efficiently on the cluster structure. This is because
communication overhead and latency is completely different between the two
levels. The structure of the program must be changed to make it work
efficiently on a cluster structure. The actual characteristics of a program to be
run on a cluster structure have not yet been clarified in derail. Having
completed the development of the PIM/c cluster system, we can now evaluate

the performance of the system in detail, including the real overhead of the

shared memory and network communication. We can thus investigate how
parametric changes affect the system performance and determine the system
architecture and programming model tequired to develop an efficient parallel
system.

In this paper, models of programs that execute on a cluster-structure
parallel computer are analyzed, focusing on network communication between
clusters. The performance of application programs running on the PIM/c is
measured, and the execution models are verified by the results. The
characteristics and design issues of the cluster structure are also discussed.
Because characteristics of the cluster structure are focused on, bare
performance of network/common-bus communication is not discussed in this

paper, instead the total system balance is investigated in detail.

2. The Cluster-Structure Parallel Computer

2.1. PIM/c Architecture

Figure 2.1 shows the structure of the PIM/c with a typical cluster
structure. The processing elements (PEs) are connected hierarchically, nine-
processor shared-memory multi-processors compose a cluster, and 32
clusters are connected through a network. Inside each cluster, eight PEs, one
cluster controller (CC), and the main memory are connected to a two-way-
interleaved common-bus. The 256 total PEs are contained in four cabinets. Each
PE executes the KL1 programs and the CC handles network communication (it is
the network interface). A snooping cache mechanism is used in the PEs and the
CC to support efficient shared-memory communications.

During KLI execution, inter-cluster communication requires heavy
firmware overhead, such as address transiation, real-time garbage collection,
and packet construction/deconstruction. In the PIM/c, normal system
firmware is designed so that all operations involved in communication are
executed on the CC, in order to reduce the communication overhead on the PEs.

The performance of each PE is thus increased; however, execution on the CC

may become a bottleneck, even when the performance of the network
hardware itself is sufficient. To reduce the CC bottleneck, the PIM/c has an
additional execution mode: the network receiving operations are distributed to
the PEs. The performance saturation point is thus increased, as will be discussed
in Section 2.4: however, the performance of each PE decreases because PEs

must execute additional communication operations.

2.2. Characleristics
In a parallel computer with a cluster structure, the PEs are connected in a

two-level hierarchical architecture: between the shared memory and the

network. Several PEs and a shared memory are connected by a common bus
and compose a cluster of shared-memory multi-processors. The system is
composed of a number of these clusters connected by a network. Each cluster
also includes a network interface, such as a communication processor,
connected to the nerwork. PEs in a cluster have no network connection and
thus have to communicate through the network interface. Communication
between PEs in the same cluster can be performed by utilizing the high-speed
shared-memory system. Communication between PEs in different clusters is
done through the network, such as with packet transfer. Communication
between clusters must include inner-cluster communication to the network
interface. Communication overhead and latency is therefore completely
different between the two levels.

Compared with a one-level, network-connected, parallel computer, a
cluster structure has two significant advantages:

(1) Network hardware can be reduced to about 1/n if each cluster includes n
PEs. By using low-cost shared-memory multi-processors, total system
hardware costs can be reduced.

(2) Network communication can be reduced by mapping the processes which
communicate frequently with each other to the same cluster. Because
inner-cluster communications are performed much faster than inter-
cluster communications, system performance is improved.

The cluster structure also has some disadvantages:

n
|

(3) Network throughput per PE is reduced to 1/n because the n processors
share one network path. Thus, the petwork interface may become a
bottleneck if a program has frequent communications.

(4) Inter-cluster communication latency is high, because the PEs do not have
a direct network path and must use shared memory to request or receive
messages through the network interface. Furthermore, if several PEs in
the same cluster attempt to communicate at the same time, the requests
are serialized on the petwork interface and message latency increases.

