_ICOT Technical Report:; '_I'_H70833__

Th-sids

Rules Representing Two Types of Epistemic

Statements

by
N. Iwayama

March. 14993

& 1993, 1ICOT

Mita Kokusw Bldg. 21F (03)3456-3191 —5

| [ : D | 4-28 Mita |-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Jupan

Institute for New Generation Computer Technology



Rules representing two types of epistemic
statements

Noboru IWAYAMA

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan
phone: +81-3-3456-2514, fax: +81-3-3456-1618
email: iwayama@Qicot.or.jp

Abstract

We propose a new semantics for a variant of Moore's autoepistemic
logic, GK, defined by Lin and Shoham, By using the new semantics,
we can describe undefinedness as a certain state in an agent's belief set.
We emphasize that our semantics does not use three-valued interpre-
tations but two-valued ones. Our new semantics reduces a drawback
of Lin and Shohams' semantics in translating Reiter's default logic
into GK formulas. Logic programming is captured in GK through
the new semantics, For normal logic programs, the semantics of GK
coincides with Przymusinski's stationary semantics. Even though a
logic program has a partial model, we can check whether integrity
constraints are satisfied in the new semantics of GIK.

1 Introduction

Moore’s autoepistemic logic is a logic for modeling the beliefs of agents who
reflect on their own beliefs, and formalizes the beliefs of rational agents in
stable expansions by Stalnaker and Moore [Moore85]. They call a belief set

5 stable if it satisfies the following three properties:

1. 5 is closed under first-arder consequence,
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2. If ¢ € 5, then L¢ € 5, and
3. g8, then Lo € 5,

where an expression L¢ means that an agent believes ¢. According to stable
expansion, all propositions are either believed or not helieved. Namely, if
we adopt the view that the belief states of the rational agent are formalized
in the stable expansions, the agent should decide whether she knows every
matter in the world, However, we cannot hypothesize that an agent has
such a strong ability, because she may answer, for some proposition, that she
cannol decide whether she knows or nol. Therefure, iL s more appropriale
to formalize the possibility that the agent reserves her belief state.

Przymusinski |Przymusinski89) introduced the three-valued autoepistemic
logic to investigate the relationship among major non-monotonic formalisms.
In the proposed auloepistemic logic, the “undefinedness” of propositions is
represented in a meta-logical way, that is, each proposition may be assigned
to one of three possibilities — true, false, or undefined. We can regard the
truth value of “undefined” as reserevation by the agent.

Lin and Shoham [Lin92| argue that there are two kinds of beliefs involved
in the autoepistemic reasoning process; the beliefs assumed by the agent and
the new beliefs derived by applying the rules in a fixed helief set. Recause,
in Moore's autoepistemic logic, all beliefs in the statement of a rule are
assumed, derived beliefs are meta-logical in the logic, and cannot be referred
to in the language. Therefore, they proposed a new epistemic logic, called
GK, in which both kinds of heliefs are explicit. They directly introduce
two model operators in GK, one for knowledge (K}, which corresponds to
derived beliefs, and the other for assumptions {(A), which corresponds to
assumed beliefs. They define the semantics, called preferred models, hased
on a preference relation over Kripke interpretations. They do not mention
the possibility of agent’s reservations, namely, “undefined” propositions.

In this paper, we propose a new semantics for the epistemic logic, GK.
By using the new semantics, we can describe undefinedness as a certain state
in an agent’s belief set. We emphasize that onr semantics does not use three-
valued interpretations, but two-valued ones, although Przymusinski did use
three-valued interpretations.

A proposed semantics has many excellent properties related to Reiter's
default logic and logic programming. The property of the semantics to be



argued first is that the semantics avoids a drawback of Lin and Shohams'’
semantics. Lin and Shoham [Lin92] showed a translation of default theories
into formulas in GK, and achieved a coincidence of default extensions for a
default theory with the semantics of the translated formulas in GK. However,
this means that the sciantics has drawbacks in the default extensions. For
example, any default theory containing the default (: =p/p} and no other
defaults in which the proposition p occurs has no extension. Its translation
into GK, —=Ap O Kp, has no preferred model. The new semantics proposed
here (and the relevant translation of default logic) does not have such a
drawback.

