ICOT Technical Report: TR-0842

TR-0842

Investigating Assumption-Semantics Through

Open Positive Programs

by
N. Twayama

April, 1993

@ 1993, 1ICOT

Mita Kokusai Bldg. 21F (03p3456-3191~5

I c DT 4-28 Mita I-Chome

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology




Investigating Assumption-based Semantics
through Open Positive Programs

Noboru IWAYAMA

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
phone: +81-3-3456-2514, fax: +81-3-3456-1618
email: iwayama@icot.or.jp

Abstract

Brogi et al. provide us with the following framework (we call this frame-
work, the model-based framework) to characterize the meaning of negation-
as-failure: they regard normal logic programs as open positive logic programs
and force conditions an their Herhrand models so that they are recognized as
proper models capturing the meaning of negation-as-failure.

We contribute to the study of the semantics of normal logic programming
in the model-based framework by modifying Brogi's way of forcing conditions
on erbrand models. We prfn.ridﬂ two new conditions on [Herbrand models
in terms of the model-based {ramework. Each of the two conditions coin
cides with each of two semantics, stable theory and acceptability semantics
by Kakas and Mancarella., One of the conditivns which colncides with ac-
ceptakility semantics is considerably understandable hecause onr definition is
non-recursive whereas Kakas and Mancarella defined it recursively.

Keywords: Semantic analysis, Normal logic programs, Open logic programs,
Argumentation.



1 Introduction

Bondarenko et al. state that the scmantics proposed by Dung [Dung91] and Kakas
et al. [Kakas91] is based on the following [ramework, called the assumption-based

framework, which
= Regards negation-as-failure as “assumption,” and

¢ Forces argumentation theoretic conditions on the set of assumptions so it is
recognized as “proper” negation-as-failure.

Here, we state Lthe details of the argument theoretic conditions from [Bondarenko93].
Argumentation theoretic conditions are formulated in terms of their ability to sue-
cessfully “counterattack” any “attacking” set of assumptions. A set of assumptions
is said to “attack” another if, together with the theory, it implics a consequence
which is inconsistent with some assnmption contained in the other set. For ex-
ample, let us consider the program {p < notg}. An assumption {notq} attacks
the assumption {notp}, because the program with assumption {notg} implies p.
Since this [ramework gives a nnified view for various semantic proposals for logic
programming, Bondarenko et al. argue that the framework is important.

Added to assumption-based framework, a framework provided by Brogi et al.
[Brogio2] should be mentioned. We call this framework the model-based framework
in this paper, and summarize the actions of the framework as follows:

¢ [egards normal logic programs as open “positive” logic programs and

¢ Forces condilions on the set of their Herbrand models so they are recognized
as “proper” models.

To discuss the meaning of normal logic programs, they |Brogi92] provided a specific
condition, the admissibility condition. The admissibility condition is based on the
“coherency” of Herbrand models. A Herbrand model is “coherent” if the model does
not contain both a positive atom (p) and a negation-as-failure atom (not_p) at the
same time (the complement notion is “incoherency”, i.e., there are both p and not_p
in a Herbrand model). As Brogi at al. Lave pointed out, the point which we should
emphasize is that this framework is based on purely model-theoretic arguments
{Herbrand models) rather than in terms of the syntax of the program!.

Although Brogi et al. did not argue that their condition is “argumentation-
theoretic,” the model-based framework seems Lo be similar to the assumption-based
framework. You can find that there is some intuitive correspondence between the
“attacking” of an assumption sel and the “incoherency” of a Herbrand model. In
fact, for the case of preferential semantics by Dung [Dung91], the admissibility condi-
twon in terms of the model-based [ramework coincides with the appropriate argumen-
tation theoretic condition in terms of the assumption-based framework [Brogi92). We

'For example, stable models [Gelfond88] are defined based on syntactic program transformation.



state that such a coincidence between two frameworks is very important, because we
can provide a model-theoretic explanation for the assumption-based framework that
is bused on the derivability of inconsistent consequences with a set of assumptions.