The following aspects must therefore be considered when designing a cluster-

structure parallel system:

« performance of network communication and shared-memory

communication,

« ratio of program execution and communication,

= communication locality of the program.

In the rest of this paper, we will analyze program performance in a cluster

structure, focusing on communication performance and the communication-

execution ratio,

2.3. Communication within a Parallel Program
Network communication within a parallel program running in a cluster
structure can be classified into three types:
(1) execution dominant
When a program has few communication requirements,
communication performance has little effect on system performance:
execution speed increases almost linearly with the number of PEs in each
cluster (provided that shared-memory multi-processor performance is
efficient). This type of program is not evaluated in this paper.
(2) network latency dominant
Inter-cluster network latency occurs in a cluster structure because
ecach PE must communicate through a network interface. When a program

must wait during communication latency, it becomes idle and system

performance decreases. In latency dominant programs, system
performance strongly depends on network performance.
(3) network throughput dominant

If a program can hide network latency by communicating and
executing programs in parallel, or when the program has a sufficient
number of processes and a context-switch mechanism for communication
is provided, system performance is independent of network latency.
However, if network throughput becomes overloaded, system
performance decreases because of communication-waiting time.
Therefore, on throughput domipant programs, network throughput must

be sufficient to support the communication produced by all of the PEs in a

cluster.

2.4, Execution Models
In this section, we will analyze models of parallel programs executing on a
cluster-structure parallel system, focusing on the network communication. The
relationship between the number of PEs in a cluster and system performance is
discussed in detail.
In our model, we use the following assumptions:
= Hardware throughput of the network and the common bus 1s sufficient.
+ Shared-memory multi-processor overhead in each cluster is small enough to
ignore.
* Hardware latency in the network 15 small compared with the overhead in the
network interface and can be ignored.
Thus, the only communication overhead occurs in the network interface. On
the PIM/c, because of heavy firmware overhead required in KLI
communication, these assumptions are proper as will be discussed in Section
4.1.
In our model, each PE executes those processes with the same
characteristics.
We use the following notations in our analysis:

n: number of PEs in each cluster

=3

i system cycles used by the program to execute one process (does not
include communication cvcles)

¢ system cycles used by the network 1o communicate during one process (c
< 1, that is, communication time is shorter than the program execution
time)

e: system cycles used by the network receiving packets for network
communication in ¢ (e < ¢)

C. communication overhead, that is, the ratio of network communication time
and program execution time (c/fi)

E receiving overhead, that is, the ratio of receiving communication time and

program execution time (e/i)

Figure 2.2 shows the execution model for the throughput dominant
program. In the network interface, nc cycles are used for communication
during one umit of processing, because n PEs in the cluster request ¢ cycles of
communication. Since in throughput dominant programs, communication and
program execution can be performed in parallel, the execution time for one
process (T1) is

TI{n) = max(i, nc), (1)
where each cluster executes n processes. Therefore, the speedup (S1)

compared with the execution time with one PE is

S1(n) = (n/TImn) /(1 /[TI(1)
= {when n < 1/C), or
= 1/C (when n = 1/C). (2)

Linear speedup can be obtained when execution time in the network interface
is less than the program execution time in the PE (n < 1/C). When the number
of PEs is more than 1/C, the network interface becomes the bottleneck and
system performance saturates.

To reduce this bottleneck, the load on the network interface must be
reduced. One way to do this is to distribute portions of the communication
operations to PEs in the same cluster. When this is done, the execution time for

one process (T2) is

2{n) = max{i+e, n{c-e)}, (3)
where e cycles out of ¢ have distributed. The speedup compared with the
single-PE case (where the receiving operation is not distributed to the PEs) is

S2(n) =n/ (1+E) (when n < (1+E) / (C-E)), or

=1/(C-E) (when n > (1+E) / (C-E)). (4)

By distributing the receiving operation to PEs, maximum performance and the
speedup-saturation point can be increased. However, performance with a small
number of PEs decreases because the workload on each PE increases by E.
Distributing the rteceiving operations has advantages and disadvantages, so
experiments on a real machine are required to determine the optimum
strategy.

