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Abstract

This article represents the author’s personal view of the Japan's Fifth Generation
Computer Systems project. The project started in 1982 and (he author has been
working in the project from its very beginning. The rescarch history of the project
is looked back and its outcome is reviewed from an insider's viewpoint.



1 Introduction

[ joined the Institute for New Generation Computer Technology (ICOT), the re-
search institute established for carrying out the FGCS project, in June 1982, It
was almost immediately after its creation in April of the same year. All the re-
searchers then gathered at TCOT were recruited from computer manufacturers and
governmental research institutes (1 was among these and was recrmited from Fu-
jitsu). Almost all these researchers, with very few exceptions, of which | was one,
left ICOT after three to five years, either returning to their original places of cm-
plovment or starting a new career, mostly in universitics. Having been at ICOT for
the entire project period of 10 vears plus one additional vear, I have gradually been
making more critical decisions about rescarch dircctions.

I started my research career at ICOT in design of a sequential logic programiming
language a la Prolog and its inplementation, and then designing an operating system
for logic programming workstations, As the main interest of the project shifted to
concurrent logic programming, my research topics naturally changed to the design
and implementation of concurrent languages and an operating system for parallel
systems. The project has included various other research topics with which [ have
not been involved, for which I cannot comment fully here.

2 Before Things Really Started

2.1 The First Encounter

When the preliminary investigation of the FGCS project plan began in 1979, I was
a graduate student at the University of Tokyo. Tohru Motooka, a professor at the
university, was playing an important role in forming the project plan. 1 was invited
to participate in one of many small groups to discuss varions aspects of the project
plan. That was my first chance to hear about this seemingly ahsurd idea of the
“hifth generation” computer systems.

The project plan at that time was just too vague to interest me. The idea of
building novel technologies for future computer systems seemed adequate, but it
was nol al all clear what such technologies should be, Our group was supposed
to discuss how an appropriate software development environment for such a system
should be designed, but the discussion was not much more than writing a sci-fi story.
Both the needs and seeds of such a system were beyond our speculation, if not our
imagination.

A few years later, the project plan hecame more concrete, committed to parallel
processing and logic programming. My main research topic at the university was
design and implementation of a Lisp dialect. Hideyuki Nakashima, one of my col-
leagnes there, was an enthusiastic advocate of logic programming, and was strongly
influenced by Koichi Furukawa, who was one of the key designers of the FGCS
project plan. Nakashima was implementing his Prolog dialect on a Lisp system [
had just implemented, and | assisted in this process. Although the Prolog language
seemed interesting, 1 could not imagine how such a language could be implemented
with the efficiency reasonable for practical use.



It actually took longer than expected, as is always the case; the first system was
ready (with a barely useful software development environment for application users)
at the end of 1984, two-and-a-half years after the project began. The development
environment gradually matured to a reasonable level as its operating system went
throngh several revisions. Two major revisions were subsequently made to the
hardware, and the execution speed was improved by more than 30 times. The
system, which had been used as the principal tool for software research until the
first experimental parallel inference system was ready in 1988, is still being used
heavily as personal workstations that simulate the parallel system.

3.1 Sequential Inference Machine: PSI

Without any deubt, the decision to develop such a “machine” had the same motiva-
tion as the Lisp machines developed at MIT and Xerox PARC, A DEC-2060 system
was introdnced in the fall of 1982, allowing us to use Edinburgh Prolog {2]. Its
compiler was by far the most efficient system available at the time. However, when
we started to solve larger problems, we soon found that the amonnt of computation
needed exceeded the capacity of time-shared execution. Personal workstations spe-
cially devised for a specilic language and with plenty of memory seemed to be the
solution. Indeed they were, I think, for logic programming languages in 1982 when
mote sophisticated compilation techniques were not available,

Two models of personal sequential inference machines, called “PSI", were devel-
oped in parallel [23]. They had the same microprogram-level specification designed
at 1CO'L, but with shightly different architectures. Two computer companies, Mit-
subishi and Oki, manufactured different models. Such competition occurred several
times during the project on different R&D topics. The word “competition” might
not be guite accurate here. Although the top management of the companies might
have considered them as competition, the researchers who actually participated in
the projects gradually recognized that they were meant to be in collaboration. They
exchanged various ideas freely in frequent meetings at ICOT.

