_ ICOT Technical Report: TR-0836

TR-0836

Bug Detection Method Over AND/OR
— Compurtanion Tree

by
K. Takahashi (Mitsubishi)

March., 19493

1993 1007

Mita Kokusai Bldg. 21F (3)3456-3191 =5

" :D I 4-28 Mita 1-Chome

Minuwio-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Bug Detection Method over
AND/OR-Computation Tree

Kazuko Takahashi
Central Research Laboratory
Mitsubishi Electric Corporation
8-1-1, Tsukaguchi-Honmachi,
Amagasaki, 661, JAPAN
(TEL) +81-6-497-7141
(FAX) +81-6-497-7289
(E-MAIL) takahashi@sys.crl.melco.co.jp

Ahstract

This paper discusses a bug detection method for AND/OR-parallel logic
programming languages by traversing the computation tree. We regard the
computation as a set of worlds and an invocation of an OR-primitive as a
branching point. First of all, we construct a computation tree and record a
history of selections at earh hranching point. Comparing the history associ-
ated with a correct answer and the vne with an incorrecl answer, we detect
the direct cause of the difference. We show that all the (manifest) bugs can
be found by traversing branching points of the computation tree. Moreover,
if a program satisfies some condition, bugs can be found only by inspecting
the history associaled with the answers. We alzo discuse about such a class.
This method is applicable not only to locate a bug but also to find the point
which causes the difference of solutions.

1 Introduction

Hecently, design and implementation of logic programming languages which sup-
port both AND- and OR-parallelisin altract many rescarchers [C37)[HBS8][Naiss]
[TTS90|[YA89]. In these languages, AND-parallelism means the parallel execution
of conjunctive goals, and OR-parallelism means the parallel execntion of all pos-

sibilities. These languages are designed to subsume Prolog and committed-choice

languages, and to achieve high parallelism. According to the advancement of the

research on these AND/OR-parallel logic programming languages, there arises a big
prablem of debugging. Actually, so far almost no debugging tools has been propose
for these class of languages.

In [TT90], we have proposed a framework for debugging AND/OR-parallel logic
programming languages. Iu thal [ramework, the system stores the history of com-
pulation and applys an algorithmic debugging method on a world in which an error-
neous answer is obtaimed. We also suggested a possibility of debugging by traversing
the whole computation tree. In this paper, we show a new method of bug detection
which is derived from the discussion in [TT90]. We call this method #ree-traversing
method.

Consider the following simple program.

P :i-gq. eor p :i-T.
q :-ql. or gq :- q2.

ql. q2. r.

Note that p and q have two possibilities on selecting a clause to be used. For the
computation of the goal p, the computation tree shown in Figure 1 is constructed.
Note that Ny and N; are branching points, that denote multiple possibilities of

selections.
Example 1.1 Assume that the following three solutions are obtained.

ansl with the coler { (1 at NO) (1 at Ni) }
ans? with the coleor { (1 at NO) (2 at N1) }

ans3 with the coler { (2 at NO) }

Assume that ansi and ans2 are the incorrect solutions, while ans3 is the correct
one. In this case, selecting “1” and “2" at branching point Ny causes the difference

of getting either an incorrect solution or a correct solution. If a program conlains

Figure 1: A Computation lree for an Example

only one bug, then the bug exists in Ny, that is, the reduction between the goal p
and the clause p :- q is incorrect.

In this case, the bug can be detected only by examining the solutions. However,
if a program contains more than one bug, they cannot be detected only by doing so.
If the above program contains more than one bug, they may exist both in Ny and
N, That is, the reduction between g and g :- g1 is incorrect and Lhe reduclion
belween q and @ := gl is also incorrect. In general, il is necessary to traverse the

computation tree.

If several bugs affects each other, the case becomes more complicated.

Example 1.2 In Example 1.1, assume that ansi is incorrect and the rests are
correcl. In Lhis case, there are two possibilities: the one is that a bug exists in N,
and the other is that bugs exist both in Ny and N,. The latter is the case in which

more than one bug affect each other to generale the correct result.

These examples show that we have to check not only leaf nodes but also an
intermediale node in the tree to detect bugs. llowever, for some class of bugs,

they can be detected vnly by examining the leaf nodes. In this paper, we show the

algorithm of bug detection by traversing the whole tree, and discuss the class for
which the algorithm can be simplified.

