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Abstract

We propose novel prediclion schemes for profein
A0 structure prediction that dnclude both local and
wlobal factors of profemn structure formation,

We have developed a powerful deseription schewe
for profein conformation, MLD { Multi-Leovel Deserip-
for ), in erder to maodel the protemn structuwre for-
madtion.  In this scheme, the deseription @5 tecon-
stractable dnte the three-dimensional conformation
with a tolerable ervor. The MLD scheme fucilifates
the snodeling of 1) the relation befween the locel con-
formufion and the primary structure aof thal region
af various seales (Le., primary constramis), end 2)
the geametric constramts befiween the neighboring lo-
ol confortnations. Henee, in our predection schemes,
the problem of protem 30D structure prodiction s for-
wnitlated s o combinaforial optimization problem. the
A0 conformation of a protein 15 predicted as the op-
femnal ML that satisfies most of the constromis,

We implermented several schemes to solve  this
mroblem. We proved that the degree of prediction ac-
ctracy s much improved by amtreducing the geomelrie
consiraimnts,

1 Introduction

The prediction of protein 3D conformation from
the primary structure {i.c., amino-acid sequence) is
one of the most important unsolved problems in
wolecular biology, To formalize prediction schemes.

we congidered that the description achome of protein
conformation would be tle wost significant aspect,

We proposed the MLD scheme [ Multi-Level De-
seription) [Onizuka et al 93] which represents huoth
the fine conformation and the global topology of a
protein couformation at wultiple levels. The global
topology is represented at the high levels, and the ne
couformational structures are represented at the low
levels. We designed the MLD schewe suel thal Lhe
deseription wonld be approximately roconstroctabdle
inte 30 conformation. In this sense. MLD is the com
pact form of the coordinate representation of a pro-
tein's 31 strocture,

T formalize the prablem of protein 30 strac-
ture prediction. we modeled two important kinds of
constraints in protein structore lormalion based o
MLD. A primary constraint is the relation between a
local conformation type and the primary structure at
that regrion. Many paltern recognition teclmiqmeﬁ F
applicable  [Clou and Fasman 74, Asai et al 93A,
Mamitsuka and Yamauishi 93] to the modeling of
primary constraints. A geometric constraint is a
stochastic constraint between two neighboring local
conformations. Here, the geometric constraimts have
two important roles in 3D structure prediction. One
iz to avoid geometric inconsistency in the predicted
conformation, and the other is to include global or
long-rage interaction in the structure formation.

Geometric constraints are regarded as the interac-
tions between neighboring local conformations during
the process of siructure prediction. In our prediction
schemes, thus. a lecal conformation is determined not



ouly by the primary structure at that region bat is
also strongly inflwenesd by the neighboring loval eon
forwations, In onr precliciion schemes, thas, chances
are that the region which has a strong tendency Lo
forve a belix may form a steand in the final result if
strougly recommended by the geometrie constraints
from the neighboring local conforinatious.

In the following section, we briefly explain the
MLD scheme. awd define the notation of the primary
vonstraints and the geometric cousiraints,  Section
Joverviews the prediction schemes based on MLID.
In Section 4. several wodeling techuiques for the
primary constraints arve discassed. Hidden Markov
Meodels (HMMs), property-based modeling. and neu-
ral networks have heen juplemented se far. Motif-
based modeling i also proposed. Seetion 5 details
b ethad for protein structnee prediction. Two
systems are actually workieg, Oue is based on the
stochastic propagation model and the other nses dy-
nawie parsing with grammar. Integer programming
and other combinatovial optimization algorithus. as
well as the folding simndation. are also proposed as
prediction schemes,  Section § presents a resultant
prediction exainple,

2 Multi-Level Description

In this section. we hriefly illustrate the main ob-
Jectives and features of the MLD schenwe. For further
details. refer to [Oniznka ot al 93).

