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Abstract

We propose a novel scheme for protein 3D structure prediclion using the
Multi-level Deseription scheme (MLD). In this prediction schemne, a local con
formation is not only determined by the primary structure at that region (i.e.,
primary constraints) but is also constrained by the neighboring or surrounding
local conformations (1., geamelric constraints ).

The MLD describes a protein conformation with multiple levels of differ-
enl scales and degrees of abstraction. This scheme facilitate to model the
geomelric constraints between the neighboring local conformations by analye-
ing the frequency of overlapping pallerns of the local conformations. The
primary conslrainds are modeled by analyzing the relationship between the pri-
mary structure and the local conformation at thal region.

The MLD representing a veal protein conformation must satisfy most of the
constraints above. Thus, a prolein conformation can be predicted by searching
for the optimal MLD that bset satisfies the constraints. This problems is
formulated as a combinatorial optimization problem.
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1 Introduction

The prediction of a protein 3D structure (i.e., the tertiary structure) from its
amino-acid sequence (i.e., the primary structure} is one of the most important
vet unsolved problems in molecular biology. Iun couventional prediction schemes,
the sequence of secondary structures is predicted from the primary structure of a
protein[Chou and Fasman 74), and then, the secondary structures are packed into
the tertiary structure[Cohen et al 82]. Since Lhe perfect secondary structure predic-
tion is assumed in these prediction schemes, the predicted secandary structures are
fixed during the tertiary structure formation. It is, however, reported that a local
cenformation is not directly determined by the primary structure at that region but
strongly constrained by the environment in which the local conformation forms.

Thus the local conformation shonld not be determined only by the primary
structure at that region (i.e., primary constraints) but should also be constrained
by the environment generated by the folded global structure, and by turn, the global
structure is not only determined by the global property of the primary structure hut
also geometrically constrained by the substructures (i.c. the geometric constraints),

To include these constraints in a prediction method, we proposed a novel de-
scription scheme of protein conformation that models the constraints of protein
folding[Onizuka ct al 93]. This scheme, MLD (Multi Level Description), describes
a protein conformation with multiple levels of different scales and abstractions. At
each level, a protein conformation is represented by a symbolic sequence each S¥I-
bol of which denotes a local conformation type of the level size. The sequence at
low levels represcnts the fine conformational structures with fairly high reselution.
The sequence at high levels represents the abstracted large scale topologies. The
MLD is reconstructable into the 3D structure because the MLD has approximately
whole information on its tertiary structure.

ML models two kinds of important constraints. The geometric constraints be-
tween the neighboring local conformations are modeled by analyzing the overlapping
patterns of local conformations. The primary constraints are modeled by analyz-
ing the relationship between the local conformation type and the primary structure
at that region. The primary constraints of the short fragments are considered to
represent the local factors of structure formation, and those of long fragments are
considered to represent the global factors. Thus, MLD models both local and glahal
factors.

In order to represent local conformations with a symbolic sequence at multi-
ple levels, the classification of local conformations is required. The classification
of large conformations has almost never been tried so far, even though the classi-
fication of small local conformation has been frequently proposed [Unger et al 89,
Miller et al 93, Zhang et al 93]. Tt is because a large conformation has many de-
grees of freedom. We, however, solved this problem by abstracting the topology of
large conformations. We linearly expand the series of coordinates of C* atoms in a
local conformation into the expansion coefficients, where the expansion is eut at an
appropriate fixed order. Thus, a local conformation is represented by a set of fixed
number of expansion coefficients. We call this set of coefficients LTPs (Linear Topo-
logical Parameters). The local conformations represented by LTPs are classified by
the statistic clustering technique.



The primary constraints are modeled by analvzing relationship between the dis-
tribution of amino acids in a primary structure fragment and the local conformation
tvpe at that region.

A real protein conformation must satlisfy both the primary and geometric con-
straints. We assume thal such a MLD that satisfies most of the constraints would
represent the most probable conformation of a protein. Thus, we can predict the
conformation from a primary structure hy searching such a good MLD that satisfies
maost of the constraints. This problems is normally formulated as a combinatorial op-
timization problem where many optimization algorithms such as genetic algorithm,
simulated annealing and integer programming are available.