This paper is organized as follows. In Section 2, parallel logic programming
language is described and the framewark for bug detection is shown. In Scelion 3,
the algorithm for bug detection is shown. In Section 4, the class for which the
algorithm can be simplified is discussed. In Section 5, comparison with other related

works are discussed. Finally, in Section 6, conclusion and future works are shown.

2 Framework

In AND/OR-parallel computation, the whole computation can be viewed as a dis-
junction of multiple worlds, where each world is doing AND-parallel computation
and a world may split into several worlds according to an invocation of an OR-
primitive. A set of worlds forms a tree when viewing a splitting relation as an arc.
The result of AND/OR-paralicl computation is a collection of results from each leal
world. Solutions on multiple worlds are presented together with their associated
world identifiers which extracts outlines of their histories of the computation.

Each world 15 associated with a color. Color is defined as follows.

Definition 2.1 A primitive color is a pair of symbols (P, A) where P and A are
called a branching point and a branching are, respectively. Two primitive colors are
defined to be orthogonal with each other if and only if they share the same branching
point, but have different branching arcs. A eolor is defined to be a set of primitive

colors, in which no element is arthogonal with each other.

A branching poiul is a unique identifier of the event invoking an OR-predicate,
and a branching arc is an identifier of the selected clause at that invacation.
For example, consider the following program of eycle written in ANDOR-II, an

AND/OR-parallel logic programming lanaguge[TTS90].

Example 2.1 % cycle
cycle(Y) := true | p1([2]X],Y), p2(Y,X).

pl([stopl,Y) :- true | Y=[1].
p1CIXIX1],Y) :- X\=stop | multi(X,A), Y=[AIY1], p1(X1,Y1).

p2([X1X1],Y) := X<20 | wave(X,A), Y=[AlY1], p2(X1,Y1).
p2([X1X11,Y) :- X>=20 | Y=[stop].

:- or_predicate wave/2.
wave(X,Y) :- Y:=K-1.
wave(X,Y) := ¥Y:=¥+1.

:- or_predicate multi/2.
multi{X,¥) :- Y:=X+X.
multi{X,Y) :— Y:=K*+XsX,

When a goal eyele(Y) is called, the computation proceeds as follows: Goals
p1{[2]X],¥) and p2(Y, X') are executed in parallel in the initial world with color o,
When the goal p1{[2|.X],Y) is called, the first clause of p1 is selected. As for rmulii,
there are two possibilities of clause selection, and depending on each case, two new
worlds with colors ay and oy are created. Goals p2([4|Y'1], X'1) and p2([8[Y'1], X'1)
are invoked in the world with the colors a; and aj. respectively. In this way, the
comnpulalion proceeds.

Suppose that a bug manifests in some world while in another world computation
terminates successfully. In such a case, we can derive some useful information by
comparing their colors, and hence can narrow the hug's location. Starting from the
point, bugs are searched by traversing the whole tree.

'I'hus, our debugging framework is described as follows:

Stage 1: A buggy program is executed as nsual and the history of the whole com-
putation is gathered. Solutions on multiple worlds are presented together with

their associated world identifiers, and a user classify all the solutions into cor-

rect ones and incorrect ones,

Stage 2: Compare the colors associated to the solutions, and detect the branchin
point which causes the difference of getting either a corrcct solution or an

incorrect solution.

Stage 3: Starting from such a branching point, traverse the trec and examine
whether the computation in that world is correct or nol until an incorrect

computation is found.

For some class of bugs, Stage 3 can be skipped, and bugs can be detected only

by examining the finally obtained solutions. We also discuss such a elass.

3 Bug Detection Algorithm

First of all, we make the [ollowing assumption.

Assumption(single OR-invocation)
We assume that at most one OR-goal is invoked in a world.

This assumption assures that the primitive colors contained in a color are totally

ordered,

3.1 Construction of a Reduced AND/OR-tree

Given a buggy program, in the first stage, we execute the program to record the
history of the computation. The history is extracted as reduced AND/OR-tree, In
the reduced AND/OR tree, a node corresponds to the set of goals executed in a
single world, and an arc corresponds to a branching are. Different nodes correspond
te the different worlds . Note that each node includes only one branching point.
The world generated as a result of selecting a branching arc S is said to be the world
generaled by S, and the corresponding node is said to be the node generated by 5.
Reduced AND/OR-tree is constructed as follows.

root node Create the root node.

general node When an OR reduction is carried out in the world W and m new
worlds are created, then m new nodes Ny,... N, are created, and edges are

drawn from the node corresponding to W to Ny, ..., N, respectively.

