ICOT Technical Report: TR-0829

TR-N820

Bl A7 LOMRED D Ay =k
7' b 2L [Messages and Protocols for

Cooperative Systems Communication |

by
Stephen T.C. Wong

January, 1993

1993, 10T

Mita Kokusai Bldg. 21F {03)3456-3191 ~5

| D DT 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

B ATLOEEDODAyE—28TO RO

Messages and Protocols for Cooperative Systems Communication

EN

Summary. A cooperative problem solving (CP3) system refers
to several loosely connected and potentially heterogeneous agents
that cooperate to solve problems that require their combined ex-
pertise and resources. The purpose of this paper is to present key
features of a communication scheme COSMO that has been used
to support cooperative problem solving within a network of
knowledge-based systems. We first propose two key design prin-
ciples of this scheme: (1) the loase coupling of communieation
issues and knowledge representation issues, and (2) the notion of
communicative acts. We then work these ideas into a set of
basic compeonents of COSMO which includes knowledge handlers,
an operation model, organizational roles, message types, and com-
munication protocols.

1 Introduction

The purpose of this paper is to present the key messages and negotiation pro-
tocols of COSMO - a communication scheme that supports orderly and ratio-
nal interaction among cooperating agents. This scheme originated from the
development of the Building Design Network (BDN) in the ATLSS Engineer-
ing Research Center at Lehigh University [ATLSS 92]. BDN is a distributed
knowledge-based system prototype in which several agents with different con-
siruction experlise cooperate to obtain the preliminary building design, BDN
agents reside in separate UNIX workstations and use TCP as the commu-
nication backbone. The knowledge bases are written predominantly in an
object-oriented Prolog language [Wong 92b). A more detailed description of
COSMO is presented in [Wong 92).

The first design principle of COSMO is to use a global language of com-
munication among heterogeneous agents. The use of a global language makes

* Stephien T. C. Wong, ICOT

MACC ™02

fewer assumptions (thus it enables looser coupling) about how knowledge is
represented in individual agents. Another advantage is that it enables the
integration of preexisting, autonomous knowledge-based systems for broader
applications. This also protects an organization's investment in local knowl-
edge base management software, application programs, and user training.

To support a global communication language, an agent should equip with a
knowledge handler for coding and decoding messages, in addition to a rea-
soning program (i.e., knowledge base and inference engine). In COSMO, such
a knowledge handler is an independent computation process and normally
runs as a background process. Such a handler also performs other crucial
transaction functions, such as checking against possible errors and keeping
track of pending messages. However, the use of knowledge handlers to fa-
cilitate the interface among heterogeneous agents is still not flexible enough
for the interchange of knowledge. Cooperating agents must be able to com-
municate in a more verbalized and regulated way, and to convene various
intentions during cooperation. In this respect, speech act theory [Searle
85) offers some insight.

Speech act theory states that the primitive units of human communica-
tion are speech acts of a certain type called illocutionary acts. Some exam-
ples of these are statements, questions, commands, promises, and apologies.
Whenever a speaker utters a sentence in an appropriate context with certain
intentions, he or she performs one or more illocutionary acts. In general,
an illocutionary act consists of an illocutionary force F and a propositional
content P. A special class of sentences that express elementary illocutionary
acts of form F(P) are the performative sentences. These sentences consist of
a performative verb used in the first persan present tense of the indicative
mood with an appropriate complement clause, i.e., a propositional content.
In uttering a performative sentence one performs the illocutionary act with
the illocutionary force named by the performative verb by way of representing
oneselfl as performing that act. Some examples (with the performative verbs
italicized) are: “I promise that I will do it tomorrow”, “I erder you to report
the schedule to the project manager.”

For distributed systems computation, a basic unit of communication among
agents is the transfer of a message from one agent (the sender) to another
(the receiver). The purpose of communication is to provide the receiver with
some information or to have the receiver take certain actions. Inspired by the
speech acts theory, such a unit is called a communicative act.

T'he second design principle is that a communication act is analogous to
an elementary performative act in human communication; its message type
T expresses an illocutionary force F, named by a performative verb; and its

Messages and Protocels for Cooperative Systems Communication

message content p expresses a complement clause P, which is a specification
of the sender intended to be computed by the receiver. Such a specification,
as stated earlier, is represented in a format understandable by all agents.