Both of the models of sequential inference machines had microcoded interpreter
for graph-encoded programs. An alternative rescarch direction which put more effort
on static analysis and optimized compilation was not considered seriously. Running
such a research project in parallel with the development of the hardware systems
might have yielded less costly solutions. However, given a short period of time and
few human resources with compiler-writing skills, we had to commit ourselves to
pursue a single method,

3.2 The First Kernel Language: KLO

My first serious job in the project was designing the first version of the kernel lan-
guage, "KLO". This language was, in short, an extended Prolog. Some nonstandard
control primitives were introduced, such as mechanisms for delaying execution until
variable binding or for cleaning up side effects on backtracking, but they were only
minor additions that did not affect the basic implementation scheme of Prolog.
We decided to write the whole software, including the operating system, in this
language. This was partly for clearing up the common misunderstanding that logic



When T finished my doctoral thesis in March 1982 and was locking for a job
opportunity, Motooka kindly recommended me to work at ICOT. Without any par-
ticular expectation in research topics, hoping to do something interesting without
tao much restriction, I accepted his proposal.

2.2 Joining the Project

The FGCS project was organized so that one central research institute, ICOT, could
decide almost all the aspects of the project, except for the size of its budget. The
Japanese government {Ministry of International Trade and Industry [MITI] to be
more specific), funded the project, but MITI officers never forced ICOT to change
the research direction in order to promote the Japanese industry more directly. I'his
has been true throughout the 11 years of the project period. Although the grand
plan of the project was already there, it was still vague enough to leave enough
freedom to the ICOT researchers.

One of the consequences of this situation was that when the rescarch center was
founded with some 30 researchers in June 1952 nobody had concrete rescarch plans.
The core members of the project, including Kazuhiro Fuchi, Toshio Yokoi, Koichi
FFurukawa and Shunicht Uchida who had participated in the project’s grand plan,
held meetings almost daily to develop a more detailed plan. Common researchers
such as [ had no mission for about a month but to read through a heap of rescarch
papers on vast related areas. Voluntary groups were formed to study thosc papers.
Also, we tried ont Prolog programming with implementations on PDP-11 and Apple-
IT, that were the only available systems to us at that time.

My greatest surprise in conrse of this study was that the researchers gathered
there had almost no experience of symbolic processing, with only a small number of
exceptions. Only few had experienced design and implementation of any language
systems or operating svstems either. Tt was not that IC0OT s selection of researchers
was inappropriate — there were so few in Japan with experiences in thesc arcas.
The level of the computer software research in Japan was far behind the United
States and Western Furope at that time, especially in the basic software area.

In early July, a more concrete research plan was finished and several research
groups were formed to tackle specific topics. [ joined the group to design the first
version of the “kernel langnage”.

The idea of the “kernel language” has been characteristic of the project. The
research and development were to be started with the design of a programming
language, followed by hoth hardware and software research toward its efficient im-
plementation and effective utilization. There have been two versions of the kernel
language, KLO and KL1, and this process repeated in the project. The design I
started in 1982 was that of KLO, which was a sequential logic programming lan-

Euage,
3 Sequential Inference Systems

One of the first subprojects planned was to build so-called “personal sequential in-
ference machines”. The development effurt was an attenpt to provide a comfortable
software research environment in logic programming languages as soon as possible,
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programming languages could not be practical for real-world software development.
We thought, on the contrary, that using a symbolic processing language was the
easiest way to build a decent software environment for the new machine.

For writing a whole operating systcm, extensions to control low-level hardware,
such as the [/O bus or page-map hardware, were also made. The memory space was
divided into areas private to cach process for Prolog-like stacks and areas common
to all the processes where side effects were allowed. Side-effect mechanisms were
much enhanced than Prolog. Interprocess communication was effected through such
side effeets,

The resultant language had high descriptive power, but was somewhat like a
medley of features of various langnages. 1 did not mind it because, although the
language had all the features of Prolog, it was supposed to be a low-level machine
language, rather than a language for application software developers.