[ntuitively, the goals contained in the same world are in conjunction, and some
of them are suspended waiting for the OR-reduction. Assume that an OR-reduction
hetween a goal ¢ and clauses €'y, ...,C,, is carried out in the world W, and that
warlds Wy, ..., W, are created. Let &; be a goal contained in W,., Then, G, is a
goal instance of 7 obtained by applying the substitutions in the world W,, where
(+ is either a suspended goal in the world W, or an invoked goal in the world W;
befare the next OR-reduction is carried out.

In case of suspension or failure has occurred, the result is propagated as far as
pussible,

In Figure 2, we show a part of the reduced AND/OR-tree for the example of

eyele,

3.2 Detection of Fatal Branching Points

The second stage of this method is the detection of fatal branching points.

Definition 3.1 (fatal selection, fatal branching point, buggy tree)

Let Cy and O be sets of colors attached to correct solutions and incorrect solutions,
respectively. Also let (P, 5,) € a,a € C; and (P, 5;) € 4,8 & (. If there exists no
element in C, that has (P, S,) as a primitive color and there is at least one (£, 55),
we call P a fatal branching point, and S, a fatal selection. VFor a fatal branching
point, a subtree generated by a fatal selection is said to be the buggy tree for this

fatal branching point.

Similar to the representative world method, solutions on multiple worlds are
presented together with their associated colors, A user classify all the solutions into
correct ones and incorrect ones. Then, fatal branching points are detected according

to the following procedure.

(

.

cycle(Y)
pU[2X],Y)
mulli(2,A)
Y=[AlY1]
plX, Y1)
p2(IAIY1].X)
J

T

It { ™y
malu(2.4) multi(2,8)
4:=2%1 §:=2%2%2
Y=[4IY1] Y=[81Y1)
p2([4IY1].X) pRIYT]X)
wave(4d,Z1) wave(8,71)
X=[Z1IX1] X=[Z11X1]
p2A(Y1,X1) pP2AY1,X1)
pUX. Y1) pL(X,Y1)

N N

waw:{4 3)
3:=4-1

X=[31X1]

p2(Y1.X1)

pl{[3IX1],Y1)
multi(3,A1)
Y1=[A1llY2]
pl(X1,Y2)

pZU_AlIYZ]J'I]_}I

wamm 5)
S:=4+1

X={5X1]
P2(Y1X1)
pL{I5IX1],%1)
multi(5,A1)
Y1=[A11¥2]
pl{X1,Y2)
[':Z{[AHYE] xn

wavc(u 7}
7:=8-1
X=[7IX1]
p2(Y1.X1)
pUITIX1).YT)
mule{7.A1)
Y1=[AliY2]
pl{X1,Y2)

| P2OANY2LXD)

wave(8.9)
O:=8+1
X=[91X1]
p2(Y1.X1)
pl{9IX1],¥1)
maul{9,.Al)
Y=[AllY2]
plXLY2D)
p!{[AIIY‘Z] X]}

~

SN N NS~

Figure 2: Reduced AND/OR-tree for cycle

Let ', and C; be the set of colors attached to correct solutions and incor-
rect solutions, respeclively. Let Cy be {ay,...,a,}. For an arhitrary element

{(P,81),.. . (Pa,Ss)} of Cy, do the following procedure.

Detection of Fatal Branching Points and Fatal Selections
Set 1= 1.
For a pair (I}, 5;), do the following procedure.
Procedure proc, (i)
Set 5 = 1.
For «;, do the following procedure.
Procedure procs(y)
If 7 = m, then terminate with an answer
“F; 15 a fatal branching point and 5; is a fatal selection.”
otherwise
If (P, 5;) € ov;, then do proe,(i + 1).
If not (F;, 5:) € a;, then do proc,(f + 1),

3.3 ‘Traverse of the Tree

The third stage of our debugging is traversing the reduced AND/OR-tree. In this
stage, starting from the fatal branching points, the whole tree is traversed. The
system is taught interactively by a user whether the goal instances in a world are
correct or incorrect. As usual, if a goal instance is an intended one, then a user
judges it to be correct, otherwise, incorrect. For a node N, il all the goal instances
in the world corresponding Lo N are correct, then the node is said to be correct and
denoted by T(NV); otherwise, it is said to be incorrect and denoted by F{N).