Our new semanties for the epistemic logic contributes to the study of
semantics for logic programming. Bidoit and Froidevaux [Bidoit91] showed a
correspondence between Reiter’s default logic and logic programming. This
correspondence provides us with a correspondence hetween the epistemic
logic GK and logic programming. With this relation between GK and logic
programming, for normal logic programs, our semantics for OK coincides
with the stationary semantics proposed by Przymusinski [Przymusinskil].

Another contribution of this work Lo logic programming is involved with
integrity constraints. There is much work that discusses the semantics of
logic programming with integrity constraints. In previous work, the under-
lying scmantics for the logic programs was a semantics which allows only
total modcls, because it is not easy to consider the satisfaction of integrity
constraints by a semantics which allows partial models, or “undefined” propo-
sitivns. Since, in this paper, we translate integrity constraints into GK for-
mulas as rules, we can deal witl inlegrity satisfaction in terms of our new
semantics of GK. Therefore, we can distinguish unsatisfaction of integrity
from the existence of undetined propositions, and can see that our semantics
will be a useful formalism for applications such as deductive databascs and
diagnosis,

This paper is organized as follows. We define the logic GK, which is
first defined in [Lin2]. Then we define a new semantics for GK. In Sec-
tion 4, we describe the translation of Reiter’s default logic into QK. We
discuss the contributions of GK Lo logic programming in Sections 5 and 6,
We compare our results with Przymusinska and Przymusinskis’ stationary
expansions [Przymusinska81] for default logic.



2 Language Definition

In this section, we refer to the preliminary definitions from [Lin92).

The logic GK is a proposilional one, augmented with two modalities, K
and 4. Well-formed formulas are defined as usual. Intuitively, K¢ means
that  is known or believed, while 4y means that ¢ 18 assumed. The 1m-
portant point to note is that, although the distinetions between Ky and
are not important in [Lin82], we should distingnish the two to identify the
undefinedness as an agent's hehef state,

A Kripke structure is a tuple (W, r, [y, 4], where 117 is a nonempty set,
7(W) is a truth assignment to the primitive propositions for each w € W, and
Ity and 17,4 are binary relations over W (the accessibility relations for K and
A, respectively). A Kripke interpretation M is a pair (W, r, Ky, Ka), w),
where (W, m, Ky, H4) is a Kripke structure, and w € W. We call w the actual
world of M.

An mterpretation M satishes a formula o if  is true in the actual world
of M. Formally, the satisfaction relation “f=" between Kripke interpretations
and formulas is defined as follows:

o ((W,m By, Ra)w) =@ iff m{w)(p) — 1, where p is a primitive propo-
sition.

e MEw Aps iIF M =, or M =y,
e M = - iff it is not the case that M = .

({(W,m, Rge, Ra)w) E K ill ((W,n, Rg,Ra) ') o foranyw' € W
such that {w,w') € Rg.

((Wom, R, ), w) = Ap iff ((W,m, g, 1a),w') |= @ for any w' € W
such that (w,w') € R 4.

We say that a Kripke interpretation M is a model of a set of formulas S
if M satisfies every member of §. We define the [ollowing for each Kripke

interpretation M:
K{M) = {¢|M | Ky, is a base formula},

A(M) = {@|M | Ag.y is a base formula},



B(M) = {¢|M | ¢,y is a base formula},

and, o
K{M) = {g|M ¥ Ky, ¢ is a base formula},

A(M) = {p|M [ Ay, is a base formula},
B{M) = {oIM J£ ¢, ¢ is a base formula},

where a base formula is one that does not contain modal operators.

3 Proposed Semantics

In this section, we provide the semantics for GK. Our semantics is not new,
becanse we obtain the semantics by modifying the semantics proposed by
Lin and Shoham. Thus, we first show the semantics by Lin and Shoham.