There are two important objectives of the MLD
schemne. One is to include the glohal factors of pro-
tein structure formation in the structure prediction
schomes, and the other is to design a deseription
scheme sueh that the deseription would he recon-
structable into coordinate representation. An MLD
represents a protein conformation at multiple level of
scales. where the global topologies are represented at
the high levels, and the fine structires at the low ley-
els. Thas, the global or long-range interactions are
modelable using deseriptions at the high levels. and
the short-range ones can be modeled by those at the
low levels

Also. information on the global topology at the
high levels is indispensable to recoustructing the
precise 310 strueture,  In conventional prediction
schemes, the single level deseription of protein con-
formation. such as the sequence of secondary strue-
tures and others [Miller et al 93. Zhang et al 93] are
widely used in protein structure prediction. ‘This
kind of single level description scheme suffers. how-
ever, from an inevitable problem that the deserip-

tion cannot be precisely reconstructable into the 3D
conformation.  Since the local conformations dealt
with by these schemes are normally of small pep
tiele fragments. the diversity o cacl loea) conforina-
tion type inevitably accunmlates duging the recon-
strnetion. This means that the topology of the e
constructed conformation wonld be largely different
from the origmal. Multiple levels o MLI, however,
sulve the problem of error acenmnlation. where any
acenmulated ereor. ean be naturally adjusted by the
eleseription ar the higher levels

To design the MLD scheme, it is first necessary
to classify the local conformations of varions sives,
The classification of local conformations with many
vesiel s 1s g’fllt‘.l‘ﬂ.“j? clifficult, sinee the winber of n-
merical paranclers required for the complete Fepre-
sentation of a local conformation is abmost prropor
tiemal to thee miber of residues in the conformation.
A kind of linear trapsformation. however. tay extroct
a fixed nimber of charwleristie paranieters from lo-
catl conformations of any size by cutting the linear ex-
Pausion at an appropriate fixed order. although Lage
local conformations woulld e shstracted during the
parameberigalion,

We classified the local conformations at each level
into several types by clustering. Thus, an MLD rep-
reseuls a proetein conformation with wultiple sym-
bolie sequences, ecach symbol of which denotes the
Incal couformation type of the level sige. Tle MLD
schiewe wodels two kinds of significant constraints in
strnetire formation, the primary constraints and the
geomelric constraints. These are detuiled in the fol-
lowing subsections.

The MLID example below reprisents the conforma-
tiom of Trypsin Inlibitor (8PT1). In this description,
the local confonuations al cach level are classified inta
sixteen types, each being denoted by a letter from A
to P Itis observed that A at the 5.9.17-residue level
roughly corvesponds to an o-helie. while P.F and ©
ab the 5 residue-level and D at the 9-residue level
roughly cotrespoud to a g-strand.  This obviously
means that the symbols at low levels are closely tied
to the secondary structures and those at high levels
are considlercd to represent the strnetural motifs sueh
as Defic-turm-helix conformation,

2.1 Primary Constraints

A primary constraint represents the relation -
tween w primary structore and the loeal conforma-
tion type at that region. In our study, the relation is
considered as the propensity of a primary structure
fragment to form a certain type of local conformation.
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Fignre 1: MLD representing the conformation of BPTIEPTI)

For Dnrther discussious. we define the notations
used for the primavy constraints.  In our present
stucly, the loeal conformations are elassified into six-
teen types at cach level, with letters fron A® to PE
clemuting the types in METY where & denotes the level
in MLD,

Lot ':r:' denote a loval confonmation type. whens
normally 4 = A% 4F = B e = PE Let
b denote a primary strnctuve Taguent at the kth
level  And we further denote w® as the nnmber of
resaclues 1 thie fragiment or loecal conforation at the
bth level, We denote T% £ JA* B .. P*] as the
variahle that takes the local conformation type., where
i denotes the position. We also denote ¥ as the vari-
able that takes the primary stroeture fraguent, Note
that the position { here denotes the position of the
first residue of a loeal conlorimation o the primary
strucbnre.