2 Multi-Level Description

In this section, we shall ronghly describe the Multi-Level Description of protein
conformation (Detailed in [Onizuka et al 93]}. Let us consider the position of the C*
atom of each residue as the representative position of the residue. 3N —6 parameters
are required for the complete representation of a local conformation with NV residues
in a 3T space. This is almaost proportional to the number of residues in the local
conformation. In our case, however, the degree of abstraction for the representation
changes aceording to the local conformation size because the MLD represents a
conformation with multiple levels of different scales where the low levels represent
the fine structures and high levels represent the abstracted large scale topologies.
Thus, the number of parameters is fixed so that it is sufficient for the complete
representation of the smallest local conformalion at the lowest level. In our study,
the number of parameters is always fixed Lo nine {= 3 ®x 5 — 6) where five is the
number of residues in the local conformations of lowest level.

In order to obtain a fixed number of parameters from the local conformations of
any size, we {inearly expand the coordinale representation of a local conformation and
pbtain the expansion coefficients as the paramelers of the local conformation. The
number of parameters is fixed by cutting the expansion at the corresponding fixed
order. These LTPs {Linear Topological Parameters) may be reverse-transformed
into the original coordinate representation. Thus, the abstracted topology of a
local conformation is reconstructable from LTPs. We extract the fixed number of

Figure I: The Four Bases and Corresponding Topological Vectors
LTPs as follows. Iirst, a set of orthonormal bases, @y, for linear expansion is
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provided, where N is the number of residues in the local conformation, k is the
order, and 1 is the index of the component. Then, we define the topological vectors
T as the expansion coefficients. These are obtained by expanding the coordinate
representation, §;, of a local conformation, where S; is the positional vector of the
ith restdue in the local conformation.

N1
Te= 3" wnuSi (1)
=0
The orientation of the topological vectors obviously depends on the orientation of
the local eonformation. To normalize the orientation, a set of unit vectors specific to
the local conformation is defined. T'wo of the topological vectors, normally T, and
Ty, determine the direction of these unit vectors. The set of LTPs are calculated
as the scalar products of unit vectors and topological vectors, These parameters
are naturally invariant of the position and the orentation of the local conformation.
Thus, the local conformations are classified by clustering the sets of LTPs.

The data set used in this study was obtained from PDB July 1992, in which the
total number of entries is 1252 and the total number of protein chains is 1836, We
selected 166 backbone chains in which the mutual homology of amine acid SCQUENCes
was less than 80%.

We classified the local conformation with 5.9,17,93,65, and 120 (N = 2" & 1)
residues and obtained sixteen types al each level. The letters from A o P denote
the types. The five-residuc local conformation type A corresponds helices, and type
P.F, and C usually corresponds strands in our present study. This mcans, the
types at five-residue level well corresponds secondary structures. We assume that
Lhe types at higher levels would correspond super secoandary structures or domains
of protein conformation.

3 Primary Constraints

The relation between the primary structure and the local conformation at that region
are modeled statistically by analyzing the relationship between a local conformation
type and the distribution of aminoe acids in the primary struclure fragment at that
region.

Let 4f denote a type of local conformation, where normally ',rf = A"",ﬂ,{;‘ =
B, ... 4l = P* . Let ¢* denote a fragment of primary structure at the level k.
Let w® denote the number of residues in the fragment or the local conformation at
the level k. The variable of the local canformation type at the position i at the
level k is denoted by I} € {A", B, ... "}, and the variable of the fragment of the
primary structure at the that position and level is denoted by E:‘ € {a*, bf, .. x*}
Note that the position 1 here denotes the position of the first residue of a local
conformation in the primary structure.

The probability of a primary structure fragment ¢* forming the local confor-
mation type ':r'f is represented by Pp(l% — ~4FLF = %), Since we assume that
the primary constraint is independent of the position, it is simply represented as
Pp(l*|T%),

Hence, given a protein sequence, we can directly predict the local conformations
type at each region at any level without considering the geometric constraints.
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In the present study, We apply Hidden Markov Models (HMMs) to the mod-
eling of primary constraints. HMM is a popular framework in the field of speech
recognition.  There is a work applying HMMs to secondary structure prediction
[Asai et al 93]

We applied the same kind of HMMs to modeling the primary constraints at
multiple levels in MLD. As is discussed in [Asai et al 93], the degree of accuracy is
higher when the adjacent amino-acid pair is fed to HMM as an output signal. The
same approach is, therefore, adopted for the primary constraints at the S-residue
level. To the primary constraints at higher levels, we applied normal tyvpe HMMs for
which the output signal iz an amino-acid tvpe. We fixed the number of states at five
for all levels, except for the S-residue level, in order to avoid the over-learning. At
S-residue level, the number of states is four, because the pair of adjacent amino-acid
i5 fed as the outputl signal.