Figure 2.4 summarizes the performance of the above mentioned execution

model, together with the latency dominant performance model discussed below.

Figure 2.3 shows the execution model for the latency dominant program.
In this case, communication and program execution cannot be overlapped, they
are performed sequentially. Thus, the execution time for one process (T3} is

T3(n) =i+ng (5)
where each cluster executes n processes. Therefore, the speedup compared
with the single-PE execution time of a throughput dominant program is (in
order to compare the speedup with the throughput dominant case, the same
performance base is used)

53(n) =n/(1+ nC). (6)

As shown in figure 2.4, performance of the latency dominant program is
always below the performance of the throughput dominant program, because
PEs become idle during communication. The performance ratio of the two cases
increases as the number of PEs in each cluster increases. At the performance
saturation point of the throughpur dominant program, where the difference
becomes maximum, the latency dominant program shows only half the
performance of the throughput dominant program.

Above discussion is based on the assumption that communication/

program-execution ratio is independent of the number of PEs in each cluster.

(In this case, the total number of program execution cycles in each cluster
increases as the number of PEs increases.) In some programs, on the other
hand, the total number of program execution cycles in each cluster does not
increase #s the number of PEs increases. In this case, the execution time for one
process (T4) is

T4d(n) =1+ nc, (7)
where the total number of program execution cycles in each cluster is constant
(i). Therefore, speedup (S4) is

S4(n) (i / T4(n)) / (i / T4(1))
(1 +C)/(1+n0). (8)

S4(n) decreases as the number of PEs increases. This is because the total

number of program execution cycles in each cluster is independent of n, while
the communication c¢yecles (nc) increase with n. Thus, the
communication/program-execution ratio for each cluster increases as n

Increases.

3. Evaluation

3.1. Evaluation Method

We measured the performance of a cluster structure parallel computer
using the PIM/c parallel inference machine with large-scale application
programs written in the logic programming language KLI1, to clarify the
characteristics of the system and 1o investigate the parameters which
determine system performance. The performance of a cluster structure is
strongly affected by system balance, such as between shared-memory
network performance and firmware overhead. Evaluation on a real machine is

thus indispensable.

To evaluate the general communication performance of the cluster
system, we used communication dominant KL1 programs (not inference
dominant programs). Although KL1 is designed to solve knowledge information

programs, KL!1 itself is a general-purpose parallel programming language that

— 10—

includes the synchronization and load-balancing mechanisms essential to

paraliel processing.

We used two [COT-developed KL1 programs [6] as benchmark programs:
LSI routing program (Router)

This throughput dominant program uses the lookahead line search
method. Many routing processes are created for each grid line on the LSI
and are used to execule routing in parallel. The system therefore has a
large number of routing processes. The suspension/resumption
mechanism of KL1 makes it possible to context-swilch to another process
when communication occurs, thus hiding network latency. For this reason,
the Router is a throughput dominant program.

Logic simulation program (Lsim)

This latency dominant program is a conventional time wheel version
of the parallel logic simulation program. Several (1-8) simulation engines
are placed on each cluster and execute the simulation in parallel. Each
simulation engine must synchronize once per simulation cycle, by sending
a message to the time manager. This is done simultaneously by each PE in
the cluster, so the simulation engines become idle. For this reason, Lsim Is
a latency dominant program.

In our experiments, we measured the relationship between the number of

working PEs in a cluster and the speedup. The number of clusters was eight

(maximum 64 PEs). For the throughput dominant routing program, we also

measured the affect of distributing the receiving operations to PEs in the same

cluster,

3.2,

Resulis

3.2.1. Effect of the Number of PEs in a Cluster

Table 3.1 summarizes the execution ume of each benchmark programs on

the PIM/c with eight cluster (64 PEs). In the rest of this paper, number of

clusters is fixed to eight

— 1!_ -

Figure 3.1 shows the relationship between the number of PEs in each
cluster and the speedup of the routing program. The results are consistent with
the analytical results shown in figure 2.4, The execution model of the
throughput dominant program discussed in Section 2.4 therefore applies to the
PIM/c.

