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Abstract

This paper proposes a new methodology to improve the performance of mul-
tiple sequence alignment by combining a genetic algorithm and an iterative
alignment algorithm. Iterative alignment algorithms usually achieve better
alignment than other alignment algorithms, such as tournament based multi-
ple alignment. They, also, can incorporate parallelism to improve execution
performance. However, they sometimes suffer from being trapped in the lo-
cal optima and result in relatively low-quality alignments due to their rapid
convergence. A genetic algorithm can save this problem by exchanging partial
alignment sequences between “individuals”. Our experiments show that the
combination of a genetic algorithm and an iterative alignment algorithm pro-
duces better results than iterative aligners which employ hill-climbing search

strategies.

1 Introduction

Proteins are made up of twenty kinds of amino acids, which we distinguish with different
code letters. A protein has about two hundred amino acids on average and is represented
by a sequence of code letters. Proteins can have various structures and functions because
the amino acids in each protein are ordered differently and every amino acid has its own
properties of volume, hydrophobicity, polarity, and so on.

One of our goals in terms of protein sequence analysis is to infer the unknown structure of
an unknown sequence by increasing our biological knowledge of the protein. The knowledge
can be extracted by analyzing similar sequences in protein sequence databases. Multiple
alignment is the most common technique used for that purpose.

Let us give an example of multiple sequence alignment. The following set of sequences
represents an alignment of six different protein sequences. HEKL stands for a row of Histidine,



Glutamic acid, Lysine, and Leucine.

——————————————— HEKLLHPGIQKTTELF-GET==-YYFPNSQLLIONIINECSICNLAKTEHRNTDM=-=P-TKTT
-------------- LHQ-LTHLSFSKMEALLERSHSPYYMLNRDRTL-KNITETCKAC--AQVNASKSAVEQG-TR--
-PVLQ---LSPA-ELHS-FTHCG===(TAL==-TLQ====GATTTEA=-~SNILRSCHAC---RGGNPQHQMPRGHI ---
QATFQAYPLREAKDLHT-ALHIG---PRAL--SKA---CNISMQQA--REVVQTCPHC------NSAPALEAG-VN--
~-I8D--PIHEATQART-LHHLN---AHTL--RLL---YKITREQA--RDIVEACKQC---VVATPVPHL~--G-VN--
~=ILT--ALESAQESHA-LHHON-~-AAAL--RFQ---FHITREQA--REIVKLCPNC---PDWGSAPQL--G-VN--

Sequences are shifted by inserting gaps (dashes). Each column in the resultant alignment
has the same or similar amino acids. An identical pattern, such as H... . H and C..C, is
considered to be an important site called a sequence motif, or simply a motif [17), because an
important protein sequence site has been conservative along with evolutional cycles between
mutation and natural selection. Multiple sequence alignment is useful not only for inferring
the structure and function of proteins but also for drawing a phylogenetic tree along the
evolutional histories of the creatures.

Computers partly solve the problem of multiple sequence alignment automatically, in-
stead of relying on the hands and eyes of experts. The results obtained by computer, however,
have not been as satisfactory as those by human experts. This is because the problem of
multiple sequence alignment is particularly time and space consuming. Dynamic program-
ming (DP-matching) [13, 16], theoretically, provides an optimal solution according to a given
evaluation score. This, however, requires memory space for an N-dimensional array (where
N is the number of sequences) and calculation time in the N-th power of the sequence
length. Though a method was proposed to cut unnecessary computation in the dynamic
programming algorithm [3], it still needs too much computation to solve any practical align-
ment problem. A number of heuristic algorithms for multiple alignment problems have been
devised [1, 5] in order to obtain approximate solutions within a practical time. Most of these
algorithms are based on two-dimensional DP-matching.
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Figure 1: Tow-dimensional DP-matching

Figure 1 shows the algorithm of two-dimensional DP-matching applied to a tiny pairwise
alignment. The algarithm searches the best path in the figurative network from the top left
node to the bottom right node maximizing the total score of arrows. Each score indicated
on an arrow reflects the similarities between the characters being compared. The best path
corresponds to the optimal alignment; each arrow in the path corresponds to each column
in the alignment. Vertical and horizontal arrows indicate the insertion of gaps.



