ICOT Technical Report: TR-0835

TR-0835
Net-Oriented Analysis and Design

hy
S. Honiden & N. Uchihira (Toshiba)

March, 1993

& 1093, 1C0OT

Mitg Kokusa Bldg 21F (03134563191 5
" :D | 4-28 Mira 1-Chom:
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Net-Oriented Analysis and Design

Shinichi Honiden
Naoshi Uchihira

Systems & Software Engineering Laboratory,
Toshiba Corporation,
70 Y anagi-cho, Saiwai-ku,
kawasaki 210, Japan

Keywords:

Fetri nets, State Transition Diagram, Data Flow Diagram, Algebraic
Specification, Temporal Logic, Object-Oricnted Analysis and Design, CASE

Abstract

Net Oriented Analysis and Design (NOAD) is defined as three items:

(1) Various nets are utilized as an effective modeling method.

{2} Inter-relationships among various nets are determined.

(3) Verification or analysis methods for nets are provided and they are
implemented based on the mathematical theory, that is Net theory.

Very few methods have been presented to satisfy these three items. For
example, the Real-Time SA method covers item (1) only. The Object-Oriented
Analysis and Design method (OOA/OOD) covers items (1) and (2). NOAD can
be regarded as an extension (o0 OOA/OOD. This paper discusses how
cifectively various nets have been used in actual software development support
methods and tools and evaluates such several methods and tools from the
NOAD viewpoint.

. Introduction

Systematic methodologies and efficicnt support tools play an essential role for
a group of software developers to work together 1o create a large scale
software system, Soltware engineering is intended to establish the technology
to embody an engineering (not a handicraft) approach that will enhance
soltware productivity and reliability. However, so far the results are limited to
the Tower stream ol the software development process such as programming
and quality assurance. In order to increase software productivity, it is
necessary to establish the technology to support the analysis and design phases.

Recently, Computer Aided Software Engineering (CASE) to support the
analysis and design phases has been attracting soltware developers’ attention;
as high-performance workstations become popular, a number of such CASE
tools have been commercialized on them. One of the major characteristics of
these tools 1s the use of various nets as a modeling technique. Various nets
example are data-flow diagram, state transition diagram, and Petri nets.

We deline Net-Oriented Analysis and Design (NOAD) as three items:

(1) Vartous nets are utilized as an effective modeling method.

(2) Inter-relationships among various nets are determined.,

(3) Verification or analysis methods for nets are provided and they are
implemented based on the mathematical theory which is called Net theory.

Very few methods have been presented 1o satisfy these three items. For
cxample, the Real-Time SA method covers item (1) only. The Object-Oriented
Analysis and Design method (OOA/OOD) covers items (1) and {2},

NOAD can be regarded as one of the methods extending OOA/OOD. That is,
it can be defined by the following formula:

NOAD = OOA/OOD + Net theory.

This paper discusscs how effectively these various nets have been used in the
actual software development support methods and tools and cvaluates such
methods and tools from NOAD viewpoint.

First, how various nets are utilized is presented using the Object Oriented
Analysis method (OOA) as an example. Secondly, how analysis and design
activities are performed using various nets in Object-Oriented CASE (QO-
CASE) is explained. Thirdly, how the nets are exploited in the software
development environment for a concurrent system is discussed. Finally, the
problems that should be solved to actually implement the NOAD are
described.

2. Object Oriented Analysis (OOA)

The analysis phase is the first phase of a software life cycle. The analysis phase
starls with anal}:{ing the problems described in a natural language. This
problem description is often ambiguous and incomplete, These ambiguity and
incompleteness are eliminated and at the same time the scope of the system
{including the |‘leﬂd"ll‘}f between the sysiem and the outside world) is
identificd. The problem is better described using certain formal models rather
than in a natural language. Generally, it is necessary to model the static
structure, the event execution scquence, and the data translation,

The OOA uses the object model, the state transition model (a dynamic model),
and the functional model (process model) for the static structure, the event
execution sequence and the data translation, respectively. The purpose of O0A
15 10 analyze the application domain according to the given problem
description and based on these three models, and also 10 produce a
requirements specification that states what, in the application domain, should
be builr as the system. An OBJECT plays the most important role in this task
and therclore becomes the unit (the OBJECT) for modeling. An OBJECT
consists of name, attribute (data), and operation (scrvice or method),

Using the OBJECT, the analysis process proceeds according to the following
steps, although the details may differ depending on individual OOAs.