The probalility of & primary steacture fragment.
a*, ferming & type of loeal conformation, 1‘{‘. 15 -
vesviiled as PellY = ¥EY = o%) Sinee we as-
siume that the primary constraint is indepoudent of
its absalute position in the prinvey stroctuee but only
depends on the confornation type and the primary
strmetnre fragment at that region. it may be repre-
sented as Pp(T%|T4),

2.2 Geometric Constraints

The co-ocenrecnce of two neighboring local confor-
mations & restricted by the two local conformation
types involved and the velative positions of the two
in the primary structure. When a local conforma
tion overlaps another local conformation, the shared
region of both local confermations st be ulenti-
cab This means that i Lhe subslructuee of o local
conformakion type is similar to that of another local
conformation type, it would be possible for those two
local ronlormation Lypes to overlap each other at the
certain possible offset,

Snch constraints wonld be modeled by analyzing
the frogquencices of Ll overlapping patterns of twa lo-
cal conformations., Here. the patterns are defined by
1)the type of the preceding local eonfornation. 2)the
type of the following local conformation. 3jthe offset

of the overlap. Doth intra-level and inter-level over-
lapping patterns are considered.

The geometric constraint hetween fwo local con-
formation types, 1:‘".1:;’. 5 denoted by Pg[l"f:f =
*;ff':' . T‘:‘:‘ = *;r:‘__f'], where the the position of the first
reaiclue in ﬁv:‘; i« left to that of the first vesidue w2
it primeey strnebore, Sinee we assume that, as we
adsw do for pritmary constraint, a geometric constraint
is independent of the absolute position of the two
fragments in the primarcy sequence, depending ouly
o Lhe relative positions (Lo the offset) d = i =i
of the two. the geometric constraint s, thns, repre-
senbod snuply s Pl I d).

They can b modeled in other ways,  Stochas-
tic weddels on an intra-level like N-gram (o type of
Markow ehiaiu}. or the freguencies of the types of lo-
r:.a.] r'nuﬁu'nmtiun:—'. o the inter-level can both be used,

AR Precnfing tocul conformatinn A5 Prrs rebing o af confimmain

He Hs
Falinurag kscaf refonmitesy Fuidereang foval oodhrmation

BS wverkaps AP at uffset I B35 overlaps AF at offset 2

Figure 2: Overlapping allerns

Mote that two ks of information are included
in the statistics of overlapping patterns. One is the
restriction of the geometrically possible combinations
of loeal conformation Ly res, anl the other s the com-
bination propensity of local conformations. This sug-
gests that ay geometrically possible overlapping pat-
tern wonld not always be frequent under certain con-
formational conditions, In this paper. however. we
consicler these two kinds of imformation together as
peometric constraints. since it s difficult to distin-
guish one from the other.



Figllrl'. 3 Overview of Prediction Schemes

3 Owverview of Prediction Schemes
Based on MLD

Lhe prediction sehemes that we see proposing. are
corrpletely different from conventional wmothods for
tertiary structure prediction, Iy wany cases of ter-
Liary structure prediction. when the predictod see-
smdary striwetures are packed into a tertiary structure,
perfect secondary strmctnre prediction is assuimed.
The secondary strnctures are. Chercfore. fived and
shall not cliznge during the teetiay strnetuee predic-
tivu phase [Colwen ot al 82]. It is. however, observed
that the secondary structures easily change during the
folding process, Clances are that even if a fragment
of primary structure has a strong propensity to form
a helical conformation, and even if it forms a helj-
cal conformation at an early stage of the foling pro-
cess, i sy becoime a strand at the final stuge due to
the envitowment formed by the folding process. We
iwimnst, therefore, consider e interactions betiveen lo-
el conformations. We can. then. merge the phase of
precdicting local conformation and that of global con-
formation into a single pliase where feedback on the
stenctore forinadion is possible.  Considering strne-
ture formation factors (Le. the primary strocture’s
propensity to certain conformations aud the inter-
actions between the Jocal conformation) as stochas
tic constraints of structure formation, e problem of
protein structure prediction is formuleted os o combi-
natorial aptimization problem, where a protein con-
lormation is predicted as the optimal MLD that sat-
isfics most of the constraints,