For a [atal branching point, let N be the node generated by the fatal selection
at that fatal branching point. Also let N7,... 'N™ be the nodes generated by the

branching arcs other than the fatal selection. Do the following procedure.

Bug Location
(1) Take an arbitrary path from N to a leaf node,

and let the path be No(= N), Ny, ..., Ny .
Set 1 =0.
Procedure(Glancing the buggy trec)
If ¢ = k, then do (3).
Otherwise.
If T{N,) holds,
then increment ¢ by 1 and repeat this procedure.
If F(N,) holds, then do (2).
(2) Set M = N.
Do the following procedure for M.
Procedure (Scarch downwards)
If (M), then terminate with an answer “A bug exists in M."
If T(M),
then for the nodes M1,..., M™ whose parent is M,
do this procedure for each Mi(j = 1,...,m).
(3} Do the following two procedures.
Procedure(Search upwards)
Let a path from the root node to the node N be N, .. A Ne(= N).
Set 1 = 1.
If F{N_:),
then terminate with an answer “A bug exists in N,_,."
Otherwise, increment ¢ by 1 and repeat this procedure.
Procedure(Search outwards)
For all N3(j = 1,. ..ym), do the followings.
Set M = N7
Do the following procedure for M.
If F(M),
then terminate with an answer “A bug exists in M.”
If T(M),
then for the nodes M, ..., M™ whose parent is M

¥

10

Figure 3: Partition of the Tree

do this procedures for cach M¥(3' =1,...,m").

Firstly, in (1), it is checked whether the buggy tree contains a bug or not. Then
the tree is divided into three areas to he searched depending on the case. The first
area A, is the part from the root node to the branching point N. T'he second area
Az is the part from N to the leaf nodes (1. e. buggy tree). And the third area Aj is
the part from N1, ..., N¥ to their leafl nodes (Figurc 3).

In case of (2), bugs exist in the area A3, and in case of (3}, bugs exist both
Ay and A;. In case of (2], it is not determined whether A, contains a bug or not.
Therefore, this algorithm is sound but incomplete,

Note that in the reduced AND/OR-tree, the result of computation (substitution)
in a warld does not effect on a world corresponding to the parent node. Tt is because
the synchonization is performed at an invocation of OR-primitive, and suhstitulion
15 realized as far as possible in a world. Thus, if 7(N) holds, then the bug exists on

N. Conversely, if a bug exists in a world N, then F({N) holds.

11

4 The Class for Which Algorithm Can Be Sim-
plified

Without the assumption of single OR-invocation, the third stage of the framework

for a bug detection is complicated, since there are several ‘next’ branching points.
However, some class of bugs can be found only by checking the colors attached

to the final solutions and need not observe the intermediate nodes. Moreover, we

can ignore the assumption. In this section, we discuss the conditions to be satisfied.

Cond(1) For cach path from the root node to a leaf node, there is at most one

node N which satisfies F(N).

Cond(2) For each branching point, there is at most one node N which satisfies

F{N) in the nodes whose parent is the branching point.

Cond(1) shows that bugs are independent from each other, and Cond(2) assures
that if a bug exists in a world, then there are no bugs in the other worlds which

share the parent node.

Theorem 4.1 Assume that both of Cond(1) and Cond(2) are satisfied. If there

exists a bug, it exists in the world generated by the fatal selection.

Lemma 4.1 Assume that both of Cond(1) and Cond({2) arc salisfied. For a node
N, let M be a parent node and E be an edge which counects M and N. Let P
and 5, be the branching point and the branching arc corresponding to M and E,
respectively. Il F(N), then any solution associated with the color o that contains

{F,5,) is incorrect,
Proof. It is trivial from the first condition. 11

Lemma 4.2 Assume that both of Cond(1) and Cond(2) are satisfied. For a node
N, let M be a parent node and E be an edge which connects M and N. Let P
and Sz be the branching point and the brauching arc corresponding to M and L,

respectively. If TN, then there exists a solution associaled with the color J that

contains (#, Sg) is correct.

12

Proof.