- Building the OBJECT model

The OBJECT model is composed of individual OBJECTs and the static
relation between them, and is developed based on the Entity-Relationship
Diagram (ERD).

- Building the state transition model

Since an OBJECT essentially has a state, the dynamic behavior of the OBIECT
can be represented using the State Transition Diagram (STD).

Building the data translation model

The detailed behavior ol individual OBJECTs and the message communication
between OBJECTSs are represented using the Data-Flow Diagram (DFD). The
data flow diagram, which is used in the structured analysis (SA) technique
| Demarco78], 1s a diagrammatic description method that enables easy drawing
and mtuitive understanding ol the contents. The SA technique, proposed by
Tom DeMarco in 1978, consists of the data-flow diagram, the mini
specification, and the data dictionary (DD). The description of a system slaris
with drawing a special data flow diagram called the context diagram. Next,
cach process on the context diagram is decomposed into sub-processes to
develop the second level data flow diagrams. The data-tlow diagrams consist
of processes (bubbles). flows of data, and data storages. The SA technique
repeats this functional decomposition on data-flow diagrams to design a
system. Data-flow diagrams are adopted in many CASE tools because of their
high readability and understandability.

Several OOAs have been proposed including Mellor's OOA [Shlear88], Coad's
OO0A [Coad91], and Rumbaugh's OMT [Rumbaugh91]. The first version of
Mellor's OOA was released in 1979 and since then, has been used in the
analysis process in the development of a number of large scale real-time
systems, In the course of its practical use, several improvements were
introduced, and the current version finally came out in 1986. This OOA uses
three models: the information model, the state model, and the process model,
First, OBJECTs are identificd and the static relationship between them is
established using the information model. Next, the state model and the process
model are used (o recognize the dynamic aspects of each OBJECT and to
describe the specification.

The information model is based upon the ER (entity relationship) model, and
regards each entity and relationship as an OBJECT. Candidates for OBJECTs
are tangible items, roles, incidents, interactions, and specifications. Extracted
OBJECTs are reviewed lor their validity as OBJECTSs and at the same time the
altributes are defined for cach OBJECT, Then, the attributes are reviewed to
build a class hierarchy (corresponding to the "is-a" relationship). Meanwhile,
the relationship (corresponding to the R in the ER model) between OBJECTS
15 also detfined using an OBIECT (this OBJECT is called an associative
OBJECT). The OBJECTs and their relationships thus defined are called the
intormation model.

After the information model is defined, changes in the states of individual
OBJECTSs are represented with the state transition diagrams (the state model)
as the second stage of the analysis, Then, the detailed actions in each state of

the state transition diagram are represented with the DFD (the process model).
Fach data store in the DFD corresponds to one of the OBJECTS.

Conventional methods (e.g., the real-time SA [Ward86]) also use the ERD,
STD, and DFD notations. The use of nets in the Mellor's QOOA is dilferent
from that of the real-time SA in that modeling is performed from three
different viewpoints (static relationship with other OBJECTs, behavior within
the OBJECT, and functions of the OBJECT) for the same "OBJECT". Another
difference is that the three models have close relations with cach other. For
cxample, the first step 1s to elicit attributes and attribute values for the entities
that correspond to the objects in the ERD. Next, the attribute that determines
the primary nature of the object is selected to make its changes correspond to
the state changes. These state changes can be represented with the siale
transition diagram. That is, changes in the attributes of an OBJECT in the
ERD are represented with the state transition diagram, which also represents
the internal behaviors of the OBJECTs. Actions that trigger the state changes
ol an object correspond to the arrivals of external messages (by which the
required operations within the OBJECT are selected and cxecuted). Tt is
possible to represent the detailed actions in each state or the detailed actions
prompting the state changes, with the DFD, as with the Mellor's OOA.