Meanwhile, a message type v has two basic functions. In the first place,
it is an index for a receiver to select a procedure to compute the message
content and to determine the type of the response act. Thus, the meaning of
the performative verb that a type denotes is defined by the operation of the
procedure associated with it. To maintain the consistency of its performative
meaning, each of the message types defined in a cooperative systern must
indicate the same procedure across all agents. Secondly, a message type has
a name similar to the performative verb that it denotes. For instance, a com-
munication act of type order would tell a receiver to do something without
the option of refusal. This act assumes that the sender has a higher authority
or priority than the receiver. We believe that the use of such a logical naming
convention to represent the concepts and structures inherent in a communi-
cation scheme impacts on the very thinking that goes inte constructing that
scheme.

In the subsequent sections, we present the basic components and some
high-level protocols of COSMO that build on these two principles. Section
2 discusses four key components of the scheme. Section 3 describes some of
the communication protocols devised to resolve conflict of knowledge among
agents. The final section presents the conclusion.

2 Basic COSMO Components

2.1 Operational model

In COSMO, we consider two major kinds of communicative acts: those used
to initiate actions and those used to respond to these actions. For an agent
to know when to initiate an act A and whether that act is successful, we use
the following operational model of communicative acts, {precondition}: A:
{postcondition}, where {precondition} denotes a set of internal constraints
which must be satisfied before A can be performed and {postcondition} de-
notes a set of conditions which must be met in order to consider that A is
suceessful. Such a model is similar to the representational formalism used
in most plan recognition algorithms. The representation formalism specifies
that a precondition needs to be true to carry out the planning operation {a
communicative act in our case) and an effect that holds once the operation is
accomplished. T'he model of COSMO extends this formalism into distributed
systems comumunication and enriches it with the concepts of the degree of
strength and the classes of communicative acts.

MACC 92

For {precondition}, usually, it is the reasoning program of the agent which
sometimes a reasoning program can have several alternative actions, and de-
ciding which one to perform becomes a problem. For example, suppose that
an agent wants to know something about p, but does not know which agent it
chould ask and is reluctant to broadcast the request in order to avoid excess
communication. Its knowledge handler would then assign every feasible al-
ternative a number and select the alternative with the highest number. Such
a number is called a utility value. A set of heuristics for setting utility val-
ues in the knowledge handler for various implicit communication purposes is
described in [Weng 92].

To terminate an act A properly, its {postcondition} requires that the
sender must receive a message that either is a direct response of defined types
te A or is a control message indicating certain communication problems.

2.2 QOrganizational roles

Organization hierarchies are used in cooperative problem solving systems to:
(1) establish the problems to be solved; (2) segment the problems into sepa-
rate activities to be performed by different agents; and (3) coordinate activi-
ties and tasks among agents so that overall solutions are achieved. Depending
on the application, (1) and (2) may be pre-determined or may be jointly de-
cided by the agents in the course of communication. Generally, there is a
set of admissible roles in such a cooperative system, and each agent in the
system is assigned one of these roles. The function of the roles is to indicate
the position of that agent in the hierarchy and to determine what reasoning
strategies to use. To compare the ranking differences of agents, this proposed
scheme assigns a number to every role. For example, for two agents, a of
role, and b of role,, agent a ranks higher than b if and only if (iff) v(role,)
> v(roley), where v(role;) denotes the role value of an agent r. In COSMO,
the information of the organizational structure is encoded in a role table,
which contains information about all agents’ roles and their role values in the
organization at a particular stage of operation.

The ranking difference between any two people in an organization affects
their interactive behavior, such as decision making and communication. Any
cooperative computing system that claims to exhibit certain human problem-
solving abilities should exhibit such adaptive behavior. One way to accom-
plish this, as is implemented in our prototypes, is to have every agent partition
its set of problem-solving strategies into several classes. An agent selects a
particular class of strategies based on the ranking difference between itself
and the would-be receiver. As an example, suppose that the set of strate-
gies of agent a is S, = {s;,---,s,}. where the subscripts are the indices of

Messages and Protocols for Cooperative Systems Comununication

individual strategies. Then, agent a chooses s; in S, to interpret an incoming
message from agent b when v(role,) — v(role,) = i. In this way, one can say
that an agent has several classes of problem-solving strategies in its reasoning
program and switches among them according to which agent it communicates
with. The subsection below provides an example on the use of organizational
roles to decide the types of communicative acts.