Definition 3.1 Let M| and My be twe Kripke interpretations. We say that
M, s K-preferred over My, written M, Cg M.y, 1if:

I A(M,) = A[M:) and

2 K(M,) C K(M;).
A model M of 5 15 K-mimimal if there is no other model M’ of § such that
M Cg M.

Lin and Shoham defined a semantics for GK as follows,

Definition 3.2 [Lin92]
Let 5 be a sef of formulas, and M bhe o Kripke interpretation. We say that
M 15 a preferred model of 5 if:

I. M is a K-minimal model of § and
2. A(M) = K(M).

The semantics proposed by Lin and Shoham is concerned only with be-
liefs, not propositions {or formulas that does not contain any modal oper-
ators} derived under the helief set. Namely, they do not pay attention to
whether the propositions are derived under the belief set, if the assumed he-
liefs coincide with derived beliefs. As mentioned in Section 1, for Moore's
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auntocpistemic logic, stable expansion has been considered as the semantic
framework [Moore85). In stable expansion, a belief set should be consis-
tent with the derived propositions. We incorporate this point in our new
semantics for GK.

Definition 3.3 Lef M, and My be two K-munimal models. We say that M,
1s B-preferred over My, written My Cp Ma, if:

1AM — A(M:),
2. K(M,) = K{M), and
3. B{M;) € B{Ma).

A model M of S s B-minimal if there is no other model M' of 5 such that
M Cp M.

Definition 3.4 let S be a set of formulas, and M be a Kripke interpretation.
We say that M is an acceptable madel of § if:

1. M is a B-minimal model of 5,
2 AMYC K({M), and
J. B{M) — A(M).

In acceptable models, If the agent assumes some proposition, then the
agent should know the proposition and the proposition should be derived.
O the other hand, if the agent does not assume some proposition, then the
proposition mnst not be derived. But, it is possible that the agent knows the
proposition which the agent does not assume. For example, {=Ap D Kp} has
the acceptable madel, {=Ap, —p, K'p}. (She knows the "unjustified” propo-
sition or she cannot determine the belief with respect to the proposition.)
The proposition p in this example is regarded as “undefined”. In short, base
farmiilas in an acceptable model M are divided into the following 3 types:

Pos(M) = AIM)NK(M),

Neg(M)y= A(M)N K(M), and
Unde (M) = A(M) 0 K(M).



We note that A{M) N K(M) = @ because A{M) C K{M). We say that an
acceptable model M is partial if Unde [{ M) # 0, otherwise it is total.

To close this section, we show that preferred models are special cases of
aeceplable models,

Proposition 3.1 Let S be a set of formulas, and M be a Kripke interpre-
tation. M 15 an acceptable model of S of M 15 a preferred model of 5.

4 Default Logic Translated in GK

In this section, we describe the translation of Reiter’s default logic into GEK.
First, we show the result by Lin and Shoham [Lin92] which provides the
correspondence between preferred models and Reiter’s default extensions.
Then, we expand their result in terms of our new semantics. The default
logic used here is restricted to propositional logic.

The foliowing definitions show Reiter’s defauit logic [Reiter0]. A default
theory A = (T, W} where D is a (possibly infinite) set of defaults and W is
a first-order theory. The defaults are expressions of the form, p: g1, ..., g./7,
where p,q,...,q, and r are first order sentences.

Definition 4.1 (Gamma operator) [Reiters0]
Let A = (D, W) be a defaull theory and E' be o first order theory. We denote
the smallest first order theory us Ua(E) such that

e NA(E) 2 W,
e UalE) 1s closed under taulological consequence, and

e [f(p:qu...qnfr) €D, pe sll) and ~gy,...,—gq, € E, thenrt €
CalF).

Definition 4.2 {Default extensions) [Reiter80/
Given a default theory A, E is a default extension iff E = CalE).

Lin and Shoham [Lin92] showed that the set of formulas in GK, into which
a defanlt theory is translated, has preferred models which are equivalent to
the default extensions for the default theory. They translate a default theory
A = (D, W) into the following set of formulas Agg in GK:
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I. f pe W, then Kp € Agx and
2 I {p:qrynge/r) €D, then KpA -Ad-g A A —A-g, D Kr € Agk.

Theorem 4.1 [Lin¥2]
A consistent set of E is a default extension of A off there 15 a preferred model

M of Agg such that E = K{M}.