It is proved by the induction on the height A of the tree whose root node is V.
If 2 =1, then from Cond(2), there is at most one node which satisfies F(N') in the
nodes that shares the parent node. Therelore, for all the nodes N1, ..., N™ other
than N, T(N¥) (j = 1,...,m) hold. Consider the tree of height h whose root node
is N. Let N',..., N* be the nodes whose parent is N. Then from Cond(2), there
exists N* such that T(N') is satisfied. Let F be an edge from N to N*. Let P and
S be the branching point and the branching arc beorresponding to N and E,
respectively. By the induction hypothesis, there exists a correct solution associated
with the color #* that contains { P*, §*), where P* and $' are the branching point and
the branching arc corresponding to N and EY, respectively. Hence, from the first
condition, there exists a correcl solution associated with the color A that contaius
both (P, S;) and (P',S). 1
Proofl of the Theorem 4.1

If there exists a bug, then there exists a node N such that F{N) holds. Let M be
a parent node of N and N7,..., N™ be the nodes which shares the parcnt node M.
Also let B, ET, ... , E™ be the edges from M to N,NT . Nm respectively, Let P
be the branching point corresponding lo M,
and S,,Sa,...,5sm be the branching arcs corresponding to E, ET,..., E™, respec-
tively. From lemma 4.1, any solution associated with the color o that contains
(P, 5.) is incorrect. And from lemma 4.2, there exists an solution associated with
the color 3 that contains (P, S5) is correct, where S5 € {Sp,..., Sgm }. Therefore,
I’ is a fatal hranching point and S, is a fatal selection. Thus, the bug exists in the
world corresponding to V. B

In this case, the world generated by the fatal selection contains a bug, and bugs

can be found only by checking the colors attached to the solutions.

13

5 Comparison with Other Works
5.1 Comparison with Representative World Method

We compare the tree-traversing method discussed in this paper with representative
world method, which is discussed in [TT90). The framework of representative world
method consists of three stages: (1) A buggy program is executed, and the history of
the whole computation is gathered, (2) The computation of a representative world
in which the bug manifests is reconstructed using the above history, and (3) Algo-
rithmic debugging is applied to the computation in this world. The underlying idea
is the extraction of an erroneous AND-tree from an AND/OR-tree and application
of well established debugging algorithms to this AND-tree.

Representative world method is naive and widely applicable. If a history of
branching points which the compulalion have passed can be stored, the method can
be applicable to most of AND/OR-parallel logic programming languages, and the
mechanism is not hard o implement .

Iree-traversing method is more sophisticated but less gencral. Without the
assumption of single OR-invocation, reduced AND/OR-Lree becomes complicated.
Further discussion is required for handling general casc.

The assumption of single OR-invocation corresponds to the lazy fork of OR-
predicates. Lazy fork allows al most one invocation of OR-process, while cager
fork allows the simultaneous invocation of multiple OR-processes. Therefore, this
method is applicable to the languages such as Andorra group [HB88] and Pan-
dora [BG8Y], which employ lazy fork of OR-predicates. As for languages such as
ANDOR-II[TTS90], that employ cager fork of OR-predicates, the method is appli-
cable to the restricted class.

Another diflerence is the size of the computation tree (forest). In representative
world method, nodes of a computation forest stores only identifiers of the goals,
clauses, and colors. In tree-traversing method, the nodes stores the goal instances

which reflect the substitution.

14

5.2 Comparison with Algorithmic Debugger

Algorithmic debugging is a declarative debugging method proposed
by Shapiro[Sha83]. Different from the classical tracer-type debugger, it enables
the programmer to locate a bug by answering the query from the system whether
or not the goal instance used in the computation is the intended one. Shapiro ap-
plied it successfully to Prolog, and following his work, several algorithmic debnggers
have been developed for committed-choice langnages [Hun87)[LS88][LT86)[Tak&T]
[TT91][UKar].

Our approach is similar to them in that bug detection proceeds by checking the
goal instances in the computation tree is correct or not. However, in our method,
each node in the tree denotes a set of goal instances, while it denotes a single goal
instance in the case of algorithmic debuggers. Moreover, in our method, substitution
15 the independent operation within a world, and does no effects an the parent node.

Furthermore, in algorithmic debugger, bug detection is incrementally proceeds,
that is, if a bug is detected and corrected, then re-construct a computation tree.

However, in the computation of AND/OR. parallel logic programming languages,
the cost of construction of the tree is so high. [t is desirable that once a Lree
is constructed, bug detection proceeds on the same computation tree, in order Lo

detect as many bugs as possible.

5.3 Comparison with ATMS

In the second stage of the tree-traversing method, we compare colors attached to
solutions on multiple worlds.