2.3 Message types

In COSMO, agents use two disjoint sets of message types: one set contains
types that are strictly used in communicative acts for initiating actions, and
the other contains types that are strictly used in response to the former acts.
Hence, these response types are a postcondition of the acts of the first types.
We call the messages in the first set, action messages, and those in the
second set, response messages.

COSMO classifies message types according to the performative intents or
purposes of their associated acts. It further distinguishes the types of a class
to indicate the role relationship between the sender and the receiver. The
BDN application, for example, has three classes of message types: inquiring,
informing, and complaining (see Figure 1). Inquiry messages have two uses,
To inquire is either to query for information or to request some action. In-
formative messages are both assertive and directive. To inform is either to
give out information or to instruct someone to do something. The content of
an informative message must be in grounded form, that is, without variables,
while there is no such restriction for inquiry messages. Complaint messages
are used to express one's dissatisfaction. To express dissatisfaction with a
state of affairs commits the sender to presuppose both the existence of that
state of affairs and that this particular state is bad for the sender.

Different communicative acts can sometimes achieve the same performa-
tive function with greater or lesser degrees of strength, ¢.g., suggesting that
the receiver abort the task is weaker than ordering it to abort the task [Searle
85]. Following the discussion in Section 2.2, we have 2 role relation be-
tween the two communicating agents that dictates this degree of strength
in COSMO. Here, we, in turn, use appropriate message types to indicate role
relations explicitly. Figure 1 illustrates this peint with a set of communicative
acts that are currently implemented for the BDN application.

We briefly comment on the general usage of these message types here.
Let degree(v} represent the characteristic degree of strength of an act of
action type 7. For inquiring acts, as an example, we have degree(direct) >
degree(ask) > degree(request), as indicated by the role relations of the sender
and the receiver. Such a comparison of message types has many implications

MACC 02

wirole,) < v(role,) virole,) = v(role,) vircle,) > virole,)
Functions

@ request @ ask @ direct

iiing

@ assert/is_unknotm D answer [is_unknown g reply /is_snknown

D recommend @ offer @ tell
Informing ofic
@ enelorse/reject @ accept/refuse @ report/is_confused
O protest @ complain
T B S
@ approve/disapprove @ validfignore

" particular response types for contral;
. Legend:
notify and busy

(CX) - an agent node

—— - message Mow edge
@, @ ~ message sequence

zfy-githerypexory

Figure 1. Communicative acts of COSMO implementel in BDN,

in cooperative systems communication. For instance, an act of request or ask
type lets the receiver know that the sender is either of the same rank or a
lower rank. Thus, the receiver can grant or refuse the inguiry by returning
messages with cither an assert or answer type. In a direct act, however, such a
refusal is precluded as it is coming from a higher authority (see Figure 1). Or,
to resolve the ordering conflict of messages, when direct(p) and ask(p') arrive
at the same time from two remote agents, the local agent would execute the
former message first. If an inquiry could not be understood or computable,
the receiver would then simply send back an is_unknown message. Similarly,
for informative acts, an agent can accept or refuse an act of type offer or
recommend, but must follow the instruction of a fell act. When the content of
an informative message is not computable, a response act of type is_confused
is sent instead.

Messages and Protocols for Cooperative Systems Commupication

Complaining acts are used by the sender of a lower or an equal rank to
seek the approval of a receiver for starting negotiation. COSMO does not
define any complaining act for a sender of higher authority; such a sender can
simply tell lower ranking receivers to start negotiation right away. Message
types notify and busy can replace any of the response types for specific control

purposes [Wong 92].

2.4 Communication and computation steps

A communicative act of one agent may spawn many other acts among agents;
for instance, agent a asks & about p, b then asks ¢ about p, and so on. A
process of communication among agents is a sequence of communication
and computation steps. A communication step encodes the specification of
a sender into a message and sends it out to a receiver, i.e., performs a com-
municative act. A computation step changes or updates an agent’s reasoning
program, and when necessary, decodes an incoming message.

A sequence of these steps terminates properly when the first sender of
that sequence receives a response message to its initial act. To keep track of
multiple sequences occurring simultaneously in a cooperative system, the first
message of any sequence contains a unique label, which will be included in all
subsequent messages of the same sequence. In particular, we are interested
in those sequences with precisely defined steps. We call such a sequence a
protocol. Protocols are regulated means to convene complex intentions in
terms ol a few elementary communicative acts. They enforce an order on the
way that cooperating agents interact with one another. An agent that wants
to initiate communication of a specific aim would select a particular protocol.
The agent would then communicate that it is using this protocol to the other
agents. This would then allow the intended receivers to select corresponding
acts and to ignore irrelevant messages. In this way, the protocol also avoids
excessive communication and keeps discussion among agents under control.