Many optimization algovithues are already avail-
able to prodicting the structure. Stochastic propaga-
tion maondel provides a fairy rapid means of searching

for a good MLD. wiwre the MLD is changed itors-
tively 5o as to satisfy the geometric constraints hy
taking a hill-elimling approach. Sophisticated algo-
vithins, snch as integer programuing. genctic algo-
il and sinmlated annealing. are also available,
Multi-leved parsing is the extension of the parsing
techuigne in the fiell of speech recognition. Here ge-
oawetric constraints are nsed as a gramomar represcat-
g e conformational roles [Asal et al 93B). Fold-
ing sinaulation is another way of searehing for the best
30 conforination. where the conformation is folded so
as o satisly most of the primary constraints,

{(hverlapping Local Conformations

The type of the loeal conformation represented by a bluck box
iv constrained geametrically by those vepresented by pray boxes,

S—residue Level
P=resudue Leved

I7 -residue Level

Y—residue primary sieuetuie

Figure 4: Constraints

To model the primary constraints, any of several
pattern recognition approaches are available, Some
of these have already been applied to secondary
strnetire prodiction.  In onr study. HMMs (Hid-
ilen Maurkov Model ). neural networks, property-based
wiedel are inplemented. Motif based model is now
being developed. The geometric constraints are mod-
eled by analyzing the frequency of the overlapping
patterns of local conformations,

4 Modeling of Primary Constraints

The MLD seheme is particularly suitable for mod-
eling both the local and global factors of structure
formation. The primary constraints for short struc-
ture fragments naturally represent the local factors,
amd those for long ones represent the glohal or long-
range factors,



4.1 Hidden Markov Madel

Hicldlen Markov Maodel (HMM} is a framework of
stochastic model widely osced in the ficld of speech
vecognition auel Becoming move and more popular in
the fichl of molecular biology, “I'he applicability of
this teclungue to protein sccondary strnciure predic
tiom lias been disenssed in [ﬁsai et al 93&'-

We applicd the same kind of HMMs to modeling
Ehe proary constraints at oultiple levels in MLD,
As is disenssed in [Asai et al 93A]. the degree of ac-
enracy is higher when the adjacent wmino-acid pair is
feel Lo HMM as an oniput signal. The same approach
is. therefore. adopted for the primary constraints
at the Seresidne level,  To the primary constraints
at higher levels, we applied normal type HMMs for
whick the ontput signal is an amino-acid type. We
fixedd the nmmber of states at five for all levels, except
fir thee S-resicloe levell o order to avoid the owver-
learning. At S-vesidue bevel, the mumbor of states is
forr. becanse the pair of adjacent amine-acid s fed
ax the output signal.

The performance of HMMs for the primary con-
straints 13 evaluated by the degroe of prediction ac-
ciuracy withont gecoetne coustraints,  The degree
of acenracy normally differs with the level. At the
2.9, and 1T-residue levels, the degree of acenracy
arongd 20%, That at the 33 aued 65-residue level is,
Lowoewer, aronnd 15%. thongh that at the T29-residue
lewed is Digler than 20%. This suggests that a sopwr-
secoldary structure is not divectly determaned by the
primary structare at that region. The good perfor-
mianee at the 120 vesicdhie level shonld be thonght of as
resulting from over-learning. sinee the data set avail-
ahle to model the primacy constrainis at dhal lewel
i5 nanel sialler than those at tle other levels, The
table below shows the performanes of HMMs for poi-
mary constraings, The degree of aceuracy below 5°
i the result achieved by HMM of the 4-state 2-letter
type to wlhich an adjacent anino-acid pair is fed, The

nthers resnlis are for S-state 1-letter type.
[ Lowel [ & [ & | T e [ sa [ &t [ dav ]
[ Recurney J| o0& ]| 3% | as ] 33w [ 148 ] tiw | v ]

4.2 MNenral Network

Meural networks bave been one of the most pop-
ular techniqees in the field of pattern recogni-
tion since the algorithm of back propagation learn-
g was devised. The applicability of nenral net-
worlis to protein secondary strmcture prediction has
heen frequently discussed [(Qian and Scjuowsla 03
Burkhard and Sander 93],

W Liave been atteinpting to apply neuval networks
to primary coustraint modeling. The performance is
slightly lower haw that obtained by HMMs. Some
festires of sequence patterns can be learned effec-
tively, thongh there ave many patterns the nearal net-
works fined eliflienlt to leaen. Further investigation to
determine e optineal network topology is desired.