Iu the point of propagation of information among possible worlds, there is a simi-
larity with assumption-based truth maintenance system{ ATMS)[deK&86]. In ATMS,
starting from the given fact, forward reasoning is performed, possible worlds are
created depending on each assumption. If some world is found to be inconsistent,
the world with the inconsistent set of propositions is pruned, and finally (maxi-
mal) consistent set of propositions is found to satisfy the goal. ATMS is usually

solved o a bollom-up manner, while the computation tree described 1 this paper

15

is constructed in a top-down manner,

6 Concluding Remarks

We have proposed a bug detection method for AND /OR-parallel logic programming

languages by traversing the computation tree.

There are several advantages in this method.

1. Search spaces for a bug can be reduced.
2. Multiple bugs can be found at the same time.

3. Even if a correct solution is obtained, there may be a bug on this computation.

Such an unexpecled bugs can be lound.

Furthermaore, some class of bugs can be found, only by inspecting the histories
with the resulting solutions. It is much easier than to examine intermediate goals.

The algorithm described here is applicable not only to locate a bug but also to
find the cause of the differences between worlds.

For future works, we try to imprave the algorithm more efficient. To omit the
duplicated observation, the result of observation should be stored in a certain table.
Furthermore, in parallel environment, search for several fatal branching points can
be executed in parallel, which enables not only fast detection of a bug but also

simultancous detection of several bugs.

References

[BG89| R. Bahgat and 5. Gregory. Pandora: Non-Deterministic Parallel Logic
Programming. In Proceedings of 6th International Conference on Logic

Programming, pp.471-486, 1989,

[CaT] K. L. Clark and 5. Gregory 84. PARLOG and Prolog United. In
Proceedings of 4th International Conference on Logic Programming, pp.

927-961, 1987.

16

[deK86]

[HBSS)|

[Hun87}

[LS88]

(LTH6)

[Nai88]

[Sha83]

[Tak#7]

(TT90]

(TT91]

[11'590]

J. deKleer. An Assumption-Based TMS. Avrtificial Intelligence, 1986.

S. Haridi and I. Brand. ANDORRA Prolog - An Integration of Prolog
and Committed Choice Languages. In Froceedings of International

Conference on Fifth Generation Computer Systems, pp. 745-T54, 1988,

M. M. Huntbach. Algorithmic PARLOG Debugging. Tn Proceedings of

Sympositum on Logic Programming, 1987,

Y. Lichtenstein and E. Shapiro. Abstract Algorithmic Debugging. In
Proceedings of 5th International Conference on Logic Programming, pp.

512-531, 1988,

J. Lloyd and A. Takeuchi. A Framework of Debugging GHC. Technical
Report TR-186, ICOT, 1986,

L. Naish. Parallelizing NU-Prolog. In Procecdings of Logic Program-
ming, pp. 1546- 1564, 1988,

E. Shapiro. Algorithmic Progrum Debugging. The MIT Press, 1983,

A. Takeuchi. Algorithmic Debugging of GHC Programs and [ts Imple-
menfation in GIIC, In Concurrent Prolog: Callected Fapers, volume

2, The MI'1 Press, 1987,

K. Takahashi and A. Takeuchi. A Debugger for AND- and OR-Parallel
Logic Programming Language ANDOR-IL. In JCOT TR-608, 1990,

J. Tatemura and H. Tanaka. Debugger for a Parallel Logic Program-
ming Language Fleng. In LNAL-{85, Logic Programming 89, pp.87-96.

Springer-Verlag, 1491,

A. Takeuchi, K. Takahashi, and H. Shimizu. A Paralle] Problem Solv-

ing Language for Concurrent Systems. In M. Tokoro, Y. Anzai, and

A.Yonezawa, editors, Concepls and Characteristics of Knowledge-Based

17

Systems, pp. 267-296. North-Holland, 1990. also appearing as ICOT
TR-418,1988.

[UKar] M. Ueno and T. Kanamori. GHC Program Diagnosis Using Atom
Behavior. In Proceedings of Logic Programming 90. Springer-Verlag, to
appear. also appearing in [COT TR-.

[YARI] R. Yapg and H. Aiso. P-Prolog: A Parallel Logic Language Based on
Exclusive Relation. New generation Compuiing, Vol. 5, No. 1, pp. 79—

95, 1989,

18