We match the above translation with our semantics provided in the pro-
vious section. We translate a default theory & = (D, W) it the following
set of formulas AL in GK:

. If p € W, then {p, Kp} € ALy and
20 {p:gy,.... q./r) €D, then

KpA=d=g A A=Ay, O Kr € Any, and
pA=Kag A ARy, Dr e AL

We characterize default extensions of a default theory A by the accept-
able models of Af . Here, we show the example mentioned in Sectionl: a
default thoery A — {{: =p/p}, @) has no extension. Lin and Shohams’ trans-
lation Agx = {=Ap O Kp} has no preferred model. On the other hand,
our translation AL, = {=Ap 2 Kp,-p O Kp} has an acceptable model

{=Ap, -p, Kp}.

5 Correspondence to Stationary Semantics

[n this section, we consider the translation of logic programming into GK
formulas, Because we can see the natural correspondence between logice pro-
gramming and default theory ([Bidoit91]), we map logic programming into
default theories, and the default theories into GK formulas. As a result, ac-
ceptable models provide us with a semantic tool for considering the semantics
of logic programiming.

lere, we refer to the terminology used in logic programming. An erfended
logic progrum is a (possibly infinite) set which consists of the following rules
of the form:

o — 1, Ly ometl e, ..., notly,
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where [, are literals, which are either atoms p or “classically negated” atoms
-p. and n > m > 0. In this paper, we consider only (possibly infinite}
propositional programs®.

Let P be an extended logic program and T be the corresponding sct of
defaunlts of the form for each rule in F:

“'1 ALY _"!ru+1:~--s_"iu,l'lls[br

T'he default theory A(P} = (D, @) is called the translation of the extended
program into default logic.

Based on the translation of default logic into GK provided in the previous
section, we show the natural translation of the logic program into the set of
formulas in GK. A normal logic program P is translated into AL, (P) =
Ak Al P)O A5 P), in which A% 4(P) contains the following formula in GK
for each rule in P:

Klyanon K, A “.4;11;4.] ML A=Al D K,
and A% p{F) contains the following farmula in GK for each rule in P:
'{] M Em M _'ﬁ'!'m-i-[ Mo A thfi: - Ili.l‘

[ the following, we consider normal logic programs which have no clas-
sically negaled atoms in thier programs, namely, sets consisting of rules of
the form:

Po = Proyeees Pons ol LR [P ﬂ'ﬂfpu-

Przymusinski proposed sfationary semantics [Przymusinskifl]. In [Brogid1],
Brogi et al. showed that stationary semantics is equivalent to the complete
scenario | Dung91] for normal logic programs. We see that acceptable models
are useful for investiging logic programming, because the following theorem
gives a one-to-one correspondence between stationary models and acceptable
maodels for normal programs.

Theorem 5.1 Stationary Semantics = Acceptable Models

M s a stationary model of a logic program P 4f M 15 an accepiable model
of ALg( ) such that B(M) = {AIM E A, A is an atom}.

'"This way of placing restrictions on programs is well known in the literature.



We can prove theorem 5.1 by using the following definition and two propo-
sitions. Note that the following definitions and proposition 5.1 are quoted
from [Przymusinska0l}.

Let P be a program and let us use H to denote its Herbrand base, i.e., the
set of all ground atoms. Any partial model M of P can be identified with
a pair < T; F > of disjoint subsets of H in which I" contains those atoms
which are true in M and F contains those atoms which are false in M. Let
us use N to denote the complement H — F of F| 1.e., the set of all atoms
which are not false. For our purposcs it is more convenient to view a partial
model as a pair < T2 N > of subsets of H so that T € N, T countains those
atoms which are frue in M, and N contains those atoms which are not false
i A

The following is a definition of Gelfond-Lifschitz’ transformation [Gelfond88]
for nermal logic programs.

Definition 5.1 Let P be a normal logic program and M be a set of ground
atoms. By the quotient of P modulo M we mean the new posilive program
% obtained from P by:

e Removing all rules in P which contain negative literal notp n their
bodies with p € M ond

e Deleting all negative literals from the remaining rules in P.

Let us use LEAST(F) to denote the least model of a positive program
ol P, Preymusinska and Przymusinski showed the following proposition in
[Przymusinskadl].

Proposition 5.1 Let P be a normal logic program. A partial model M =<
T:N > s a stationary model of P iff the following equalities hold:
P

N = LE‘AST{;) and T = LEAST{E :

Proposition 5.2 Lel P be a normal logic program and AL (FP) be its trans-
lation.