4.3 Property-based Model

The classifieation of pronary stracture fragments
loads us to model the primary constramts statisti-
cally, The frequency of each combination of the lo-
cal conformation type and primary structuce type is
simply a statistical constraint. where the set of pri-
mary constraints is represented by a contingency ta-
ble. cach cell of which denotes the relative frequency
af the combination of primary stroctare type and lo-
cal confarmation type.

Classify the peimary strueturve feaginends s not
stmple. however, Since a primary structore fragment
s a scquence of twenty types of mmino-ackd residoes,
Uhe sy of pentations of the primary strocture
frapments hecomes guite large, even if the fragment
is short.  Here. we adopted the steategy to extract
nnmerieal pacameters from prinmrcy stroctaree frag-
wents, classifying them by some clustering techuigue.

[ oy sty fone pleysico-clemniceal properiies, hy-
L1|‘r1]r:-|.r.||_1.-'. I‘IIHI'EI". '\-'"]II'I[II" ”E Hilil'! lf]lﬂj“. ﬂl\d |1||.':|1LT11'
Lar weight of side chain are used to parameterize the
fragiment.  These propecties are nsually considered
as the inportant factors driving the structure forma-
tion. These properties ave, in our case, evaluated as
unmherieal parameters. The disteibution of these no-
wwerical properties in the sequence can be, therefore,
abstyacted by aperating the orthonorial bases @y g
toy Ll abistrilontaon.

We provide an orthonovmal complete set e pe.
lowing N components. to linearly expand the dis-
tribution. where A s thee mumber of residues in the
fragurent. & is the order of the base. and 1 15 the index
of the conmpoment. as shown,

N-1

Po=% onppe (1)

where py i= the numerical property of the ith resicne’
in the fragment. By fixing the number of bases in

this transformation. we can obtain the fixed number

of parameters M. from a fragment of any length, In

this way, we only extract twenty numerical parane-

tors from the f'ragmn:nt of any |1'.nE;t.|1.. 'n,Eillg five bases

and four properties.



The vesultant degree of accuracy i nmelr worse
thau that obtained by HMMs. cven when the pri-
iy stracture segments are classificd into iwore tha
o hoddved types, One significant reason for this
poor result might be that the primary stroctare fra-
ments are elassified iwdependently of the couforma-
tromal fypes,

4.4 Motif-based Model

A protein primary sequence often has several motif
patterns [Staden 88] that characterize its conforma-
tion sund funetions, The known motid patterns have
been accumulated into Prosive database.

It is frequently the case that the stwilar funetions
of & |11'L!I[.l:i:li are dderived from the stmilar vondorina-
tioms, Sinee conformational features are desevibead s
strueture wotifs such as those in MLDs, the relations
betwean Lhe stenctural wotifs and SR EIC o tifs
may be considered as the primary constraints.

These velations between sequence motif pattes

an strocture wotifs have alveady been investigated
[Rovwan et al 9.
The velations concerning the binding proteins, such
as Zine Finger [Klug aud Rhodes 87), Lencine Zipper
[Landschulz wid Johuson 88] and so forth are partic-
wlarly investigated and establishedd.

The MLD scheme [acilitates the investigation
of the relation between structure wmotifs amd e
cuence  motifs, becanse the  tochuigues  for se-
quenee analysis, such as multiple sequence aligiinent
[Barton and Sternberg 87] are applicable to search-
ing the strnetural wotifs, If we snceesd iy bildding
up a database of large siructical wotife, we can ol
tain snfficient primary constraints to determine most
protein local conformations.