We use the following format to describe communication and computation
steps. For simplicity, we assume that every step in a protocal is an indivisible
operation. A communication step whereby agent o invokes an act of type
T is expressed as: a — b | 7, p, I, where b is the receiver, the content p
15 a specification of a commeon format, and ! is a unique identifier of the
sequence. A computation step of agent a is written as a | w(p), where 7 is an
witernal operation on the content p of an act in the previous step. The global
language used in our prototypes is of a logical form such that p can be a term,
a list, a predicate, or a complex sentence, i.e., predicates connected by logical
operators such as A (and), V (or}, and O (implication). The transformation
opcrations of such a handler also include the parsing of a message content

MACC 92

into its atomic components for evaluation in the reasoning program, and the
composing of evaluated results into a proper logical form for reply.

In addition, there are many ways to compose protocols from a set of mes-
sage types to solve the same problems. But one can compare the efficiency
of these protocols by measuring the amount of time required for their com-
putation and communication steps.

3 Communication Protocols

In COSMO, a multistage contract net protocel is used to allocate tasks in
general [Conry 91], whereas a set of negotiation protocols, tied to particular
decision-making methods, is used to resolve conflict of information among
agents. Our experience shows that when the protocols become more sophis-
ticated, they will be more closely related to the domain knowledge of the
agents.

3.1 Preference-based negotiation

The set of negotiation protocols presented are used in conjunction with the
group decision making methods in social choice theory [Sen 82]. In essence,
these methods generally include an agenda that contains a list of criteria for
each mutual problem. The agents would first form individual orderings of
preferences on competing alternatives of a problem according to the specified
criteria (which may vary for each agent). They then apply an aggregation
procedure to select an outcome out of these individual preferences. Such an
outcome is often expressed in the literature as a collective choice. Never-
theless, it is difficult to obtain a “fair” choice that satisfies all agents. Thus,
in COSMO, we allow negotiation ameng agents to iron out the differences and
uncertainties of individual preferences. In this regard, we depart from the so-
cial choice theory, which normally does not include the notion of feedback
in the group decision making process.

The process of gathering and forming preference orderings in our scheme
is briefly described as follows. An agent of the coordinator role would gather
all individual orderings of preferences and combine them into one ordering
according to a certain aggregation procedure. If any agent disacrees with the
result, it can then protest to the coordinator in order to start a session of
negotiation. This strategy allows only one coordinator in a cooperative sys-
tem. The formation of individual preferences for cooperative problem solving
is neither fixed nor arbitrary. In the context of knowledge base applications,
individual preferences are normally derived from domain knowledge encoded
in individual agents. A scheme based on the formalism of preferential logic
that supports the derivation and aggregation of individual preferences for

Messages aud Protocols for Cooperative Systems Conununication

0, 0, O | O
z x z | z
x ¥y y | x
¥ z X ¥

Table 1. Individual ordering and aggregated ordering.

knowledge based applications has been presented in [Wong 92a]. The dis-
cussion of this scheme is beyond the scope of this paper, however, a simple
example on aggregation is given below.

Let us suppose that there are three cooperating agents, a, b, and ¢, where a
is the coordinater and b and ¢ are peers, such that v(coordinater) > v(peer).
Let us further suppose that each agent has its own criterion to judge its
preferences, and the coordinator uses a standard procedure of aggregation:
the simple majority rule. This rule specifies that, for a criterion, if both a
and c prefer z to x while b alone prefers x to z, then the aggregated preference
is that z is preferred to x, or z > x, with respect to that criterion. Table 1
shows the set of individual orderings O,, O, and O,, and the aggregated
ordering of preferences Oy of a problem with competing alternatives x, y, and
z. In this table, z is a collective choice as it is the highest ranking alternative
in O,. If there iz a dispute, then the following strategy of negotiation is used.

1. Each of the agents computes a heuristic index by calculating the ranking
difference of every feasible alternative between its individual ordering
and the aggregated ordering.