In this paper, we contribute to the study of the semantics of normal logie pro-
gramming in the model-based framework. We achieve the following by modifying
Brogi’s way of forcing conditions on [lerbrand models:

1. We provide new two conditions for Herbrand models in terms of the model-
based framework, and

2. We show that each of the two conditions enincides with each of the two se-
mantics in terms of the assumption-based framework, i.e. stable theory and
acceptability semantics by Kakas and Mancarella [Kakas91].

As a result, we represent stable theory and acceptability semantics in the model-
based framework more simply than in the assumption-based framework; especially,
our new non-recursive formulation of acceptability semantics is considerably under-
standable because in [Kakas91] the acceptability semantics is defined recursively.
Morcover, our result provides a considerable evidence to show that both frame-
works support each other, because we show that formulations from twe different
perspectives (the assumption-based and model-based frameworks) provide us with a
cuincidence with respect Lo many phenomena in the semantics of negation-as-failure,

This paper is organived as follows. We show the preliminary definitions of logic
programuning in Section 2, in which negation-as-failure is introduced as an abdue-
tive assumption. In Sections 3 and 4, we show the conditions of Herbrand models
in terms of the model-based framework by modifying Brogi’s way of forcing con-
ditions. In Section 5, we summarize the definitions of assumption-based semantics
in [Bondarenko93| and show that the condition in Section 3 coincides with stable
theory semantics and that the condition in Section 4 coincides with acceptability
semantics.

2  Preliminaries

We refer to the terminologies of logic programming. A normal logic program P is a
set of clauses of the form

Aﬂ — Al! saey A'I'J'h ﬂﬂt&ml-lr ey nol ’qn'

where A, are atoms and n > m > 0. Negation-as-failure notA is clearly distin-
guished classical negation “~A." We only consider {possibly infinite) propositional
programs®.

Let P be a program and H B be the Herbrand base associated with . negation-
as-failure not A is dealt with as positive atoms not_A, where not_4 is a new propo-
sitional symbol. In other words, P is transformed into its positive version P' by

“This way of restricting programs is well known in the literature (for example. [Preymmsinakiol]).
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replacing each negation-as-failure not4 in P’'s clause bodies with the corresponding
positive literal nof_4. The positive literal nof_4 is not only a propositional symbol
but an abductive assumption also. We denote the set of abductive assumptions as
not_HB (= {not_A|A € HB}).

A (Herbrand) interpretation [ of P is deflined as usual, 1e. 1 € HBUnot_HB.
Given an interpretation 1, T'Y stands for TN H B and T~ stands for JTNnot_HB. The
following delinition is a key delinition in the model-based framework.

Definition 2.1 Coherency and incoherency
An interprefation [ is coherent iff for no etom A & HB both A ¢ I'Y and not_A €

I=. I s incoherent ofheruise.

We define the following supportedness, where we use the immediate consequence
operator Tp for a positive program P.

Definition 2.2 Supported interpretations
Let P be a program. An interpretation [ s a supported interpretation of P off H C [
stch that | = T_!'JLJH r L.

In this paper, we only pay attention to the following class of supported interpre-
tations.

Definition 2.3 [Brogi92] Negatively supported interpretation

Let P be a program. A supporied inlerpretation M of P is a negatively supported
interpretation of P iff M is supporied by ils negative part M=, or M — Tpp- | w.
The set of negatively supported mlerprelations of P is denoted by NSI{ P).

We may cxpress a negatively supported interpretation M simply as M(A) (A =
M™Y.

As Brogi ct al. have explained, if a supported interpretation M is a negatively
supported interpretation of a program 7, then the set of positive atoms true in M,
M™, contains exactly those which are derivable from I’ by assuming the negative
atoms in M.

Example 2.1 Let P be a program {a — not_b}. Then
NSI{P)={@, {nota},{a, nolb}, {a,nol_a,not_b}}.