3.3  An Object-Oriented Language: ESP

A group headed by Toshio Yokoi was designing the operating system for the se-
quential inference machines. Their rough design of the system was based on object-
oriented abstraction of system features. After finishing the design of KL0, T was
requested to join a team to design a higher level language with ohject-oriented fea-
tures.

Through several mectings discussing the langnage features, a draft specification
of the langnage named “ESP” was compiled [3]. I wrote an emulator of its subset
on Edinburgh Prolog in the summer of 1983, in about one week when the DEC-2060
was lightly loaded as most of other users were away on summer vacation. This
emulator was used extensively later in early development phases of the operating
Systerm,

The language model was simple. Each object corresponds to a separate axiom
database of Prolog. The same query might be answered differently with different
axiom sets, as different objects behaves differently on the same method in other
object-oriented languages. This allowed programming in small to be done in the logic
programming paradigm and programming in large in the object-oriented paradigm.

3.4 SIMPOS

More detailed design of the operating system followed. Actual coding and debugging
of the system began in the fall of 1983 using the implementation on Edinburgh Pro-
log, by a team of some 30 programmers gathered from several software companies.
The hardware of PSI arrived at ICOT on Christmas day, and the development of
the microcoded interpreter, which had also been done on emulatars, was continued
on the physical hardware. In July 1984, the operating system, named SIMPOS, first
began working on the machine. In the course of the development, I gradually had
become the virtual leader of the development team.

Even in its first version, SIMPOS had a full repertoire of a personal operating
system: multitasking, files, windows (which were not so common at that time),
networking, and so on. The first version, however, was awfully slow. It took several
seconds to display a character on a display window after pressing a keyboard key.



Following our analysis of this slug, a thorough revision of the system was car-
ried out. The microcoded language implementation and the compiler, especially
the object-oriented features, were considerably improved, making the same program
run about three times faster. The operating svstem also went through a complete
revision in the kernel, the /0 device handlers, the window system, and so forth.
Algorithms and data structures were changed everywhere. Task allotment to pro-
cesses were also changed. This considerable amount of change made the system run
almost two orders of magnitude [aster. The revision took less than three months
and was ready to exhibit at the conference FGCS'84 in the beginning of November
[4].

The system hefore the revision already had several tens of thousands of lines
of ESP. The high level features of ESP helped considerably in carrying out such a
major revision in such a short period of time. The ohject-oriented features, especially
its flexible modularization power, allowed major changes without taking too much
care on details, Like other symbolic processing languages, explicit manipulation of
memory addresses is not allowed in ESP (except for in the very kernel of the system)
and ranges of indexes to arrays are always checked. This made bugs in rewritten
programs mnch easier to Aod.

A very important hyproduct of the development of SIMPOS was trammg of logic
programming language programmers. I'or most of the programmers participating
in the development of SIMPOS it was their first experience to write a logic or an
object-oriented programming language. Many, probably nearly half of them, had
not experienced any large-scale software development before. For some, ISP was
the first language to program in. Those programmers who acquired programming
skills during this development effort played important roles in various software de
velopment later in the project.

3.5 Software Systems on PSI

The original PSI1 machine ran at about the same speed as Edinburgh Prolog on
DEC 2060. The large main memory {80 MB max.) allowed much larger programs
to run. Being a personal machine, users were not bothered by other time-sharing
users, Limitation in computational resource, one of the largest obstacles in advanced
software research, was greatly relaxed.

From 1985 and on, the PS5l machine, and its successors PSI-IE and -1I1, have been
used heavily in software research. The largest software on PSI was its operating
systern STMT'OS. Tt went through many revisions and added more and more func-
tionalities, including debugging and performance-tuning facilities, on ever-increasing
nsers’ demands. Tt now has more than 300,000 lines of ESP code,

Not only the operating system but also other basic software systems were built
up on PSI and SIMPOS. A datahase system Kappa based on a nested relational
model was probahly the largest such system. Higher level programming language
systems, such as a langnage based an situation semantics CIL or a constraint based
language CAL, were also built.