It is also known that the Petri nets model is useful for inter-OBJECT or
inside-OBJECT descriptions in the analysis of concurrent/parallel systems,

In summary, various nets have been introduced tor OOA. However, they are
presently used only as tools for the modeling; net theories for various nets are
not yet utilized.

3. How to Use Nets with Object-Oriented
CASE

In this Section, how analysis and design activilies are performed using various
nets in Object-Oriented CASE (OO-CASE) is explained.

To illustrate the OO-CASE, Casc for Object-Oriented Analysis and Design
(COOAD) which is an object-oriented analysis and design tool being developed
al our laboratory is used as an example. COOAD is comprised of the

following four phases.

<Phasc I> : Create an OBJECT configuration diagram.

<Phase 2> : Develop the OBJECT architecture.

<Phase 33 : Develop the OBJECT design.

<Phase 4> : Generale code in the object-oriented language C++.

The input to COOAD is a requirements statement. In <Phase 1>, which
corresponds (o the object-oriented analysis phase, an OBJECT configuration
diagram is created. In this diagram, the "is-a" and "has-a” hierarchies are
defined. Defining a class consists of naming the class, its altribuics,
cnumerating the attribute values, and specifying the operation names.

<Phase 2> allocates OBJECTSs in and out of the system boundary and then
refines each OBJECT. When refining an OBJECT, specific relationships with
other OBJECTs are defined; that is, the OBJECT architecture is constructed.

<Phase 3> refines cach OBJECT in the OBIECT architecture defined in
<Phase 2> based on their relationships. Since the message flow among
OBIJECTs is also defined, an OBJECT in this phase can be regarded as an
instance. Unlike ordinary object-oriented designs in which OBJECTs are
refined at the class level, COOAD refines OBJECTs at the instance level. The
results of this refinement are, naturally, reflected in the information of the
classes represented in the OBIECT conliguration diagram in <Phase 1>,

The OBJECT refincment performed in <Phase 3> corresponds to the
operation refinement. New attributes are added while refining the operations.
The design of an operation is developed from the viewpoint ol handling of
messages received from other OBJECTSs. Before starting the message design, it
15 necessary to elicit all the operations comprising the OBJECT. OBJECTs
have states and changes in these states can be represented with the state
transition diagram. It 1s important to determine how the diagram should be
drawn; in other words, it is important to defline what the state change really
mean. One of the aims of COOAD is to re-use previously created information
as much as possible. When drawing the state transition diagram, we use the
mformation about attribute values which were enumerated in <Phase 1>. This
information for the attributes (often called primary identifiers) which
characterizes the OBJLECT, is provided to the user. The state transition
diagram is developed so that each individual attribute value will correspond to
a ditferent state in the diagram. An action which changes the state in the state
transition diagram corresponds to a operation in OBJECT (Sec Figure 1).

After the operations are elicited, the relationship between the operations is
cxamined wsing the data Mow diagram. In the data flow diagram, a group of
the attributes of an OBJECT is represented as one data store. New bubbles are
also generated in the course of refining the diagram. These bubbles represent
the OBJECT's operations created at the design stage. The data flow between
the bubbles (operations) that belong to different OBJECTSs correspond to the
message between the OBJECTs. Figure 1 shows the screen of <Phase 3>; in
some cases, the bubbles are decomposed in this screen. COOAD will guide the
decomposition using scveral pre-determined rules.