We have developed multiple sequence alignment systems using a parallel inference ma-
chine [9, 8. Parallel execution often makes it passible to reduce the execution time required
for multiple alignment to a manageable degree. We have focused on iterative alignment algo-
rithms because of their ability to generate a high-quality multiple alignment, and reported on
a parallel iterative aligner [10], which employs the parallel extension of an iterative alignment
algorithm.

The iterative aligners developed so far have sometimes suffered from relatively low-quality
alignments. This is because the search strategy used is the so-called hill-climbing algorithm
where the search proceeds in a better direction in the search space only. With this algorithm,
the search is often trapped in local oplima in spite of rapid convergence. In this paper,
we propose the incorporation of a genetic algorithm with our parallel iterative aligner. A
genetic algorithm can save this problem efficiently by exchanging partial alignment sequences
between individuals.

The organization of the rest of this paper is as follows. In Section 2, we show an overview
on iterative aligners, including our parallel iterative aligner. We define a genetic algorithm for
solving multiple sequence alignment problems in Section 3. Then, the results of experiments
and the evaluation of the genetic algorithm are discussed in Section 4. Finally, conclusions
are given in Section 5.

2 Iterative Aligners

In this section, we briefly explain iterative aligners to locate our previous work in their
history, and suggest why we use a genetic algorithm.

History

An iterative aligner improves a current alignment iteratively to obtain a final multiple se-
quence alignment. The prototype iterative aligner originated with Barton and Sternberg [1].
They proposed a constructive alignment method which aligns sequences one by one with
DP-matching, and suggested that an iterative method could refine the constructed multiple
sequence alignment. The iterative method, being regarded as the prototype iterative aligner,
refines an NV sequence alignment as follows: it chooses the first sequence to DP-match with
the rest of the alignment, then chooses the second sequence to DP-match with the rest of
the latest result, ..., then chooses the N-th sequence to DP-match with the rest of the latest
result, and repeats this until the score of the alignment converges.

A real iterative aligner was developed by Berger and Munson [2]. Figure 2 illustrates
the iterative strategy in which the initially aligned sequences are randomly divided into
two groups. By fixing the alignment within each group we can optimize the alignment
between the groups, using two-dimensional DP-matching. The resultant alignment, in turn,
is the starting point for the next alignment of a different pair of groups. This procedure
is repeated until the score of the alignment converges. Because there are 2"~! =1 dilferent
possible partitionings for n sequences, the method requires a large number of iteration cycles
to get a final multiple alignment. It often takes a day to align a practical-scale alignment,
although the method ignores columns which contain any number of gaps using Murata's
DP-matching [12] in order to reduce computation.

Gotoh [7] discussed the performance of the iterative aligner, emphasizing the importance
of the detailed gap cost system. Since the system assigns opening and extending gap costs
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Figure 2: Berger-Munson Method

to individual pairs of compared sequences, it helps to produce a high-quality alignment.
However, this requires a large amount of computation for the group-to-group DP-matching.

Tanaka ef al. indicated the equivalent relation between iterative aligners and Hidden
Markov Models [18].

Parallel Iterative Aligner

Though iterative aligners often provide much better multiple alignment than those obtained
by conventional algorithms, such as tournament based methods, its randomized iteration
needs more than several hours to solve a multiple alignment of a practical scale. When a
parallel machine is available, the iterative strategy extended in parallel is fairly helpful for
reducing execution time. We developed a parallel iterative aligner as follows [10].
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Figure 3: Parallel Extension of Berger-Munson Method

Figure 3 shows the algorithm of our parallel iterative aligner. Every possible partitioning
into two groups of aligned sequences can be respectively evaluated with two-dimensional
DP-matching on a processing element (PE). The detailed gap cost system, described as



Algorithm C in [7], is used for the calculation of the alignment score. In each iteration, the
evaluation is executed in parallel and the alignment which has the best score is selected as
the starting paint for the next iteration. The iteration cycle will stop when no improvement
occurs. This best-choice search strategy is one of the hill-climbing algorithms.