In Sections 3 and 4, we will discuss the conditions which we force on negatively
supported interpretations to capture the declarative meaning of negation-as-failure.



3 Weak admissibility based on the model-based
framework

In this scction, we consider the conditions forced on Herbrand interpretations to
capture the meaning of negation-as-failure. First, we state definitions in [Brogid2),
then we show new definitions.

Brogi et al. use Lthe notion of conservative extensions of negatively supported
interpretations to discuss the meaning of negation-as-failure.

Definition 3.1 [Broqm92] Conservative Extension

Let M and N be negatively supported interpretations of a program P. N is a con
servative extension of M ff N™ 2 M~ and M™ U N~ is coherent. The set of all
conservative ertensions of M is denoted by CE(M).

Example 3.1 Let P be a program {a «— nol b} as in example 2.1. Then

CE() = {0, {not_a}, {a,not_b}, {a, not_a,not_b}},
C'E{{not_a}) = {{not_a},{a not_.a, not b}},
CE{{a,notb}) = {{a,not_b}}, and
CE({a,not.a,not b}) = {}.

1o consider the semantics of a program P, we select the interpretation that
satisfles the following condition for its conservative extensions.

Definition 3.2 [Brogif2] Admissible supported interpretation and model
Let M be a negatively supported interpretation of a program P. M i5 an admissible
supported interpretation of P off

YN € Cl(M) : M~ UN? is coherent.

M s an admissible supported model if M is coherent. ASI(P) [ASM(D)) denotes
the sel of all admissible supported interpretations (models) for P.

Example 3.2 Let P be the program in example 2.1. Then

ASHP) = {0, {a,not b}, {a,not_a,not_b}}, and
ASM(P) = {0, {a,not b} }.

Though Brogi et al. considered the conservative extensions in order to discuss the
meaning of negation-as-failure, in this paper we consider other “non-conservative”
extensions. In the definition of conservative extensions, N does not imply the truth
of not_A whenever A is true in M, ie., N is extended “so as to be conservative.”
Here, we change our point of view in extending M. In extending M, rather than
paying attention to keeping coherency with M, we pay attention to expanding A
coherently. We formalize this notion of extension as self-coherent extension. Intu-
itively, N self-coherently expands M unless NV newly assumes the truth of both A
and not_A.



Definition 3.3 Self-coherent extension

Let M and N be negatively supported interprefations of a program P. N 15 a self-
coherent extension of M {ff N™ O M~ and (N~ — M~)U N* is coherent. The set
of all self-coherent extensions of M is denoted by SCE(M).

Example 3.3 Let P be the program in example 2.1, Then

SCE(®) = {8, {not_a}, {a,not b} },
SCE({not_a}) = {{not_a}, {a,not_a,not_b}},
SCE({a,not b}}) = {{a,not.b}}, and
SCE({a,not_a,not_b}) = {{a,not_a, not b}}.

Note that {a,not_a,not b} ¢ SCE(D) but {a,nol_a,not b} € CE(D),
and {a,not_a,not b} € SCE({a, not_a,not b})
but {a,not_a,not b} ¢ CE({a,nol_a,not_b}).

As admissible interpretations, we define some kind of admissibility based on the
self-coherent extension.

Definition 3.4 Weakly admissible supported interpretation and model
Let M be a negatively supported wnterpretation of a program P. M 15 a weakly
admissible suppaorted interpretation of P iff

YN € SCE(M) : M~ UN? 15 coherent.

M 1s a weakly admissible supported model if M is coherent. WASI(P) (WSAM(P))
denotes the set of all weakly admissible supported interpretation (models) for P.

Proposition 3.1 Let P be a program. Then
WASIH{P)=WASM(P).
Proof: Because M € SCE(M), we say that M is coherent if M is a weakly admis-
sible interpretation.
Example 3.4 Let P be the program in example 2.1. Then
WASM(P) = {0, {a,not _b}}.