In <Phase 4>, a skeleton of the desired program is generated in C4++,

As mentioned above, COOAD provides several intermediate products
represented by various nets in analysis and design phases. COOAD also allows
various nets to be utilized with each other.

4. MENDELS ZONE

MENDELS ZONE is a soltware development environment [or concurrent
programs [Honiden90, Uchihira87, Uchihira®0a]. The target language,
MENDEL, is a concurrent programming language based on Petri nets. A
concurrent program consists ol a section for its [unctions and one for
svinchronization. The former is written using algebraic specifications and the
iatter using temporal logic [Honiden92]. Also, in MENDEL, the former
corresponds o MENDEL components and the lalter corresponds (o
svnchronization mechanism among MENDEL components. In order to solve
the problems specitic to each formal specification, data flow diagrams are used
tor the algebraic specification and Petri nets for the temporal logic. This
section discusses each of these specifications.

4.1 Generation of MENDEL Components

The algebraic specification method is adopted as a method for describing the
tormal specification: the formal description of the data (low within a system is

eveloped using abstract data types. The algebraic specification method, which
is theorctically based on many-sorted algebra, was proposed around 1975 as a
method for specifying abstract data types. The many-sorted algebra consists of
a family of the same type of data scis (sorts) and a sel of operations on these
sorls. The meaning of cach operation is given by equational logic. The
meanings of the operations are defined based on the concept known as initial
algebra,

An algebraic model which consists of sorts and operations has a close
relationship to the data flow model of the SA technique. Fusing both models
rakes 1t possible to integrate the data specification and the functional
specification, thus compensating the lack of data descriptive power in the SA
technique. [Homiden91] has proposed a description method that allows
designers to describe the specification at any required abstract level, using
recadable models of the SA techmique. It also addresses how (o decompose the
functions.

The SA technique describes a system with a model consisting of processes and
the data flows among them. At this stage, data flow diagrams play a major
role, On the other hand, the algebraic specification plays a major role in
describing the ahstract data types, which 1s a method ol describing a system
with a model consisting of the sorts and the operations on them. At this stage,

=3

signature graphs are used to express the relationships between sorts and
operations.

Figures 2 and 3 show an example of a data flow diagram and a signature
graph. The diagram in Figure 2 represents a sysiem in which five Kinds of
data, a - ¢, Mlow among three processes X, Y, and Z. On the other hand. the
diagram in Figure 3 represents a data type having five kinds of sorts, a - e,
and four kinds of operations, X1, X2, Y, and Z. These two diagrams are inter-
changeable if the arrows and the bubbles are exchanged. However, X must be
divided into X1 and X2. This division is derived from the fact that an
operation in the algebraic specification is defined to return data of one sort as
its return value. The viewpoint of decomposition by output data can become a
cuideline for the functional decomposition in the SA technique.

The differences of these quite similar diagrams are due to the differences in
characteristics between the SA technique and the algebraic specification. In
short, while the data-flow diagram is effective for designing a system while
grasping the entire system, the signature graph is cffective in describing the
nature of data based on the formal semantics (in this case. the semantics based
on the many-sorted algebra), It should be noted that a data tlow diagram is not
cquivalent to a signature diagram. A data flow diagram which can be produced
from a signature graph is limited to a simple one without data storages.
Furthermore, 1t 1s not an intelligible way ol [inding a hierarchy in a signature
graph that can be produccd by converting a data flow diagram.

We therefore proposed a method for describing system specifications by
tusing a readable and intclligible model of the SA technique and formal data
descriptions by algebraic specification, and showed how (o compensate for the
defects of the two lechniques while maintaining their advantages [Honiden91].
In this method, a bubble's operations are described using algebraic
specifications. Figure 4 gives the syntax of bubble specifications in extended
BN

Also, we proved that using the iwo models together by relating them to each
other would yield a clear guideline for the functional decomposition criterion
that had been a problem with both techniques. The signature or equation from
algebraic specifications can be (ranslaled into the DFD form and visually
validated (See Figure 5). In addition, cach bubble in a DFD description is
decomposced according to the decomposition rules until the termination
condition 1s satisfied. Our method defines the decomposition rules and the
termination rule as follows.