With normal execution strategy, in which all receive operations are
executed on the CC, the speedup saturates at around three PEs. Above this
point, the utilization of the CCs (observed using the real time performance
meter) is 100% while the utilization of the PEs is only 60-809%; that is, the PEs
become idle because of the communication bottleneck in the CCs. On the other
hand, when the receive operations are distributed to the PEs, an almost linear
speedup can be obtained. (However, performance on one or two PEs iz 10-20%
lower than the normal strategy.) In this case, the utilization of the PEs is almost
100% while the utilization of the CCs is around 50%. This confirms that when
executing a throughput dominant program on the PIM/c, communication
bottlenecks on the network interface can be solved by distributing the receive
operations to the processors.

The communication overhead and other parameters discussed in Section
2.4 can be estimated from figure 3.1, The communication overhead C is 0.3 and
the receiving overhead E is 0.15; that is, network communication takes as
much as 30% of the program execution time and about half of the
communication is spent on receiving. Thus, the performance-saturation PE
number when all communications are executed on the CC is three, and eight
when the receiving operations are distributed to the PEs. In the later case,
however, speedup before the saturation point (when the number of PEs is one
or two) 1s 13% lower than in the former case. The estimated parameters match
well with the experimental results. (It should be noted that the value of these

parameters varies with the application program.)

Figure 3.2 shows the relationship between the number of PEs in each
cluster and the speedup of the simulation program. In this case, the

experimental results are equal to the analytical result of the latency dominant

program when the total number of program execution cycles in each cluster
does not increase (discussed in Section 2.4): performance decreases as the
number of PEs in each cluster increases. Speedup S4(n) is equal to the
experimental result shown in figure 3.2. The communication overhead C is
estimated to be 0.17, which indicates that communication overhead is smailer
than for the routing program. The utilization of the PEs drops to about 30%.

In the simulation program, the communication overhead increases as the
number of PEs in each cluster increases. Total execution cycles in each cluster 1s
independent of the number of PEs because the number of the simulation gates
is constant. On the other hand, communication from each cluster to the time
manager increases as the number of PEs in each cluster increases, causing
communication overhead to increase. Because of this, performance of

simulation program decreases as the number of PEs in each cluster increases.

3.2.2. Multi-processor Overhead in the Cluster

Figure 3.1 shows that the speedup of the routing program saturates at
around 3 PEs when all network operations are performed on the CC. In the
performance saturation area, constant performance should be obtained
according to the execution model in Section 2.4. However, the experimental
results show that speedup decreases slightly when the number of PEs is more
than six. This is because the shared-memory multi-processor overhead inside
the cluster decreases performance.

Table 3.2 shows the number of multi-processor events per PE, measured
by the hardware bus monitor, when the number of PEs in the cluster is four
and eight. When the number of PEs is four, the number of cache accesses and
bus-busy cycles is larger than for the eight-PE case, because each PE does twice
the work. On the other hand, the lock-waiting time with eight PEs is much
larger, despite the small workload on each PE. This is because, in the eight-PE
case, the ratio of lock concentrations to shared resources is larger. It should be
noted that common-bus throughput is sufficient, because common-bus
utilization is only 5.8%. In this way, the shared-memory multi-processor

overhead inside each cluster increases rapidly when the number of PEs in the

13

cluster is close to eight because of lock concentration, which decreases system
performance even when the common-bus throughput is sufficient.

When the application program has sufficient parallelism, this multi-
processor overhead does not degrade performance because the speedup is
more significant. However, when cluster performance saturates because of, for
example, a network bottleneck, increasing the number of working PEs in the
cluster beyond the saturation point degrades system performance because of
the shared memory overhead. The number of PEs that can perform efficiently

in each cluster is therefore limited.