Although, for the program in example 2.1, ASM( P} = WASM(P), the following
example shows the difference between admissible and weakly admissible models.

Example 3.5 Let P be a program {a — notb, b« notb}, Then ASM(P) = {0},
but WASM(P) = {0, {not_a}} because

SCE(®) = {0, {not_a}},

SCE({not.a}) = {{not_a}},

SCE({a,b,not b}) = {{a,b,not b}}, and
SCE({a,b,not_a,not_h}) = {{a, b,not_a,not_b}}.
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The program in the above example is the same as that used by Kakas and Man-
carella in their paper [Kakas91] to argue why the weakly stable hypotheses set is
important in the assumption-based framework. In Section 5, we show that this
definition of weakly admissible interpretations based on the model-based frame-
work coincides with the definition of weakly stable theories, that is based on the
assumption-based framework. As a resull, we will show the relation between weakly
and non-weakly admissible supported interpretations.

4 Yet another admissibility based on the model-
based framework

In this section, we consider another “non-conservative” extension to diseuss the
meaning of negation-as-failure, and apply the new notion of non-conservative exten-
sion to the definition of admissible interpretation, as in the previous section.

In the previous section, we considered how to expand M when defining the
nature of extensions. Here, we force a stronger condition on the extensions of M.
Namely, the extension of M is the maximal one among self-coherent extensions of
M, otherwise the extension of M should be further expanded to a self-coherent
extension of M.

Definition 4.1 Strongly self-coherent extension

Let M, N, and NN be negatively supported interpretations of a program P. N is a
strongly self-coherent extension of M ff VNN - NN 2 N, of (NN~ - N7 JUNNT &5
coherent, then (N~ — M ™) U NN7 is coherent. The set of all strongly self-coherent
extensions of M is denoted by SSCE(M).

In this definition, suppose that (NN~ — N~)}U NN* is coherent and that (N~ —
M~)UNNT is coherent, then it follows that (NN~ — M~ )UNNT is coherent. This
means that VA is a self-coherent extension of A,

Example 4.1 Let P be the program in erample 2.1. Then

SSCE(B) = {0. {a,not_b}},

SSCFE{{not.a}) = {{nota}, {a,not_a,not b}},
SSCE({a,notb}) = {{a,notb}}, and
SSCE({a,nota,not_b}) = {{a,not.a,not b} }.

Note that {not_a} € SCE(D), but {not_a} & SSCE(D).

We point out the relation between strong and non-strong self-coherent extensions.

Proposition 4.1 Let M be a negatively supported interpretation of o program P.
SSCE(M) C SCE(M).
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As weakly admissible interpretations, we define some kind of admissibility based
on the strongly self-coherent extension.

Definition 4.2 Acceptable supported interpretation and model
Let M be a negatrvely supported inferpretation of a programm P. M is an acceplable
supported interpretation aof P off

YN € SSCE(M) : M~ UNT 1s coherent.

M s an acceptable supported model if M is coherent. ACCSI(FP) (ACCSM(P))
denotes the set of all acceptable supported interpretations (models) for P.

FProposition 4.2 Lel P be a program. Then
ACCS1(P) = ACCSM(P).

Proof: Because M € SSCE{M), we say that M is coherent if M is an acceptable
supported interpretation.

Example 4.2 Let P be the program in example 2.1, Then
ACCSM(FP) = {0, {a,not b} }.
The next corollary follows from proposition 4.1

Corollary 4.1 Let P be a program. Then
WASM(FP) C ACCSM(F).

Although, for the program in example 2.1, WASM(P) = ACCSM(P), the
following example shows the difference between weakly admissible and acceptable
models.

Example 4.3 Let P be a program {a «— not b, b — not_b,not_c}, Then
WASM{P) = {0, {not_c}, {not_a,not_c}}, but

ACCSM(P) = {0, {not.a}, {not ¢}, {not_a,not_c}},
because of SCE(FP) and SSCE(P) in Appendiz A.