(Decomposition Rule 1)

A bubble is decomposed so as to make one operation correspond Lo one output
data item. Since an algebraic specification defines the operation in the form of
a function, returncd data is limiled to onc type. Therefore, to describe an

algebraic specification, a bubble is decomposed so as to generate only one
output data type.

(Decomposition Rule 2)

Decomposition is done based on the description in the right hand part of an
eyuation. The characteristics of a bubble's operation are expressed by an
equation. It 1s assumed that the expression in the right hand part of an equation
expresses how the operation works, and at the same time, expresscs the
decomposition of the operation. For example, equation A(x, y)=D(B(x),C(y))
indicates that A is decomposed into a combination ol three operations B, C, D,
and means that B processes input data x, C processes input data y, and their
results are used as input data to D.

(Decomposition Rule 3)

A data store corresponds to an object. The syntax for an object is also shown in
Figure 4. Data corresponding to an internal statc of the system and the
operations on the data such as read and update are grouped in the form of an
object. Decomposition on such operanions is distinguished from other
decompositions.

(Decomposition Rule 4)

A bubble is decomposed so that each bubble accesses only one data store. When
the functional decomposition is completed down to the lowest layer, operations
dircetly accessing one data store are grouped to form an object. This object is
uniquely determined since each operation accesses just one data store.

{Termination Rule)

When the right hand part of an equation in a bubble consists of primitive
operations or recursive functions, the decomposition of the bubble is
terminated. A recursive function is not decomposed anymore because it cannot
be represented via an ordinary DFD. From our experience, a recursive
function appears in a lower-level DFD.

Lsing above rules, we deflined a detailed specification process. Figure 6 shows
the whole specification process and Appendix A gives an explanation of each
siep.

Functional decomposition on DFDs is repeated according to the above
decomposition rules until the termination condition is satisficd. The MENDEL
components are extracted based on object-oriented design concepts; generated
MENDEL components arc stored in a component library.

4.2 Generation of Synchronization Mecchanism among
MENDEL Components

This section discusses a component reuse sysiem which retrieves and combines
e MENDEL components stored in a component library, to generale a larget
MENDEL program [Uchihira87, Uchihira90a]. A MENDEL program
ccnerated simply by combining the components (such a program is called a
body-part) satisfies the functional requirements but does not handle
svnchronization. Consequently, it may cause a deadlock. To compensate for
this deficiency, a synchronization specification (such as a deadlock-free
mechanism) is described based on the temporal logic and, to satisfy the
requirement, a part (called the synchronization part) that controls the
synchronization between components is automatically generated using the
thicorem prover. Since the validity of each component is guaranteed, a
MENDEL program generated by combining the body parts and the
synchronization part is also assured of satisfying both of the function and
svnchronization requirements. The MENDEL program thus generated is
cventually compiled into KL1 code to execute on a parallcl machine.

4.2.1 Generation of Body Part

Fach MENDEL component can be represented with Petri nets. The
combination of components is done with the Petri nets editor (See Figure 7).
MENDELS ZONE provides the component management browser and the
component combination aid subsystem, GARNET, as support lacilities for the
component retrieval and combination phase (the body part generation phase).

1) Component Management Browser

It manages and retricves the external interfaces of individual components and
displays the components from several viewpoints.

i2) GARNET

It selects candidate components to be combined with each other by examining
the syntactic and semantic consistency according to the data specifications
(represented with a semantic network) given lor the external interfaces of
ndividual components.

4.1.2 Generation of Synchronization Part

When combining components in the body part generation phase, the data
consistency between components was of primary concern; no consideration
was given to their synchronization. It may lead to problems such as deadlock.
To avoid such problems, the synchronization part is gencrated by describing
the synchronization specification with temporal logic.