4 3D Structure Prediction

[ this section. we discuss the 1) stencture pre-
diction schemwes based an MLD. Since a protein 3D
stincture can be approximately veconstrueted from
the MLD. MLD prediction from a primary strncture
= shply a type of 3D stracture prediction.

The ML of & protein is predicted as the optimal
MLLD that satisfies most of the pritiary constraints
and the geometrie constraints. To predict the MLD
from the primary strncture of a protein, we devel-
oped two systems, One systens is based on stochastic
propagation model which is a sort of combinatorial
optimization algorithm, and the other uses dynamic
parsing with grammar. The applicability of integer

progranuning. =inulated annealing. and genctic algo-
vithu are also be disenssed. Tn the last subsection. we
bricfly illustrate how to apply MLD to protein folding
stmilation.

5.1 Stochastic Propagation Model

The stochastic propagation wodel. here, searclies
for a good (not always the best) ML pattorn by tak-
g a hill-climbing approach. At the initial state, the
probability of the conformation type at each site and
level bs diveetly derived from the primary constraints
at that region, The probability of the next state ave
caleulated as a linear combination of the primary con-
straint terur and the geometric constraiut terny. The
probabilities ave carnied by the geometric consteaints
al propagate during the iteration so that the MILD
sabislies the geowetric coustraints belter than that in
the previous step.

Lot t-"{‘,tf'il denote the probability of the tvpe of
vouforiation v* at cach state. where § denotes the
position of e local conformation and & denotes the
level. The fuitial vni) 1 is cqual to Pp(T* = +*|2F =
¥} where 2% is the primary structure at that region,
Tl probability in the next step is calonlated as be-
low.

deprlr) = Wi (¥)
+ WpPp(I* = «HEr = o4

> YT udrhratr).

I=k=1k+1 j !

+ We

where Wy ois the weight of the inertia term, We is
that of the primary conatraints aned We is thal of
the geometric constraints. These weights shall be so
iletermined that the degree of predietion ACCUTACY is
the best. Tt s obscrved that the solution eonverges
quite rapidly in abont ten steps. when Wy is small.
The experimental result are given in the last page of
this paper.

5.2 Dynamic Parsing with Gramimar

The applicability of dynamic parsing with gram-
mar for sccondary structnre prediction was well dis-
cussed in [Asai et al 93B]. This approack is close to
the parsing of speech signals in continwons spicell
recugmition. whete the terminal symbols are words
andd non-terminal symbols are phrases or sentences.

For protein structure prediction, however, it is dif-
fieult to obtain the appropriate representation for the



grawmar. Neither pon-terninal sywhols vepresent-
1t super-secondary stroctures nor grammatical rules
between the non-terminal symbols can be obtained
easily.  The MLD sehowme, however. provides hotl
s tevininal symbols {local conformation types) and
gratninars {geonietrie constraiuts).

Wi are going to explain dynamic parsing at nlti-
ple levels. Tlere ouly two levels, the 5 oand IT-resiclae
lewed. are considered. This algorithm is paturally ex-
tensibile for parsing at more than two lovels.

The protein conformation s pavsed nsing the score
of the frapments at the 5 and 17-resiclie levels, The
geometric constraimts betweon the adjaeent fragments
sl Vhiose Bred weeens Blie fosr consecntive G-residue level
fragments aud the 1T-vesidue level fragment at that
region are nsed as the granmar, To avoid o scarching
space explosion. a thresheld to proane poor scorving
connhinations is set at each level,

From cach conseentive 5 residues. #%. the primary
comstraint at thak vegion sl S-residoe level retoarns the
seone. LY = log Pp{l7|E%) the logasitl of probabil-
ity for @7 to be a certain conformation type v7. We
st ”E;I’J?fjg v e fur I]HI"'E.I]IE. Whl!l'l." Ull].]' agLe l'{?ﬁi.[].lll!
i5 shared by two adjacent S-residue level conforma-
tionu types (Here we fix the segimentation at S-residuc
level, Theve s a choiee of everlapping segmentation |
Four consecutive -residue level fragments ojalalals
form a fragment at 17-residue level, of. where the
primary constraint at that vegion at the 17-residuc
level veturns the score’. LT = log Pe(TYT|Z7).