Furthermore, we developed an effective heuristic search, the restricted partitioning tech-
nique. Applying the parallel iterative strategy described above, we realized that the number
of sequences in the divided groups is important. As partitioning divides N sequences into
k sequences and N —k sequences, a smaller k tends to provide a larger improvement when
using the group-to-group DP-matching. The restricted partitioning technique preferentially
selects partitionings which have a small k, such as one or two. This technique resembles the
Barton-Sternberg method by DP-matching between plural sequences and a few sequences.
It can restrict the search space and reduce the execution time remarkably. Parallel iterative
aligners with this technique can manage more sequences at the same time than those without
the technique.

Thus, our parallel iterative aligner performs better than the original Berger-Munson
method in terms of quality of alignment and the execution time. It does, however, sometimes
offer relatively low-quality alignment. This must be because the search is trapped by local
optima in the search space. We have incorporated a genetic algorithm in order to get out of
such local optima.

3 Genetic Algorithm

In this section, we explain a mechanism of genetic algorithms and onr definition for solving
multiple sequence alignment problems. Genetic algorithms have been applied to a number
of biological problems [11, 14, 15, 19].

Mechanism of Genetic Algorithm

Genetic algorithms are stochastic search algorithms based on the biclogical evolution process
[6]. As in Figure 4, genetic algorithms simulate the survival of the fittest in a population
of individuals which represent points in a search space. Each individual, though usually
represented by a binary string, corresponds to a possible multiple sequence alignment in
our definition. A fitness function corresponds to the alignment score described in detail in
Section 4.

The aim of a genetic algorithm is to find the global optimum of the fitness function when
given an initial population of individuals by applying genetic operators in each generation,
The genetic operators consist of crossover, mutation, and selection.

Crossover

The crossover operator produces two descendants by exchanging parts of two individuals,
This operator aims to improve an individual by replacing a part of an individual with a
better part from another individual. Figure 5 shows the crossover of two individual align-
ments. The sequences to be aligned are randomly divided into two groups: the exchange
and unexchange groups. The sequence members in the exchange groups are exchanged
between the individual alignments by fixing the current alignment within each group. The
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Figure 4: Mechanism of Genetic Algorithm

exchanged and unexchanged groups are re-aligned with two-dimensional DP-matching. Can-
didate alignments which should be done with crossover operators are chosen randomly from
among the higher-scoring individuals.
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Figure 5: Crossover of Alignments

Mutation

The mutation operator changes certain parts of an individual. Figure 6 shows the mutation of
an individual alignment. A sequence is randomly chosen from among the aligned sequences,
and is re-aligned against the other sequences with two-dimensional DP-matching. Although
mutation means a random perturbation under the orthodox concept of a genetic algorithm,
it is considered an iterative cycle of improvement in our definition.
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Figure 6: Mutation of Alignment

Selection

The selection operator chooses good individuals from a pepulation according to fitness and
the given selection strategy. This operator aims to increase the quality of individuals in the
population while maintaining a certain level of diversity. The operator first calculates the
relative fitness of all individuals, then discards several of the lesser individuals as determined
by a parameter value. The same number of individuals are compensated for by crossover
operators in the next generation so that the number of individuals is constant generation

after generation.

4 Experimental Results

In this section, we explain implementation of our system and compare the performance of a
parallel iterative aligner with the genetic algorithm and a parallel iterative aligner with the

hill-climbing algorithm.

Implementation

Iterative aligners gradually improve global multiple alignment. Improvement is evaluated
by the alignment score defined as follows. The alignment score is a total summation of the
similarity scores of every pair of aligned sequences, each of which is derived by summing the
similarity values of every character pair in the column. Each similarity value is given by the
odds matriz. A gap penalty corresponding to each row of gaps in the two sequences is added
to the similarity score (Algorithm Cin [7]).

We use Dayhoft's odds matrix [4], each value of which is a logarithm of the mutation
probability of a character pair (zero is the neutral value). The gap penalty imposed on a
row of k gaps is a linear relation: a + bk where a and b are parameters. We set a = =7 and
b= —1 as default values. Character pairs gap vs. gap and outside gap vs. any character arc
ignored; they are assigned the neutral value zero.