(1) Temporal Logic and Tableau Method

10

Temporal logic stems from classical logic, extended by adding the temporal
operators to handle time. Linear time Propositional Temporal Logic (LPTL)
has been adopted for the synchronization part. The LPTI. allows the following
descriptions:

- presence or absence ol a4 deadlock (e.g., action A occurs any number of
limes.),

- order of actions (e.g.. action B occurs following action A.), and

- prohibition of actions (e.g., Once action A has occurred, action B will never
OCCur.).

The tableau method, a theorem prover of the temporal logic, is available for
generating the sequence of actions in a concurrent program that satisfies the
specifications described with the temporal logic.

(2} How to Generate The Synchronization Part

The structure of the body part is extracted as Petri nets. The synchronization
part is formulated as a procedure which generates the transition firing
sequence of the Petri nets so that the Petri nets extracted from the body part
will satisfy the specifications described with LPTL expressions. [Uchihira90b]
shows that there is an algorithm to generate, from given Petri nets and the
temporal logic, a firing sequence which satisfies both of them. This algorithm
is an extension of the tableau method. The generated synchronization part is
represented by a collection of all the firing sequences which satisfy both the
Petri nets and temporal logic,

5. Conclusion

i this paper we have discussed how effectively various nets are used in the
actual soltware development support methods or tools,

We evaluate such methods and tools from the NOAD viewpoint. In order to
implement the NOAD based on OOA/OOD, OOA/OOD should adopt various
niets which have the verification or analysis method based on net theory. Next,
QOA/OOD should be re-constructed using the adopted nets as modeling
echniques. Finally, the range of the verification or analysis based on net
theory should be determined. In order to increase this range, some other
lormal method is required in addition to net theory. Thercfore, the
combination of net theory and other formal methods is also applicable.

As for the COOAD method described in Section 3, we are investigating the

dapplication of algebraic specifications and its verification methods to the
various nets in order to increase the verification range.

lt

We studied the combination of net theories and other formal methods in
MENDELS ZONE, but did not reach the phase where net theory was utilized
effectively.

Acknowledgements

The authors would like to thank Professor Kenji Onaga of Hiroshima
University and Professor Sadatoshi Kumagai of Osaka University who
originally presented the concept of Net-Oriented Analysis and Design. This
research has been supported in part by the Japanese Fifth Generation
Computer Project and its organizing institute [COT. The authors are grateful
to Seiichi Nishijima and Yutaka Ofude of Systems & Software Engincering
L.aboratory, Toshiba Corporation, for providing continuous support.

Reflerences

[Coad91] P.Coad, E.Yourdon, Object-Oriented Analysis: Second Edition,
Prentice-Hall. 1991

[Demarco78| T.DeMarco, Structured Analysis and System Specification,
Yourdon, New York, 1978

|Honiden90] S.Honiden et al., An Application ol Structural Modeling and
Automated Reasoning to Real-Time Systems Design, The Journal of Real-Time
Systems, Vol.1, No.3, 19910)

[Honiden91] S.Honiden et al., An Integration Environment to Put Formal
specification into Practical Use in Real-Time Systems, Proc. of the 6th
lntermational Workshop on Software Specilication and Design, 1991
[Honiden92] S.Honiden et al., An Integration Method of Real-Time SA and
Object Onented Design Using Algebraic and Temporal Specifications, Trans.
1PSJ, Vol.33, No.2, 1992 (in Japanese)

{Rumbaugh91] J.Rumbaugh et al., Object-Oriented Modeling and Design,
Frentice-Hall, 1991