In [Kakas91], Kakas and Mancarella proposed the notion of stable theories so
as to approximate their intuitive meaning of negation-as-failure, and they men-
tioned how to formalize their accurate intuition ilself. Kakas et al. [Kakas92] and
Bondarenko et al. [Bondarenko93] discussed the formalization (called acceptabil-
ity semantics) in the assumption-based [ramework. In the next section, we show
that the notion of acceptable supported interpretations coincides with acceptability
semantics, '



5 The class of assumption-based semantics

In this section, we show that the class of conditions on negatively supported in-
terpretations in the previous sections is equivalent to the class of assumption-based
semantics. The class of assumption-based semantics is the class of semantics defined
by Dung [Dung?]|, Kakas and Mancarella [Kakas91], and Kakas, Kowalski and Toni
[Kakas92].

Bondarenko et al. [Bondarenko93| summarize and generalize the class of se-
mantics in Lerms of argumentation theoretic criterion as the “assumption-based”
framework. In the assumption-based framework for logic programming, negation-
as-failure is regarded as an abductive “assumption,” and the argumentation theo-
retic conditions are forced on the set of assumptions so that the set is recognized
as “proper” negation-as-failure. The argumentation theoretic conditions are formu-
lated in terms of their ability to successfully “counterattack™ any “attacking” sct
of assumptions. A set of assumptions is said to “attack” another if, together with
the theory, it implies a consequence which is inconsistent with some assumplion
contained in the other set. The variety of assumption-based semantics is defined by
determining the different notions of “counterattacking.”

In the sequel, we recall the definitions in [Bondarenko93] in terms of the argu-
mentation theory. Given a set A (C not_HB), a set A (C not_HB) attacks A if
PUAF Aforsome not_4 € A. In [Bondarenko83), the notion of admissibility of an
assumption set for an appropriate definition of counteratiack is defined as follows:

WA attacks A, A counterattacks A.

Dung [L}unng] defined the prefereniial sermantics. In Dung's work, the admis-
sihility of a set of assumption A is:

WA: A attacks A, A attacks A

Namely, Dung used the following notion of counterattacking in the framework
of Bondarenko: given a program P and the sets of assumptions A and A,
A counterattacks, A iff A attacks A.

Then, to negate disadvantages (including those in example 3.5) in the preferential
semantics, Kakas and Mancarella [Kakas91] consider one other semantics, stable
theory. The weakly stability of an set of assumptions A is :

YA A attacks A, AU A attacks A4 — A,

Namely, they used the following notion of counterattacking in the framework
of Bondarenko: given a program P and the sets of assumptions A and A,
A counterattackss A T AU A attacks 4 — A,

The following proposition by Kakas and Mancarella shows the relation between
the preferential semantics and stable theories.



Proposition 5.1 [Kakas91] Let A be an assumption set of a program P, If A is
admissible (in Dung's definition), then A is weakly stable.

In the next theorem, we restatc the result in [Brogi92], which bridges the gap
between assumption-based and model-based frameworks.

Theorem 5.1 [Brogif92] admassible supported model = admissible assumption set

1. a coherent assumption set A is admissible = a negalively supported interpre-
tatton M{A) is an admissible supported model,

2. M s an admssible supported model = M~ is admassible.

In addition to the above theorem, we state the next theorem, which gives the
equivalence between weakly admissible supported modecls proposed in Section 3 and
weakly stable assumption sets by Kakas and Mancarclla.

Theorem 5.2 weakly admissible supported model = weakly stable assumption sel

1. a coherent assumption set A\ 1s weakly stable = o negatively supported inter-
pretation M(A) 15 a weakly admissible supported model,

2. M s a weakly admissible supported model = M~ 1s weakly stable.

Proof: See Appendix B.
Here, we show the relation between admissible and weakly admissible supported

models.
Corollary 5.1 Let P be a program. Then
ASM(P) C WASM(P).

Proof: From thearem 5.1, theorem 5.2, and proposition 5.1.