Parsing procecds from left to right,. The parsing
Iargins fromm nﬂ', Ll e onko ﬂi. Tl nuinbwer of
candiclates becomes 16 = 16, which 1z the number of
contbinations of the lecal conformation types, JIE"‘. JE.
The seore for each candidlate s the suue of the scores
from the primary constraint (Le., L2 and LY} and the
seopes of the geometric constraints between wdjicent
fraginents, which are the logarithns of the frequency,
as are those in a Markov chain. Thon, the parsing
LAV s ko nﬁ, Lhen o{‘g R iu’J.{l.IIIE the score ﬂ andd Li’z
each time, Here, we have a total score of 17-residue
fragieents, aud two types of scores are added. One is
Li7 whicl is the seore of the prinsey constraints for
this fragment at the 17-residue, o7 The other is the
seore of the gramnar derived [rom the geometrie col-
straiuls Between conformation types at the 17-residus
level and those at the J-residue level. These stochas-
tic rules are actually the frequency of the pattern
of four consecutive local conforimation types at the
S-residue level comprised by the local conformation
types at 17-residue level, When the parsing reaches
the right end of the amino-acid sequence, we have

several candidates with their seore as the rolibility,
5.3 Integer Programming

T this subseetion. we formalize the strnetuve pre-
diction hased on MLD w0 terms of integer program-
ming. which is a general framework for combinatorial
optimization [Sehrijver 8G].

L X,{¢ = L.....7n) be a variable that takes a
local conformation type (X, € .....71e). Each
X Xy correspowds to TET] - -I‘ﬁ. ' 1"3 ..
The most probable MLD maximizes the following for-
T ES

N N N
Wr ST CplX) FWe D CalXu X;)  (2)
1=1 =1 3=1
Mere. Cp oamd Oy oave primary and geometrie con-
straint= respectively.
Mext.  we iontroduce binary  variables r. £

[ 1HE = 1..... Nob=1..... 16) that satisfy the
folloswiing comdition.

Zm,‘.—l fi=1..... N). {4)

e and O oare fovmalise] as follows,

iG
Cp(X) =3 PelX, = vedra (4)
k=1
NN
Cef X X)) = Z E FolX; = Xy = wlraTi
L=1 =1
(3}

(2) is formalized as follows.

NG NN

N N
ZZ(‘,;_.F‘,.J_. ¥ Ezzzdur.w.x {G)

i=1 k=1 i=l j=l k=1i=1
v = WplpelX. =) i7)
dig = Wale(Xi = 7. X5 = 1) (8)

(7} anel (&) ave given from the primary structure,
primgery and geometric constraints. The problem is
tor find the value of 7,0 that maximizes {6) nnder
coustraints (3). that gives a -1 integer programming
form of the tevtiary strocture prediction.

When there is a good linear approximation to the
latter non-linear (guadratic) form of (6), many so-
phisticated algorithms of integer scheduling problem
snch as branch-and-bound method. LIP-relaxation,
and so lorth. are available [Sehrijver 86]. There is
also a work on optimizing guadratic forms using the
Bolzman machine model [Ackley et al 83)].