Numerous experimental application systems were also built on PSI. A natural
language processing system, DUALS played an important role in showing to the
people outside the community what a logic programming system can do. Many



cxpert systems and expert system shells were developed, based on a variety of rea-
soning technologies. At its maximum, probably more than two hundred people were
conducting their research using PSI or its successors within the project [14].

3.6 PSI-1I and -I11

Near the end of 1985, we decided to develop a new model of P51 based on a more
soplisticated compilation scheme proposed by David H. D. Warren [22]. Its experi-
mental implementation on P51 by Hiroshi Nakashima ran more than twice as fast as
the original implementation. A new machine called PSI-IT was designed and became
operational near the end of 1986, SIMPOS were ported Lo the machine relatively
easily., This model went through minor revisions for faster clock speed later and its
final version attained more than 400 KLIPS, about 10 times faster than the original
PSI. As the machine clock was as low as 6.67MHz, this meant that one inference
step needed 106 microprogram steps.

Anather major revision was made during 1989 and 1990, which resulted in the
third generation of the system, PSI-TIL At this time, Unix was already recognized
as the common basis of virtually all research systems. Thus, the P5L-111 system
was built as a back-end processor, rather than a stand-alone system. The operating
system. however, was ported to the new hardware almost without modification,
replacing 1/0) device drivers with a communication server to the front-end part.
The system attained 1.4 MLIPS at the clock rate of 15MIHz. One inference needed
only 11 steps.

4 Parallel Inference Systems

From the very beginning of the project, the second version of the kernel langnage was
planned to combine parallel computation and logic programming. Parallel hardware
research was going on simultaneously, These two groups, however, did not interact
well in Lthe early years of the project, resulting in several parallel Prolog machines
and a language design that did not fit on them. Later, the langnage and hardware
design activities became much better orchestrated under the baton of KL1.

4.1 Early Parallel Hardware Systems

Some argued that much parallelism could be easily exploited from logic programming
languages because both AND and OR branches can be executed in parallel. With
some experience in cumbersome interprocess synchronization, I was quite skeptical
about such an optimistic and simplistic claim. Yes, a high degree of parallelism was
possibly there, but exploiting that parallelism could be counterproductive; making
evervthing parallel means making everyvthing slow, probably spoiling all the benefits
of parallelism.

The parallel hardware research began, however, despite the skeplicism. As far as
pure Prolog is concerned, the easiest parallelism to exploit was the OR parallelism
because no sharing of data is required between branches once the whole environment
is copied. Some of the systems suceessfully allained reasonable speedup, although
the physical parallelisin was still small.



The next thing to do was to implement a fuller version of Prolog, since the
descriptive power of pure Prolog was quite limited. The implementation was a
difficult task. To do that efficiently actnally required a considerable amount of
effort later in the Aurora OR-parallel Prolog project [17]. Our language processing
technology was not yet at that level. OR parallel hardware research ceased around
1985 and was displaced by committed-choice type AND parallel research.

4.2 Pre-GHC Days

The first concurrent logic programming language [ learned was the Relational Lan-
guage by Keith Clark and Steve Gregory (9], When [ read the paper in 1982, |
liked it because the langnage did not try to blindly exploit all the available paral-
lelism, but confined itself to the dataflow parallelisin. The idea there seemed quite
revolutionary. I thought the language implementation would be much easier than
naive parallelization of I'rolog and parallel algorithms could he easily expressed in
the langnage. DBut should a language for describing algorithms be called a logic
programming language’

The most londly trumpeted advantage of logic programming was that the pro-
grammers have only to describe what problem to solve, not how.. At that time, in
the summer of 1982, I was still a beginner in Prolog programming. [ did not yet
recognize fully that, even in Prolog, I had to describe algorithms. Anyway, [ was
too busy designing the sequential sysiciu and soon stopped thinking about it.

Near the end of 1982, Ehud Shapiro visited ICOT with his idea of Concurrent
Prolog (CP). During his stay, he refined the idea and even made its subset imple-
mentation on Edinburgh Prolog[18], which worked very slowly but anyway allowed
us to try out the language. The language design considerably generalized the idea in
the Relational Language by allowing partially defined data structures to be passed
between processes. Lhe object-vriented programming style in CP proposed later
by Shapiro and Akikazu Takeuchi [19] showed that the enhanced descriptive power
would be actnally useful in practical programming.