2. Each of the agents checks if its index is over a threshold value, and, if
50, asks the user whether it should complain or not; otherwise, it exits.

3. If any of the agents complains, start bargaining, and if bargaining
fails, try forcing.

This negotiation strategy includes the users of individual agents in the
decision making process. A variant of this strategy would be to have one
or more agents to not ask local users. In Step 1, every agent first obtains a
heuristic index of bargaining. For example, in Table 1, azent b calculates x's
ranking difference between its ordering O, and the aggregated ordering Oy
as 1 and the total difference, that is, its heuristic index Hp, as 4. Similarly,
we have H, = 0 and ll. = 4. An agent uses its heuristic index to decide
whether to flag the users for conflicts and to estimate whether the negotiation
is converging towards a satisfactory solution,

MACC "02

(1) b—a | protest, protocol(bp.I), {
(2) a | if approve then start bp.I;
else tell b to abort

effer, [p, protocol{bp.1)], {
if p is feasible then accept;
else reject

b—ay, .. 0n
[ﬁ} @,y ey By

(3) a—b | approve, protocol(bp.I), { {assume approved)
(4) & | determine to swap p (may exchange

| inform all agents about p (background knowledge)
(6) b—a | recommend, p, |

|

|

() a—b | endorse/reject, nil, |
a— b | aceept/refuse, nil, I
(8) & | if all agree then swap;
else abort

Figure 2. The bargaining protocol bpd of COSMO.

In Step 2, suppose that a uniform threshold, Hy, = number of alternatives
— 1 = 2, is applied across all agents. Thus, b and ¢ both would query their
users. Let us further suppose that the user of ¢ decides not to complain, since
Z is in a reasonably good pesition in O.. The user of &, however, would like
to complain about the outcome as z is its least preferred choice.

The predominant mode of negotiating over a conflict in this strategy fol-
lows Galbraith’s notion of bargaining, i.e., the agents push for acceptance of
the alternative that is preferred by them and occasionally “give in" by making
incremental changes to their preferred alternatives [Galbraith 77]. This treat-
ment differs from the prevalent approach in distributed Al that presumes the
knowledge of conflict resolution can be encoded and centralized in a special
negotiator agent. COSMO uses several bargaining protocols. For brevity, this
section illustrates three of them and focuses only on the discussion of agents’

preferences.

3.2 Negotiation protocols

In Figure 2, we show a protocol of bargaining, bp_I. The protocol consid-
ers a set of agents a,b,ay,...,a, of the following role assignments: a 15 the
coordinator and b, a),...,a, are peers. Basically, anv agent which wants to
complain must first seek the approval of the coordinator. If approved, the
agent would then attempt to persuade all other agents to swap two alterna-
Lives' positions in their individual orderings (computed in Step 4 as p), such
that the expected aggregation results would favor its best choice. We skip

=10

Messages and Protocols for Cooperative Systems Communication

protest, protocol(bp.I),
start bp_I

b—a

)
) a
)
)

— b approve, protocol(bpd),
El determine swap x, 2
inform all agents
(5) b—a recommend, feasible(swap(a, x, 2}, [
b— e offer, [feasible(swap(c, x, 2)), protocol(bpI)], {

|

|

|

|

|

|

i
() a | test that swap(a, x, z) is feasible
c | swap(e, x, z) is feasible
|
|
|
|
l
|
|

(7) ae—b endorse, nil, {
c— b accept, nil, |
(8) b invoke the change
(9) b—c¢ offer, swap(a, x, z), [
b—a recommend, swap(e, x, z),
(10) a—b endorse, updated, |
c— b accepl, updated, {

Figure 3. A sequence of bargaining using Protocol bpL

Dn D-b Oc il Dg
X X X X
Z Yy ¥ Y
¥y z z z

Table 2. Preferences after the bargaining process in Figure 3.

the interchange of background knowledge among agents here. In Step 5, the
protesting agent b also informs other agents about the protocol used so that
the latter can select appropriate operations for this protocol. The protocol
bp.I is successfully terminated only when all agents agree to the change.