In [Kakas91], to capture the basic intuition of negation-as-failure more closely
than stable theories, they provide an alternative condition of acceptability in their
acceplability semantics [Kakas82). The acceptability of assumption set A is defined
as follows: for some initial assumption set Ay,

A is acceptable to Ay ifTf V.40 A attacks A — Ay, A is not acceptable to
AU A

In the sequel, we only consider whether A is acceptable to . Bondarenko ot al.
[Bondarenka93| defined the equivalent notion of the acceptability in a complicated
way in terms of attacking and counterattacking (we do not show the definition here).
We can unfold the recursion using the above definition of acceptability once.

A is acceptable to 8
iff WA: A attacke A, D D attacks A— A st. D is acceptable to AU A,

HY



We will show that this definition is equivalent to the acceptable supported models
proposed in the previous section after we discuss the non-recursive version of the
above definition; the non-recursive version is used in the proof of the equivalence.

Definition 5.1 A sei of assumplions A s acceptable’ to Ag off

VA: A D AUA,, Aattacks A — Ay, 3D D2 AU AU A, D allacks
A= (AU Ay) and D does not attack D — (AU A U Ay).

Theorem 5.3 A s aceeptable to Ay iff A is acceplable” to Ny

Proof: See Appendix B.
From this theorem, we state the next theorem which gives the equivalence be-
tween acceptable supported models and acceptable assumptlion scts.

Theorem 5.4 acceptable supported model = acceplable assumplion sel

1. A is acceptable to § = a negatively supported iterpretation M{A) is an ac-
reptable supported model,

2. M is an acceptable supporied model = M~ is acceptable to 0.

Proof: It follows that definition 5.1 is equivalent to definition 4.2 hy snhstituting @
for &g in definition 5.1.

6 Concluding Remarks

We provide two conditions on Herbrand models in terms of the model-based [(rame-
work proposed by Brogi et al. We show that each of the conditions coincides with
each of two assumption-based semantics by Kakas and Mancarella, as Brogi et al.
showed that their definition of admissibility coincides with preferential semantics by
Dung. The table shows these coincidences in each condition:

Model-based Assumption-hased

Acvceplable Acceptable
Weakly Admissible Weakly Stable

Admissible Admissible |

Each row shows all correspondences between the two frameworks. A condition in
the upper row in the tahle generalizes the condition in the lower row.

New, we have two directions in which to proceed with future work. The first
direction is concerned with the reformulation of our formalism in autoepistemic
logic. In this paper, we discuss ordinary Herbrand models by regarding not A as
a positive hypothesis. If we may treat not A as =LA in autocpistemic logic (L
is a modal operator, and LA means that “A is believed"), we may provide the
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conditions in autocpistemic logic terminologies. We have already shown one way
of that in [Iwayama93] although it is necessary to investigate what we formalize in
[fwayama93| more deeply.

The second direction is related to extensions of languages. We would like to
specily the semantics of extended logic programs and abductive logic programs which
have positive and negative hypotheses (with or without integrity constraints) in
the same way as in this work. DBondarenko ot al. IBondarenko83] do that in the

assumption-based framework.
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Appendix A

Self-coherent extensions and strongly self-coherent extensions of a program {a —
not_b, b+ not b, not_c} are shown in the following:

SCE@) ~ {0, {nota}, {notc}, {not_a not.c}}.
SCE({not.a}) = {{not.a},{a,not_a,notb}, {not_a,not_c}}.
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SCE({a,not b}}) = {{a,not b} {a,b not b notc}}.
SCE({noic}) = {{not.c},{not_a,not.c}}.
SCE({a,not_a,not b}) {{a,not_a,not_b}, {{a,b,not_a,not b, not_c}}.
SCFE{{a,b,not_a,not_h}) = {{a,b,not.a,notb}}.
SCE{{not_a,not.c}) = {{not_a,notc}}.
SCE{{e,bnot_a,nol b not_c}) = {{{a, b not.a, not b not e}}.