I, For a model M of AL (P), M 15 a K-minimal model iff the following

equality holds: p
.:I‘i'[ﬂv’f:l - LEA.&T{W .
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2. For g K -mintmal model M, M is o B-minimal model M ff the following
equality holds:

F
B(M) = LEAST{W}.

Sketch of Lhe proof:
1) Let Mp be a K-minimal model of ALg(F) and Mpjg 4 be a K-minimal
model of Aj ,(P) such that A{Mp) = A Mpiga;)-

K{Mp) 2 K(Mpga) becanse P 2 P(KA). If there is a formula Ky €
K{Mpg) — K{Mpiga ), then it contradicts the K-minimality of Mp because
we can make K{Mp) smaller by removing K¢ lrom K(Mp). We conclude
that K(Mp) — K(Mpxa). [t follows that Mp k4, 1s a K-minimal model iff

K(Mpxa) LEA.HT(A{MP‘HM]
{rom the delinition of moedule and theorem 3.5 in {Lin92|, in which the con-
struction of a model corresponding to I' operator in Reiter's default theory,
gives K-minimal model.

2) Let Mp be a B-minimal model of AL (FP) and Mpik g, be a B-minimal
deElﬂfﬁ}:—B[P} such that ﬂl{l‘lf}!] = A(J’Hruﬁﬁp} and K(Mj:) = Rr{;"'fpgxg]].
We conclude that B{Mp) — B{Mp gp,) in the same way as in 1. It follows
that Mp i 5, is a B-minimal model iff

P

BiMpicm) = LEAST (s

from the definition of modulo. £

In the following, we consider extended logic programs. Although the ac-
ceptable models of translated formulas for normal logic programs correspond
to the stationary semantics, such a correspondence does not hold for extended
programns, Lel us consider the following program from [Przymusinski9l):

p—q

p = —q.
The stationary model implies that p is true, because, in stationary seman-
tics, programs without negation-as-failure literals are essentially viewed as

classical theories. On the other hand, the acceptable model does not imply
that pis true.

11



6 Translation of Logic Programs with In-
tegrity Constraints into GK

In the previcus section, we discussed the relationship hetween the station-
ary semantics of logic programs without integrity constraints and acceptable
models of their translated formulas. In this section, we discuss the case where
programs have integrity constraints.

Integrity constraints in logic programming represent conditions which
should be satisfied in the model. Based on the translation provided in the
previous section, we are able to distinguish the following two situations in
aceeptable models of translated formulas of programs:

e there is a proposition such that its truth valne is undefined and
o there is a integrity constraint that is net satisfied.

As far as the author is aware, no previous work treats the above two situations
separetely,

The formal definition of integrity constraints is as [ollows: a set of integrity
constramnts of the form:

b, oty el

where [; are literals, which are either atoms p or “classically negated” atoms
—p, and n > m = (.

The translation of integrity constraints is very strajghiforward. A set of
integrity constraints in program P is translated into 1Cqr(P) = ICKa(P)U
{Ckp(P), n which ICk4( P} contains the following formula in GK for each
Integrity constraint:

KIA A Ky A=Al Ao h = Al O False,

and [Cxp(FP) contains the following formula in GK for each integrity con-
stramnt:

!] T fﬂl A —|.Ir{fm+1 EANS _l.ﬁ.’f” o fﬂf.‘ﬁ‘.’.

The translation of a logic program P with integrity constraints is defined
as Azp(P) = ALg (P = IC) U ICgx(F), where P — I represents rules in
program .



Let us consider the following programs:
Fi={p—.a+ nota} and

P; ={p—. «— nota}.
Translation AL {P) has an acceptable model {Ap, Kp, p, Ka} and AL, (F)
has no acceptable model. Based on stable model semantics, there is no stable
maodel for both programs. Therefore, we cannot distinguish the above two
programs in terms of stable model semantics, although we can do that using
acceptahle semantics in GRK.

7 Comparison with Stationary Extensions

Przymusinska and Praymusinski provided a new concept of extensions for
Reiter's default theory. Because our definition of acceptable models and the
definition of stationary extensions bath seem to be hased on the same idea,
we should compare our approach with that of stationary extensions.