Sometimes, the contenl of a response message is ignored when its type
carries suflicient information. Step 7 of Figure 2 shows one such occasion,
where the feasibility of pis indicated by the response types. Let us continue
the example in Table 1. We show a sequence of steps using the bargaining
protocol bp.l in Figure 3. In Step 5, feasible(swap(a,x,z)) denotes whether
it is feasible to swap the positions of x and z in a's ordering. One of the
conditions of feasibility is that the new index after the change should not
be over the threshold value, i.e., 2. Other conditions involve checking the
background knowledge that derives the preferences. This part concerns the

MACC "92

(1-5) is the same as (1-5) of Figure 9, except bp_II replaces bp_I

(6) a | test that swap(a, x, z) is feasible
c | swap(e, x, z) is infeasible
(7) a=b | endorse nil,l
c—b | refuse nil, !
(8) & | not all agents agree, examine
the would-be ordering (see Table 3)
if okay then invoke change:
else inform a, ¢ to abort.
(9) b—a recommend, abort(bpII), !
b—¢ offer, abort(bp_1I}, {

|
|
(10) a—b | endorse nil,
c—b | accept nil, |

Figure 4. A sequence of hargaining using Protocol bpl

underlying problem-solving methods of the reasoning programs, which will be
discussed in a separate paper, Table 2 shows the new set of orderings after
the completion of the bargaining in Figure 3. The set of heuristic indices are:
H, = 2, Hy = 0, and H, = 0, where H,,, is still 2.

Often it is difficult for all agents agree to a change. Consider the previous
case, for ¢ Lo change its best preference to the worst would require considerable
revision of its domain knowledge, but b is not in a position te do sa. Thus, the
strategy of another bargaining protocol, bp.Il, is to have an agent attemnpt to
persuade, not all, but as many agents as possible to its preferred alternative,
and hopefully, the new ordering of aggregation derived will be close to its
expectation. One problem of this approach to bargaining is that an agent
which refuses to change might stand to lose and, thus, would initiate another
complaint. To avoid such situations, the protesting agent should also consider
potential conflicts arising from its change. This is accomplished by the agent
simulating the aggregation and detecting possible problems internally. For
example, let us consider the case in Table 1 again. In Figure 4, agent b is still
the protester that initiates bp 11, but this time ¢ refuses to accept b's offer.

Table 3 shows why b decides not to press the change in Figure 4. The
expected O,: x > y > z would satisfy &, but would likely upset ¢ as the
latter would have an index of 4 and, thus, exceed the threshold value (Hy,) of
2. Further, the ‘best’ collective choice x would be the worst choice from ¢'s
perspective. We consider that this kind of “good faith" negotiation, where
the concerns of other agents are taken into account in negotiation, is essential

—12 ~

Messages and Protocols for Cooperative Systems Communication

0. Oy O] 0,
X X z | x
z Yy vy |z
y z x|y

Table 3. Preferences after the bargaining process in Figure 4,

Old New Agegregate
0. Oy O, | O™ OFF™ OF" Oy
z X Z x x y X
X ¥y ¥ z z x Z
y z x| ¥ ¥ z | ¥

Table 4. Preferences after the bargaining process using bp 1L

to cooperative behavior.

The two types of bargaining discussed so far are within a fixed scope
of negotiation, that is, the agents are trying to reach an agreement under
the same set of criteria in the problem agenda. Sometimes, the conflict may
persist and no amount of such bargaining will provide for agreement. In
COSMO, an agent may propose to use a third type of bargaining that pro-
ceeds to change the scope of negotiation. Instead of figuring out acceptable
solutions under the existing problem agenda, this type of bargaining attempts
to reshape that agenda, or rather, tries to replace the set of criteria with a
different but closely related set. Changing the agenda is changing the subject
of the conflict. Under the new criteria that the persuader brings up, it ex-
pects that the other agents would likely agree with its proposal. By getting
the opposing agents to accept this new agenda, the persuader hopes to get
them to join its side. In other words, we can say that this kind of bargaining
is an attempt by one agent to change the opposing agents understanding of
something, to get them to see it in some way (i.e., change their viewpoints)
that prompts them to act as they would not have done otherwise.