4. Discussion

With a cluster structure, a large-scale parallel system can be built
efficiently. However, throughput bottleneck and increasing latency in the
network interface must be overcome in designing a high-performance parallel
system. In this section, we will discuss the characteristics and design issues of

the cluster structure parallel computer in detail.

4.1. Communication Overhead

As discussed in Section 2.4, when a communication processor is placed in
each cluster to support network communication, the maximum number of PEs
in one cluster is limited by the network overhead: the ratio of communication
Operations to program execution operations must be controlled to avoid
communication bottlenecks. (The performance of the shared memory in the
cluster also limits the number of PEs.) As a result, total system performance
strongly depends on the communication overhead. If it is large, the number of
executing PEs in the cluster should be limited to minimize the shared memory
overhead inside the «cluster. Furthermore, since network hardware
performance is wusually sufficient on a normal parallel computer, the

communication overhead is primarily caused by the software involved in

network communications. For this reason, communication overhead depends
on the communication characteristics of the application program.

On the PIM/¢, as the communication overhead for a KLI1 program is as
much as 30%, because of heavy firmware overhead required in KL1
communication, system performance is limited by communication bottlenecks
in the CCs, the communication processors. Thus, some effort should be made to
reduce the communication overhead. One approach is to distribute some of the
communication operations o PEs, as will be described in the next section. The
other approach is to reduce inter-cluster communication, utilizing the
communication locality of the program. This 1% done by mapping groups of
processes which communicate frequently with each other to the same cluster.
In the LSI routing program, about a 20% speedup can be obtained by

optimizing the process distribution.

4.2. Network Communication Execution Strategy
On a cluster-structure parallel computer with a network communication

processor, svstem load balancing between the communication processor and

the normal (program executing) processors is crucial in order to avoid
communication bottlenecks. In general, communication overhead on the
normal processors can be reduced and high system performance can be
obtained when all communication operations are performed on the
communication processors. However, this strategy may cause communication
processor bottlenecks, if the throughpur of the communication processors 1s
insufficient. In this case, system performance quickly saturates.

The following strategy is therefore appropriate for cluster structures.

. When the number of normal processors in a cluster is small, or the
communication overhead is not heavy, all communication operation
should be performed on the communicanon processors.

. When the number of normal processors in a cluster 18 large, or the
communication overhead is heavy, some of the communication operations

should be distributed to the nommal processors.

. Since communication overhead varies with programs, the system shouid
be designed so that communication processors seldom become the
bottleneck, because when they do, utilization of the normal processors
decreases dramatically.

The communication overhead, the number of normal processors in a cluster,

and the distribution of communication operations should therefore be

considered when designing the network sysiem for a cluster structure-parallel
computer.

On PIM/c, because of the heavy load caused by KLI1 inter-cluster
communication, the communication overhead is so heavy that, when all of the
communication operations are performed on the CC, system performance
saturates at around only three PEs. Because of this, an improved execution
strategy, in which the receiving part of the network operation is distributed to
the PEs in the cluster, should be used. In this case, the maximum number of PEs
in the cluster can be increased to eight. With this strategy, CC utilization is
decreases to about 50% and network bottlenecks are avoided. With this
strategy, however, when the number of PEs is below the saturation point
(when the number of PEs is one or two), the performance of the later strategy
is 10-209% lower than that of the former strategy, because the PEs must
execute additional communication operations. However, since the final goal of
the parallel computer is to achieve high performance with a large number of
processors, the later strategy should be used, despite the poor single-processor

performance,

4.3. Programming Model for the Cluster Structure

In & cluster-structure parallel computer, throughput dominant
programming is needed to hide communication latency and achieve high
performance. A program can be executed in a throughput dominant manner
when the application itself is programmed so as to perform communication and
program execution in parallel, or when the system supports a light-weight
context-switching mechanism (such as the suspension/resumption mechanism

in KL1) and the number of the executable processes in the application program

is sufficient. With a throughput dominant program, an almost linear speedup
can be obtained until the network throughput becomes the bottleneck.