{Shlaer88] S.Shlaer, S.J.Mellor, Object-Oriented System Analysis: Modeling
the World in Data, Prentice-Hall, 1988

it/chihiraR7] N.Uchihira ct al., Concurrent Program Synthesis with Reusable
Components Using Temporal Logic, Proc. 11th COMPSAC, 1987
[Uchihira90a] N.Uchihira et al., Synthesis of Concurrent Programs:
Automated Reasoning Complements Software Reuse, Proc. 23th HICSS, 1990
|Uchihira90b] N.Uchihira et al., Verification and Synthesis of Concurrent
Programs Using Petri Nets and Temporal Logic, Trans. IEICE, Vol.E73,
No.12, 1990

(Ward86] P.Ward, The Transformation Schema : An Extension of the Data
Flow Diagram to Represent Control and Timing, IEEE Trans. Soft. Eng.,
No.12, No.2, 1986

12 —

Appendix A. Specification Process

Step 1: 1/O data between the target system and its outside world is specified in
a context diagram.

Step 2: The bubble expression is specified for the target system. Input and
output data for the outside world are described in the inSort and outSort
entries respectively.

Step 3: According to Decomposition Rule 1, one output data item for the
bubble is selected, and all input data items that are expected cffect that data
item are selected. An operation having those input data items in its domain and
having the output data in its range is described by giving it a name in the opns
entry for the bubble. In this case, il the introduction of an intermediate data is
required, it is assigned an appropriate name and described in the locSort entry.
Step 4: A DFD is created; each operation is used as a bubble subprocess and
the I/O for each operation is used as the data flow. In this case, if any data
store exists in the diagram, according to Decomposition Rule 3, it is
intentionally described as an object, and all the subsequent operations that
directly access the data store are defined in the object,

Step 5: The DFD is cxamined; any missing parts are added to the diagram. If
there arc none, proceed to Step 7.

Step 6: The corrections made in the diagram in Step 5 are reflected into the
bubble description.

Step 7: The decomposed bubbles are created from the original bubble's
operation.

Step 8: If the corrections made in Step 6 cause several output data items to be
generated, return to Step 3 and carry out the functional decomposition again.
Il every bubble (opcration) has one output item (in the opns entry) and no
Imore corrections are required, go to Step 9.

Step 9: The relation that exists between the input data and output data for each
cperation is examined. At this point, the function for cach operation is defined
i the egns entry as an equation.,

Step 10: If the equation in the egns entry for the operation having the name of
e bubble itself 1s expressed as a rccursive function, the bubble is not
decomposed any more, If the equation is expressed as a non-recursive function,
according to Decomposition Rule 2, a DFD is created.

Step 11: If the equation described in the egns entry dircctly accesses the data
declared in a object, the system registers the cquation in the object as a data
access operation. Thus, the operations on the data defined in the object are
entracted.

Step 12: If all operations other than the primitives are already defined in the
eqns entry and there are no more bubbles to he decomposed. go to Step 13.
(Ctherwise, go to Step 5.

Step 13: Every operation is joined to the appropriatc objects.

- 13 —

<object>n= object:<object name>
sort;<sort name list>
opns:<oplist>
egns:<eglist>

= ubblez::=bubble:<bubble name=
inSort:<sort name list>
outSort:<sort name list>
locSort:<sort name list=
opns:<oplisi>
eqns:<eqlist>

< rhject name>:=<namc:>

<.bubbl¢ name>::=<name>

<norl name list>:=<name list>

<oplist=i=(<name list>:[<name list>] -> <name>)*

<:qlistsi=(<term>=<ierm=>)*

<sme hst=i=[<name>.]*<name>

F.eure 4: Object and bubble syntax

— 14

Figure 1: MMI example of COOAD
Figure 2: An cxample of a data flow diagram
Figure 3: An example of a signature graph

FFigure 5: An algebraic specification and its DFD translation in
MENDELS ZONE

Frgure 6: A detailed specification process
(Note: A directed straight hine indicates data flow,
a directed dashed line indicates conditional control flow.)

Figure 7: MENDEL components represented with Petri nets in
MENDELS ZONE

avooD Jo adwexa [y 11 un3ig

1T _T¥!