Our multiple sequence alignment systems work on PIM, a MIMD parallel machine equipped
with up to 256 processing elements (PEs). We have implemented two algorithms for com-
parison analysis: the genetic algorithm and the hill-climbing algorithm.



Results

Figure 7 compares the histories of the alignment scores obtained by the algorithms. Every
algorithm solves the same practical-scale alignment problem, which consists of twenty-two
sequences with eighty amino-acid letters each. Each sequence is the beginning of a different
kind of protein kinase. The initial state of the alignment problem has no gaps inside the

Sequences.
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Figure T: Comparing Alignment Score Histories

(a) genetic algorithm: The iterative strategy of the genetic algorithm is applied to the
alignment problem. Each individual alignment is assigned to a PE, so the size of population
is 255. A PE is used as a manager process to select discarded individuals and crossover
candidates. In each generation, ten percent of the population is discarded by the selection
operator and this same number of individuals are compensated [or by the crossover operator.
The period of each generation is controlled with the system timer, whose default value is
eighty seconds. When each PE finds that the system timer has passed eighty seconds, it
does not apply another mutation operator but sends the current alignment to the manager
PE. On average, four mutations occur in a generation with the crossover operation, or six
mutations occur in a generation without it. In Figure 7, MAX shows the history of the
maximum alignment score among the population, and AVE shows the history of the average
alignment score of the population. The MAX score was decided as having converged when
it was invariable through more than one hundred generations. It took about two hours to
obtain the converged MAX score, 15775, and the final AVE was 15121.

(b) hill-climbing algorithm: The best-choice iterative strategy is applied to the align-
ment problem. In each iteration, possible partitions of aligned sequences are distributed to



the PEs so that they can be evaluated at the same time. We use the restricted partitioning
technigue; the number of sequences in the smaller divided group is restricted to one or two.
253 PEs (22C; = 22 plus 220y = 231) are necessary to execute all restricted partitioning in
parallel. Additionally, a PE is used as a manager process to select the best alignment in
every iteration. In total, 254 PEs are employed in this execution. Each iteration cycle takes
thirty seconds on average. Execution stops if no variation in alignment score is found. The fi-
nal alignment, which is obtained at the twenty-fifth cycle with score 13903 in eleven minutes.

We made the following observations from the results.

1. The MAX alignment score obtained by the genetic algorithm reached the level of the
final alignment score, 13903, obtained by the hill-climbing algorithm in almost the
same time. The MAX score was not trapped at a relatively low level but increased up

to 15775,

2. The AVE alignment score obtained by the genetic algorithm surpassed the final align-
ment level, 13903, within seventy minutes. This means that more than half of the

population could escape local optima at a relatively low level.

3. The AVE score increased closer to the MAX score, even after the MAX score converged
to the final value. This means that the number of individuals who had the final 15775
alignment increased. In fact, more than eighty percent of the population had the same
alignment after five hours of execution.

5 Conclusion

The parallel iterative aligner we reported last year sometimes produced low-quality align-
ments whose score might be trapped in local optima in the search space. We assumed that
the hill-climbing algorithm brought the defect in spite of its rapid convergence. So, we incor-
porated a genetic algorithm, instead of the hill-climbing algorithm, into our parallel iterative
aligner. As a result, we found that the parallel iterative aligner with a genetic algorithm
could improve an alignment score as rapidly as that with the hill-climbing algorithm, and
that the aligner gradually increased the score to a higher level which might be close to the
optimal alignment score.

The reason why the genetic algorithmm showed such high performance seemed to be the
modularity of multiple alignment problems. [f we can replace a part of a sequence alignment
with a better part from another, we obtain a better multiple sequence alignment. Crossover
operators achieve this replacement in a statistical manner. In fact, about five percent of
crossover descendants had better alignment scores than both their parents’ scores in early
execution stage.

Thus, we consider the parallel iterative aligner with the genetic algorithm to be the most
suitable system for solving multiple sequence alignment problems of a practical scale.
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