The following example is used to illustrate such bargaining in COSMO.
Consider agent b and Table 1 again. This time, b tries to persuade a and
¢ to include a new criterion m the problem agenda. Referring to Figure 5,
in Step 4, the term, new, is the additional criterion that b proposed, while
reason{fuew) is the justification of b to add this criterion. If any other agent is
not satisfied with this justification, bargaining would be aborted here. This
protocol succeeds when the coordinator agent, a, is ready to invoke the group

MACC "02

(1-3) is the same as (1-3) of Figure 3, except bp Il replaces bp.I

(4) b—a | recommend, [feasible(add criterion{new))}, reason(dyew)], {
b—c | offer, [feasible(add criterion{new)), reason(&,ew)], {
(5) a, ¢ | if reason(f,ew) is okay

then accept add_criterion({new) is feasible;
else reject.
(6) a—b | endorse nil, | (assume both accept)
c—b | accept, nil, I
(7) b—a | recommend, [success(bp_lIl}, add_criterion(new)), {
(8) a—b | endorse nil, |
(9) a | invoke contract net protocol to form
new preference orderings.

Figure 5. A successiul bargaining sequence of Protocal bp i1

decision making method to form a new set of preference orderings. Thus, the
kind of bargaining used in bp Il is a predecision strategy.

Table 4 gives the results of new orderings. In this table, both old and
new criteria (and thus the orderings) are taken to have equal importance in
aggregation. The aggregated result shows that b gets what it wants out of
this bargaining sequence, that is, to push for x as the collective choice.

Occasionally, forcing is used to back up the bargaining approach when a
lack of agreement stymies the group. The coordinator can use the authority
of its position to force a preferred alternative on the rest of the group. The
protocol of forcing is invoked when the coordinator approves the request of
an agent to break off the bargaining mode due to a lack of progress. In
our applications, such a request to break off is triggered when the maximum
number of offers zllocated for the bargaining session is exceeded. Although
forcing settles the problem of action so that the agents can progress, that is,
the computation process can continue, it leaves the conflict unresolved. The
agents are still at odds with their opposing beliefs about the matter as well
as remaining in conflict. The use of forcing without proper direction from the
domain knowledge would simply generate arbitrary salutions.

4 Conclusion

Cooperative problem solving will be conducted in many forms among a net-
work of agents and will require the support of advanced communication fa-
cilities beyond the “passive” transmission of data and messages provided by

14

Messages and Protocols for Cooperative Systems Communication

the current network technology. CPS system developers should not be hand-
icapped by the primitive concepts and constructs of existing communication
sthemes. Higher level concepts and constructs are needed so that develop-
ers are [ree to write the highly specialized parts that provide efficiency and
are unique to a given appheation. This would help developers to focus on
even-harder problems, pushing forward the state of the art and providing
increasing value to the application users. In presenting this account, we at-
tempt to offor new insight into the use of communicative acts and protocols
to form advanced communication scheme lor CPS syslems.

MEE This work was supported in part by the NSF Engineering Rescarch Cen-
ter: Advanced Technology for Large Structural Systems (ATLSS) at Lehigh
University, PA, USA, in part by the research grant STA-191101 from the
Science and Technology Agency of Japan, and in part by NSI" grant INT-
8123124, The author would like to thank 1COT for their support in writing
and presenting this work.

B E Wk

[ATLSS 92 ATLSS Center. Sixth-year renewal proposal to the NSF, Vol 2:
projects, publications, and biosketches, ATLSS Drive, Lehigh University, Beth-
lehem, PA, 1992,

[Austin 56/ J. L. Austin, How {o do things with words, Oxford: Clarendon Press,
1956,

[Conry 91] S. E. Conry, R. A. Meyer, and V. R. Lesser, “Multistage negotiation
for distributed satisfaction,” TEEE Trans. en Systems, Man, and Cybernelics,
Val. 21, No. 6, 1991, November/December, pp. 1462-1477.

(Galbraith 77] J. Galbraith, Designing complez organizations, Reading, Mass,,
Addison-Wesley, 1977,

[Searle 85] J. R. Searle and D. Vanderveken, D. Foundation of illocutionary logic,
Cambridge University Press, 1983,

[Sen K2] AL Sen, Choice, welfare, and measurement, MIT Press, 1982,

|Wang 9‘21] 5 T. C. Wong, “COSMO: A communication scheme for couperative
knowledge-based systems,” JEEE Transactions on Systems, Man, and Cyber-
netics, to appear, 1993,

[Wong 92a] 5. T. C. Wong, “Preference-based decision making for cooperative
knnwledge-hased systems,” ACM Transactions of Information Systems, to ap-
pear, 1993,

{Wong 92b] S.T. C. Wong and 1. L. Wilson, “A set of design guidelines for abject-

oricnted deductive systems,” IEEE Transactions on Knowledge and Data En-
gineering, to appear, 1993,