On the other hand, if the program has latency dominant characteristics
and the communication latency cannot be hidden, processor utilization
decreases as the number of PEs in each cluster increases, and the performance
degradation ratio compared with the throughput dominant program increases.
This is because in a cluster-structure parallel computer, communication
requests from PEs in a cluster are serialized on the CC and communication
latency increases with the number of PEs.

Furthermore, if the program has no communpication locality, so that
communication overhead increases with the number of PEs, system
performance decreases as the number of PEs increases. The logic simulation
program evaluated in this paper is one example of this. In this case, only one PE
in the cluster should be executed, even if the cluster has several PEs.

lo avoid the performance degradation in a latency dominant program, the
program algorithm should be completely changed to a throughput dominant
algorithm. For example, a time warp algorithm suitable for parallel execution
has been proposed [6] for the logic simulation program. In this algorithm,
synchronization through the time manager is not used so that parallel

execution of simulation and communication is possible.

5. Conclusion

In this paper, we analyzed and measured the performance of a cluster
structure parallel computer on the PIM/c parallel inference machine, which
includes eight-processor shared-memory clusters, each connected to the
network with a communication processor, to clarify the characteristics of the
cluster structure,

The main results obtained from our investigation are the following.

(1) In a cluster-structure parallel computer, the communication

bottlenecks in the network interface should be avoided. Therefore, the

(2)

(3}

(4)

maximum number of PEs in cach cluster is limited by the communication
overhead (the ratio of operations required for communication to those
required for program execution), in addition to the shared memory
overhead in each cluster. As a result, total system performance depends
strongly on the communication overhead. System performance saturates
when the number of processors in the cluster exceeds the limitation,

On PIM/c, since the communication overhead for KL1 inference
operation is as much as 10-30%, the number of PEs in a cluster is limited
to three if the communication processor (CC) performs all of the
communication operations. Therefore, the communication distribution
discussed next is indispensable for eight-PE clusters.

To decrease bottlenecks in the communication processors, some
communication operations should be distributed to program-executing
processors in the same cluster. With this inner-cluster load balancing,
communication overhead can be reduced and the maximum number of
processors in a cluster can be increased.

On PIM/c, the workload on the CC can be sufficiently reduced, by
distributing the network receiving operations to the PEs so that the
maximum number of PEs in a cluster can be increased to eight.

The programming algorithm on a paraliel computer should be
designed so as to hide communication latency by performing
communication and program execution in parallel. If a processor has to
wait due to communication latency, processor utilization decreases. In a
cluster structure parallel computer, latency hiding is indispensable
because the communication requests from processors in the cluster are
serialized in the network interface, increasing communication latency.

In latency dominant programs, increasing the number of processors
in the cluster without consideration of communication locality may result
in decreased system performance because of increasing communication
overhead. In this case, executing one processor in each cluster gives the
best performance, even if the cluster has several processors. To solve this

problem, application programs should be changed to reduce inter-cluster

network communication by utilizing communication locality.
Communication overhead should not increase as the number of PEs in a

cluster increases.

Acknowledgements

The authors would like to thank Dr., Shun'ichi Uchida, Manager of the
Research Department of ICOT, for his guidance and support, and Dr. Takashi
Chikayama, Chief of the 1st ICOT Laboratory, for his helpful discussions. This

research was sponsored by the 1COT.