SSCE(®) = SCE() - {{notu}}.
S5CE({nat.a}) = SCE({nota})— {{a,not.a,notb}}.

SSCE({a,not b}) = SCE({a,not_b}).
SECE({notc}) = SCE[{not.c}).

SSCE({a,not_a,not_b}) SCE({a,not_a,not b}).

SSCE({a,b,not_a,not_b}) SCE({a,b,not_a,not_b}).
SSCE{{nola,notcl) = SCE({not a, not c}).
SSCE({a,b,not.a,not b not e}) = SCE({a,b,not_a,notb,not.cl).

Appendix B

Proof of theorem 5.2
1) Assume M({A) is not a weakly admissible supported interpretation. Then 3N :
N7 2 M st. M™UN*Y s incoherent and N~ — M~ U N+ is coherent, that is
Yot A € N7 — M~ st, PUN-F A. This contradicts the weakly stability of A
because we can assumc that N= = AU A.
2} Tt is enough to consider the case where N™ = A st. 42 A D
Proof of theorem 5.3
=) Assume that A is not acceptable’ to Ay, 1.e., 34: A D AUA,, A attacks AUA,,
VDD 2 AUAAg, D does not attack A= (AL Ag), or D attacks D= (AU AUA,).
We obtain 3D D' 2 AU AU A, D attacks A — A, and D' iz acceptable to
AU AU A, because A is acceptable to @, (If D' 2 AU A U A,, we can make a new
D' where P'UAUAUA,) Tt follows that D' attacks ' — AU AU A, Since T is
acceptable to D' U AU A U Ay =T, TV is not acceptable to 410 AU A, This is a
contradiction,
<=) Assume that A is not acceptable to Ap. Instead of original recursive definition
of not-acceptable, we show the constructive definition of notion of not-acceptable.
Then, by using constructive definition, we will show the contradiction.

First, we provide us with the constrnctive definition of the notion of not-
acceptable,

Definition B.1 Let S be a set of pairs of sets of assumptions.
NotAce(S) = {{A,Ay) | A atiacks A = Ay, ¥D attacks A — (AU M), (D, AUAUAG) € S},
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NotAcc"(@) = NotAce(B),
NotAec{@) = NotAce(NotAed™ (D).

The intuitive meaning of 5 in NotAec(.5) is that 5 includes assumption set pairs
which have already heen computed as not-acceptable.
Next lemma shows the constructive definition of notion of not-acceptable.

Lemma B.1 A is not acceptable to Ay iff (A&, Ay) € U, NotAec'(0).

In the following, we will prove the case where {A, Ay} € NotAce!(0) contradicts
the fact that A is acceptable’ to Ay, Although we do not show the proof for the cases
where (A, Ay} € NotAce'(0) (i > 1), we can construct the proof for the cases same as
the case for i = 1. (We can prove cbviously the case where (A, Ay} € NotAcc(i).)

Since (A, Ay) € NotAce' (D), 3A, such that A, attacks A — Ag, YD D, attacks
A — (AU Ay, 34 A, attacks D; — (A, UAUA) and there is no assumption set
‘D such that D attacks A, — (D UA; U A UA,.

We can consider A, 2 AU A, because it is enongh to consider same D, as
before. Let us consider the [lollowing assuimption sct:

H = J(A = (DiU A UAUA)).

So, we can consider .4, 2 AU A, UM, because it is enough to consider same T3; as
before (since there is no assumption set T such that T attacks A;—(D; A4, UAUA ).

Then, let us consider all the assumption sets T, such that T; 2 Ay and D
attacks A; — (A U Ay) {there may exist D such that D 2 A, and D attacks A4, —
(AUAY)). Forsuch a D;, D; attacks D; — (A UAUA,). The reason is because there
exists .A; which attacks T; — (A; U A U Ay) and because T; 2 A, since D; 2 H.
llowever, this contradicts the fact that A is acceptable’ to Ay, O
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