Definition 7.1 (Stationary default extensions) [Priymusinska9i]
Given a default theory A, E s a stationary defanlt extension iff:

1 ECUA(E) and
2 E—-T3(F).

Przymusinska and Przymusinski [Przymusinska91] showed that, for nor-
mal logic programs, stationary default extensions correspon to stationary
maodels. Since our result in Section 5 shows that acceplable models of GK
formulas for normal logic programs correspond to stationary models, we con-
clude that the acceptable models correspond to stationary extensions. You
can find the following correspondence between stationary extensions and ac-
ceptable models.

Proposition 7.1 For a normal logic program P, let A(P) be the correspond-
ing defoult theory and its translation into GK be AL, (P). We use E to
denote ¢ stalionary extension of A(P) and M to denote an acceptable model
of AL (FP). Then:

E = A(M)(= B(M)) and

llgrpj{f:-'_]] - f'l.{i'l-‘f}

13



Our approach in GK seems to provide us with more intuitive answers
than do stationary extensions. Let us consider the default theory A = (D, )
from [Przymusinskaf1|, where:

D ={:-pf-p,:p/p:q/r}

The least stationary extension E of A is empty, because 1’5 (L) is the set of
all first order sentences (Uhis means contradiction). However, the acceptable
model M of ALy whose A(M) is minimal is {Ar, K, r}.

8 Concluding Remarks

We have proposed acceptable model semantics for an auteepistemic logic,
GK, defined by Lin and Shoham. Undefinedness is described as a cortain state
in an agent’s belief set by using the semantics. Our new semantics provides
us with new relationships between defanlt logic and GK, and between logic
programming and GK. We should study the features of acceptable models
for general cases of defanlt logic in the future.

In the Definition 3.4 of acceptable models, we can replace conditions 2
and 3 with the following condition:

AM)UR(M) = BIM),

and, thus, deal with abductive logic progranuming |Kakas%0| in our frame-
work. In this case, Abd(M) = A(M)NK(M) # @ (for proposition p €
Abd{M), =Kp,—p, and p are satistied in the model M), This means that
the agent assumes some proposition, but neither derives the belief nar the
proposition, that 1s, the propesition might be called an abducible. We are
currently investigating this new definition of acceptable models.

References

[Bidoit9i] Bidoit, N., Froidevaux, C., General Logical Databases and Pro-
grams: Default Logic Semantics and Stratification, Journal of Informa-
twon and Control, 91, pp. 15 = 54 (1991).

14



[Brogi91] Brogi, A., Mancarella, P., Lamma, P., Mello, P., Normal Logic
Programs as Open Logic Programs, Proc. of JISCLP 92, pp. 783 - 797
(1992).

[Dung91] Dung, P. M., Negation as Hypotheses: An Abductive Foundation
of Logic Programming, Proc. of ICLP'91, pp. 3 - 17 (1991}).

[Gelfond88] Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic
Programming, Proc. of ICLP88, pp. 1070 — 1080, 1088,

[Kakast0] Kakas, A. C., Mancarella, P., Generalized Stable Models: A Se-
mantics for Abduction, Proc. of ECAL90, pp. 385 — 301 (1990).

[Lin92] Lin, F., Shoham, Y., A logic of knowledge and justified assumptions,
Artificial Intelhgence, 57, pp. 271 - 289 (1592).

[Moore85] Moore, R. ., Semantical considerations on nonmonolonic logic,
Artificial Intelligence, 25, pp. 75 — 94 (1985).

[Przymusinski8®] Przymusinski, €. T., Three-valued Non-Monotonic For-
malisms and Semantics of Logic Programs, Proc. of K89, pp. 31
348 (1989).

Przymusinska91] Przymusinska, H., Przymusinski, C. T., Stationary De-
fanlt Extensions, Technical Report, California State Polytechnic and
University of California at Riverside, (1991},

[Przymusinski91] Przymusinski, C. T., Semantics of Disjunctive Logic Pro-
grams and Deductive Datahases, Proc. of DOOD81, LNCS566, pp. 85
- 107 (1891).

[Reiter80] Reiter, K., A logic for default theory, Artificial Intelligence, 13,
pp. 81 - 132 (1980).