References

[1] N. Hamanaka, J. Nakagoshi, and T. Tanaka, "Reducing Network Hardware
Quantity by Employing Multi-Processor Cluster Structure in Distributed
Memory Parallel Processors,” Parallel Processing: CONPAR 92 - VAPP V,
Springer-Verlag 634, pp. 25-30, 1992,

[2] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.
Horowitz, and M. Lam, "The Stanford Dash Multiprocessor," IEEE Computer,
Vol. 25, No. 3, pp. 63-79, 1992,

[3] 5. Uchida, "Summary of the Parallel Inference Machine and its Basic
Software,” Proceedings of the International Conference on Fifth Generation
Computer Systems 1992, pp. 33-49, [992

[4] T. Chikayama, "Operating System PIMOS and Kernel Language KL1,"
Proceedings of the International Conference on Fifth Generation Computer
Systems 1992, pp. 73-88, 1992

[5] T. MNakagawa, N. Ido, T. Tarui, M. Asaie, and M. Sugie, "Hardware
Implementation of Dynamic Load Balancing in the Parallel Inference
Machine PIM/c,” Proceedings of the International Conference on Fifth

Generation Computer Systems 1992, pp. 723-730, 1992

19 —

[6] H. Date, Y. Matsumoto, K. Kimura, K. Taki, H. Kaio, and M. Hoshi, "LSI-CAD

Frograms on Parallel Inference Machine,” Proceedings of the International
Conference on Fifth Generation Computer Systems 1992, pp. 237-247,

1992,

network

cluster 0 cluster 31

PEO PE7 CC

CPU CPU CPU ‘hetwark
— —, interface
cache cache l cache,”

common bus

main
memory

PE: processing element
CC: cluster controller

Fig. 2.1. PIM/c structure.
(PIM/c: Paraliel Inference Machine/Model C)

PED

Program Execution

Program Execution

Program Execution

Communication |5

PE1

R

S

=

S

Program Exe ::.Litiuﬂ
5

Program Ex ecition

S|R

Program Execution
s|R

PEn-1

Communication

Fig. 2.2.

PEO

PE1

PEn-1

Fig. 2.3.

1
i

S: Send
R: Receiva

.....................

Program Execution

Program Execution

S|R

c

R

S

)

nc

Execution model for throughput dominant program.

nc
: i ~ C___
Program Execution |5 E

Program Execution

Program Execution

i

e

Program Execution

S

Program Execution

S: Send
H: Receive

S

Program Execution

Communication
from cach PE is
serialized.

Execution model for latency dominant program.

C: ratio of network communication time

and program execution iime {communication overhead)
E: ratio of receiving communication time

and program execution time

Throughput ;
Dominant
{PE executes
receive
operation)

Throughput \‘*
Dominant :

1/C |--(CC executes
receive
operation}

\

1/(C-E) e

Relative Speed

Latency Dcmiham

i
3

i
L
1

0 1/C (1+E)/(C-E)
Number of PEs in each ciuster

Fig. 2.4. Throughput dominant and latency dominant
program performance.

PE: processing element
CC: cluster controller

Table 3.1. Execution Time of Benchmark Programs

Benchmark Routing Program Simulation
Program CC executes PE execules Program
receive operations | receive operalions
Execution Time
(seconds) 53.4 225 190.0

8 clusters (64 PEs)

Table 3.2. Number of Multi-Processor Events per PE

(thousand times)

(thousand cycles)

;quFr:;Ebae;n g:;t;er o gucr;n berof Bus-Busy |Lock-Waiting
u‘- H -
Cycle Time |Cycle Tim
a Cluster | Accesses | Accesses Y | ycle Time
4 47,559 549 4,184 406
8 31,594 554 3,458 9114

24

Routing program,

CC executes receive operations,

- CC executes receive operation

—sa— PE executes receive operation

Relative Speed

L
4 6 8
Number of PEs in Cluster

o
M2

Fig. 3.1. Relationship between number of PEs
and speedup of routing program.

- CC executes receive operation

—
o
1

L}

Relative Speed

0 I [2 1 2 | L
0 2 4 6 8
Number of PEs in Cluster

Fig. 3.2. Relationship between number of PEs
and speedup of logic simulation program.

— 25 -