The performance of HMMs for the primary constraints is evaluated by the de-
gree of prediction accuracy without geometric constraints. The degree of accuracy
normally differs with the level. At the 5.9, and [7-residue levels, the degree of
accuracy is around 25%. That at the 33 and 65-residue level is, however, around
L5%, though that at the 129-residue level is higher than 20%. This suggests that
a super-secondary structure is not directly determined by the primary structure al
that region. The good performance at the 129-residue level should be thought of
as resulting from over-learning, since the data sct available to model the primary
constraints at that level is much smaller than those at the other levels. The table
below shows the performance of HMMs for primary constraints. The degree of ac-
cnracy below 5% is the result achieved by HMM of the 4-state 2-letter type to which
an adjacent amino-acid pair is fed. The others results are for S-state -letter tvpe.

5|9 ]
[ 24% |

|
| Accuracy I 20% | 25% [ 24%

-
)

17_[33 [65 |129 |
22% | 14% | 17% [ 25% |

| Level

[ %]

4 Geometric Constraints

The geometric constraints are modeled by analyzing all possible overlapping pat-
terns of two types of local conlormations. [0 it is possible for certain two local
conformations to share svme residues geometrically or overlap each other, such an
overlapping pattern would be [requently found in the real protein conformation.
Hence, the frequency of the occurrence of ench overlapping pattern is considered as
the stochastic constrainl of protein conformation,

Each overlapping pattern is defined by 1) the type of the preceding local con-
formation, 2) the type of the following local conformation, and 3) the offset in the
overlapping, where the offsel denotes the relative position of the initial residue of
the lollowing local conlormalion [rom the position ol the initial residue of the pre-
ceding local conformation in the primary structure. For instance, “B5 overlaps A9
al offsel 2" represents an overlapping paltern whose preceding conformation type
is B at the five-residue level, whose following dvpe is A al the nine-residue level,
and where the initial residue of B is the second residuc of A. Here, we define initial
residue of a local conformation as the “Oth residue” not the “first residue.”
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Figure 2: Overlapping Pattern

The complete representation of the frequency of overlapping patterns of large
local conformations requires a large number of parameters because the number of
possible offsets is almost proportional to the size of the local conformations. The
parameters, however, can be reduced remarkably. Here, we also apply linear expan-
sion. The distribution with respect to the offset is approximately represented hy
only five coefficients. This abstraction is natural because the local conformations
involved in an overlapping pattern are already abstracted.

The geometric constraint between two local conformation types, +* and 42, is
denoted by [ ’.::{I'f]“ = aF L l"f-‘!’ = "_r'ff ]. Since we assume that the geometric constraint
depends only on the relative position (i.e., the oflset) of two local conformations,
d =iy —iy, the geometric constraint is represented by Pg(I™, T% d). The geometric
constraints are considered to be the probabilities of the co-occurrence of two local
conformation type v,.' and r:rf;‘ with respect Lo the offset d.
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Figure 3: Geometric Constraints

The figures show the frequently of the overlapping patterns with respect to the
offset. The horizontal axis indicates the offset and the vertical axis indicates the
probability, that is, the normalized freguency of the patterns. In this case, the
frequency of the pattern is divided by the frequency of preceding lacal conformation
type. The five-residue local conformation A5 which corresponds to helices is a
continuous conformation. Thus, the frequency distribution of A5 and A5 with
respect to the offset is Aat. The frequency distribution of P5-P5 is not so flat
as that of A5-A5, though P5 which corresponds to a kind of strand is also a
continuous conformation. This means that A5 is more continuons than P5. The



frequency distribution of K5-MJ5 suggests that K5 usually overlaps M5 at offset
1, and it rarely overlaps at the other offsets. P5 and A5 hardly overlap because a
helix is geametrically very different from a strand.