5.4 Other Combinatorial Optimization
Algorithms

There are many othor soplisticated algorithims
for epiimzation problems available. Siomlated au-
nealing amd geoelic algocitho are populae algo-
vithins for combinatorial optindeation problens. cven
i Ehee field of molecular biolopy |[Ishikawa et al 93,
Komagarn amd Kondon 03] These algorithms opti-
wige the state of a colution according o ovaluation
Dunetions. sueh as formnla G,

It order to apply these algorithoms to struetare pree-
diction based on MLD. we have to define the mini-
mial moditication {or mutation in gewetic algoritlm).
This is singply defined as changing the type of local
conformation v* in MLD. The crassover aperation i
genetiec algovithm is defined paturally beeanse MLD
sl is e set of symbolic segquenees,

6.5 Tolding Simulation

Folding sivmlation usivg MLD predicts a 37 steae-
turee without hm.riuf_" i'l}n:{l[l{!riug the geowetrie con-
straimts explicitly: it is bopessilde o fulil 2 protein
chain inte Lhe geonetrically inspossible conformation
in 30 space.

ln ovder to fornmlate the olding simulation as an
oplinnigation problem, we lave o define the wini-
wal modification (or wmtation in genetic algoritlun)
of the confornation.  The conformation of a pro-
tein woleenle is vormally modified by chanping the
dihedral angle of the chemienl bopds, Thus. it is
uatural to define a small change in a diliedral an-
gle as the minimal modification for the folding sim-
wiation, Here. the score of the conformation to he
aptinized 1= the suunuation of primary eonsteaints
in the MLTE which are generated from the conforma-
tion after each wodiication. Both siomlated aoeeal-
ing amd penetie algorithm ave applicable to folding
simmlation, In order to implement genetic algorithm,
we adopt the same formudation as that applied i
(Unger and Moult 93],

§ Experimental Results

This section presents the experimental results in
our schiemes, The experiment was a closed test, where
the learming set analyzed to mede]l the constraints,
aned the test set used to cheok the degree of acearacy
of prediction. are the same. The primary constraints
wsed in this experiment were modeled by HMM. The

ML given in the last page of this paper is the vesnl-
tant couformation predicted by the stochastic propa-
gation madel. The wpper sequences are the trme de-
seription of the conformation of AHHDE s C-chiain. the
nuehdle sequences ace predieted ouly by the primary
cotesbratnts. il e lower SCILENCeS Are ]‘:[wli,r_tc;[ I;u}r
baoth of the priteary and geoineboe constraints. It is
ohserved that the MLD symbaols arve revised by geo
metrie constonls ab sevoral sites. awd in many cases
the conforiation types ab the vevised sites mateh the
true deseription. 'This suggests that the geometric
votstradils ave indispeusable for acenrate stractnre
prediction.

7 Discussions and Future Works

W showed how the protein structnre prediction
laesane] om MLEBY could be formmlated ag an combinalo-
rial aptimization probiem. The primary constraints
have been modeled by AMMs. weural nets.  andd
propertvebased wodel,  The applicability of muotif-
Dasedd aoedels T also been diseussed. We praposed
several prediction scliemes for protein 3D stroetures.
Storhastic propagation wodel, dynamic parsing with
grammar bave been actually implemented.  Predic-
tion systems based on duteger programiming, simn-
lated annealing. and genetic algorithm. and folding
sinmlation are currently being developed, The ex-
previmental result for the Cochain of 4HHB {(human
liemeglobing shows that the results obtained only by
the primary constraints were improved by introdne-
i Lhe geomnetric constraints,

Many points shonld be disenssed on e evalua-
tion seore aptimized i the combinatorial optimiza-
tion problent for strnctire prediction. In the present
stely. exeept for dynamic parsing. the snmmation of
all the considered probabilitios is the evaluation seore
to e optimized.  Tn most cages of stochastic opti-
wization. however, the snniation of the logarithme
of probabilitics or co-relations is considered as the
score Lo be optimized.  Further investigation of the
appropriate stochastic model is strongly required.

The ot siguificant aspeet of our prediction
schienies is that the global factors of structure forma-
tiom are considered as the primary constraints of long
stencture fraguents. In this ease, however, the infor-
tation from the primary structure fragments is much
abstracted. and thus, the direet interaction hetween
the two small sites which ace wutnally distant in the
priviary strueture is not considered directly. In our
future works. we intend to model those factors that



are ot considered i the present stwely, This sug-
peats that the MLD scheine itself should be clianged
according to the wew models of fetors, sueh as the
packing pattern propensity of primary stroctures,
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