CIERIE|

um i
ELL G ERLE] m

T 2wy - A
Viapl ek v L5hse | m
—_ (I ' ._-I.._-._.n“..r [bl an/\l. bhbad m..m - s |

&£FLTOLS "EY~TC =P, Mo (Zic (I2@ (Fiie
- MA@ 'Cr =T qHL.I...
T LY ey T =

A 6 TGk 1Y -

1o —

Figure 2: An example of a data flow diagram

Figure 3: An example of a signature graph

17

<object>::= object:<object name>
sort:<sort name list>
opns:<oplist>
egns:<eqlist>

<bubble>::=bubble:<bubble name>
inSort:<sort name list>
outSort:<sort name list>
locSort:<sort name list>
opns:<oplist>
eqns:<eqlist>

<object name>::=<name>

<bubble name>::=<name>

<sort name list>::=<name [ist>

<oplist>::=(<name list>:[<name list>] -> <name>)*

<eglist>:=(<term>=<term>)*

<name list>::=[<name>,]t<name>

Figure 4: Object and bubble syntax

[-FT-] elgech wondow

dukm g ject Wi Ago.
datwlb ject : [FTBut Mo | Taar Teorhal margan Fargen
LIFTStake Enba | enTypal nawl | ignall
sort ! I_E I —t = R —
LIFTStata | e 1
L ! b
L5 ¥
1 r
amar [ABET I
glan Fota
) |
. |
un] LIFT 1 @ nar
Lo] Bulii_’— gHas
L - 1
ob jact skaltan window big i
autSart 3
LIFTEButtorlLamnp
FloorButtonlano
srargentHapsase
Mviﬁl.g"-nl
locBart =
LIFTState
opng *

LTFTCONT (LIFTHa, LIFTBut tenNo oF loarNo s FlearBut tonTypeenergantSignal cenargentCancel =»LIFTEUL torlang . FlaarBut

LIFTButtonCoantrol sLIFTMe L IFTRUE banba L 1FTStata- 3L IFTBut torlamp
FloarBublbonControl :FloorMo FloorButtonType LIFTSEnta-3FlasrBuk bonlenn

arargHessagelransnitiemargant3ignal-reme rgentMassnge
LIFTHovmnant Indicate i LIFTHo LIFTBut tonMo .LIFTState=dnovaSignal .LIFTState
FloorMowvenentIndicata:FlaarMe.FleerButtenTypa L IFTStata-snoveSignal JLIFTState
energitetelontrol iomergenktSignal->LIFTState
snarglancn]lProcessienargantCancal -3LIFTStats

LTI

Figure 5: An algebraic specification and tranlated into DFDs in
MENDELS ZONE

SA

step1

step2

context diagram

step4

step10
I

step3

bubble's operation
description

modified bubble ! |
description
1r1j T

Algebraic specification

bubble description

P

step?

decomposed bubble
description

BsssrEsLEREREEEEE

stepi3

step9

bubble’s equation
description

Figure 6: A detailed specification process

(Note: A directed straight line indicates data flow,
a directed dashed line indicatc%; conditional control flow.)
— El. —_

EXTERM mtiribute wxit § Too Merur IO tal date wnnguts willity wuit
BIND clasr ersate flash garrat vtilite it

slm_la] Feupart_syi] refresh GIIERN tull GEED) |

pim_sute?f
Ty

L | BRARY big search wdib

Fligaypstem &

Trana B ETABABFRT
Ereasp E LreaREFEF

dde_x ¢t DDC tabl _F b te.s
mm | k

sxpafEi_i¥k v Expare: £

I atuotil

satoutid

TS oclear save doit exit

demaln ([slm_lin, 3im_wu
L]

O (3 lm_1m) tal 20 (n Im_ln}
O {pim_vutl
tel 200 (s lm_sut}

tulz
®; fhow TEL sxrinegi DO (aim_im)

Figure 7. MENDEL components represented with Petri nets in
MENDELS ZONE