Since the nine-residue local conformation A9 corresponds to helices, the five-
residue local conformation at that region should be A5. 'I'he figure shows that
the frequency distribution is flat and the normalized frequency with respect to any
offsct is little less than 1.0. This means that the nine-residue local conflormation A9
hardly allows other local conformation Lype lo occur at [ive-residue level than A5
at that region. Likewise, D9 which corresponds to strands should be built up of
P&, and the figure shows that the normalized frequency distribution with respect to
any offset of D9-P5 is about 0.5. The nine-residue local conformation E9 usually
occurs at the beginning of helix. Thus, E9 should allow A5 to oceur at offset 3 or
4. The probability of occurrence of A5 at the region of F9 shows that A5 hardly
occurs at offset 0 or 1, but often occurs at offset 3 or 4.

5 Optimization Algorithm

verlapping Local Conformarions

The type of the focal confermatinon reprevented by a black bor
{5 canitrarned geruneircally by dhore reprevented by gruv hoxes.

J-residue [evel

F-renidue Level

I7—regidue Level

W=residies privery desctivre
IMigure 4: Primary and Geometric Constraints

In this section, we shall propose an optimization algorithm of MLD for the protein
3D structure prediction. This scheme iteratively improves the degree of satisfaction
of the geometric constraints by stachastic propagation model,

Let 4(+*) denote the probability of the local conformation type +* at the tth
step, where i denotes the position of the local conformation and k denotes the level.
The initial 4(+*) is equal to P(I'" = 4F|ZF = o%), where ¢* is the primary structure
type at that region. The probability of the next step is calculated as below,

"i’t-rl'['}'ﬂ = ’;-4,1'1,:('1::‘}
+ WpP(T* =485k = 4%
+ We Y L elI)Pe(rT)).

I=k—1E+41 J I‘j

where W is the weight for inertia term, Wp is that for the primary constraints,
and Wz is that for the geometric constraints, These weights shall be so determined
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that the degree of prediction accuracy is the best. The solution converges quite
rapidly in about ten steps, when W, is small.

6 Examples of Result

This section presents the experimental results in our schemes. The experiment was
a closed test, where the learning set analyzed to model the constraints, and the
test set used to check the degree of accuracy of prediction, are the same. The
prithary constraints used in this experiment were modcled by HMMs., The MLD
given in the last page of this paper is the resultant conformation predicted by the
stochastic propagation model. The upper sequences are the true description of the
conformation of 4HHB's C-chain, the middle sequences are predicted only by the
primary constraints, and the lower sequences are predicted by both of the primary
and geometric constraints. It is observed that the MLD symbaols are revised by
geometric constraints at several sites, and in many cases the conformation lypes
at the revised sites match the true description. This suggests that the geometric
constraints are indispensable for accurate structure prediction.

7 Conclusion

In this paper, we have proposed a novel scheme for predicting protein tertiary struc-
tures using MLD. Many factors of protein structure formation, which were usually
neglected in conventional secondary structure prediction schemes. are statistically
included in this prediction scheme hased on stochastic propagation model. The
relationships or constraints between the primary structure and the local conforma-
tion are included as the primary constraints where both global and local factors are
considered at the multiple levels. The constraints between the neighboring local con-
formations are included as the geometric constraints. Both constraints are maodeled
by analyzing the frequency of co-oceurrence of local conformation or primary struc-
ture types. Thus, each local conformation is so determined that it stochastically
satisfles the constraints.

Many points should be discussed on the evaluation score optimized in the combi-
natorial optimization problem for structure prediction. In the present study, the sum
of all the considered probabilities is the evaluation score to be aptimized. In most
cases of stochastic optimization, however, the sum of the logarithms of probabilitics
or co-relations is considered as the score to be optimized. In this case, the prediction
scheme is formalized in terms of Markov Random Field [Geman and Geman 84],
which is a stochastic framework devised to model the restoration scheme of noisy
image in the field of computer vision.

One of the problem which remain unsolved is that the information from the
primary structure fragments is much abstracted, and thus, the direct interaction
between the two small sites which are mutually distant in the primary structure
is not considered directly. In our future works, we intend to model those factors
that are not considered in the present study. This suggests that the MLD scheme
itself should be changed according to the new models of factors, such as the packing
patiern propensity of primary structures.
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