The language feature attracted people at ICOT most might be its syntactic sim-
ilarity to Prolog, which the Relational Language did not have. This look-alikeness
was inherited later in PARLOG and then in GHC. This may have been the main
canse of the widespread misunderstanding that concurrent logic programming lan-
guages are parallel versious of Prolog.

Tn 1983 Clark and Gregory proposed their new language, PARLOG [10]. Tts
design seemed to have been greatly influenced by CP. A crucial difficrence was that.,
the argument mode declaration allowed more static program analysis, making it
much easier to implement nested guard structures.

When 1COT invited Shapiro, Clark, Gregory, and Ken Kahn, who was also
interested in the area, all at the same time, we had time to discuss varions aspects
of those languages. These discussions contributed considerably in deciding later
research directions. I was an outsider at that time, but cnjoyed the discussions.
lasic ideas of some of the features incorporated in KL1 implementations occurred
to me during the discussions, such as automatic deadlock detection by the garbage
collector [16].

[already had become sure enough through my experience of Prolog Programming



that we cannol avoid describing algorithms cven in logic programming languages.
When the basic design and the development time table of SIMPOS were more or
less established, T conld find some time for my participation in the design of CP
implementation.

After FGOS'84 held in November, Kazunori Ueda, then at NEC, started ex-
amining the features of CP, especially its synchronization mechanism by read only
variables and atomic unification in detail. His conclusion was that, to make the
semantics clean enough, the language implementation would become much more
complicated than was expected. That led him, at the very end of the year, to a new
language with much simpler and cleaner semantics, later named the Guarded Horn
Clanses (GHC) [20].

4.3 Guarded Horn Clauses

When Ueda proposed GHC. the group designing KL1 almost immediately adopted
it as Lhe basis of KL1, in place of CP. Although T cannot deny the possibility of
the “not invented here” rule slightly affecting the decision in a national project, the
surprisingly simpler and cleaner semantics of GHC was the primary reason.

GHC was much more welcomed than CP by language implementors. Those
who had not fonnd any reasonable implementation schemes of CP felt much more
relaxed. Only a few months later, Shunichi Uchida and Kazuo Taki imitiated a gronp
Lo plan an experimental parallel system, connecting several PSI machines, to make
an experimental implementation of GHC, which was called Multi-PST [13].

I was still feeling uneasy with its ability to express nested guards. Arbitrarily
nested environments were required to implement them correctly, in which variables of
the innermost environment and outer environments mnst somehow be distinguished,

In the fall of 1983, partly under the influence of the Flat version of CP adopted
as the basis of the Logix system developed at Weizmann Institute [12], the KL1
group decided not to include nested guards in the language, that made it Flat GHC.
This decision allowed me to start considering further details of the implementation
with Toshihiko Mivazaki and others, althongh my principal mission was still the
sequential system.

The last few months of the vear might have been the hardest period for those who
had been engaged in the paraliel Prolog hardware development. After examining
the rough sketch of Flat GHC implementation, the leaders of the group, Shunichi
Uechida and Atsuhiro Goto, decided that this language was simple enough for efhi-
cient implementation and descriptive enough for a wide range of applications. The
development of parallel Prolog machines was stopped and new project of building
parallel hardware that support a language based on Flat GHC was started.

4.4 MRB and My Full Participation

Based on experimentations with the first version of Multi-PS1, building a more
powerful and stable parallel hardware was planned, called Multi-PSI V2. For the
processing elements, the second generation of I'SI, PSI-1I, was chosen. From this
stage (i.e., from 1986) I was more fully involved in the parallel systems research as
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SIMPOS was approaching to its maintenance phase. My active motivation was that
I thought I solved the last remaining difliculty of efficient implementation.

Logic programming languages are pure languages in that once a value holder (a
variable or an element of a data structure) gets some value, it will remain constant. It
is impossible to update an element of an array. What one can do is to make a copy of
an array one element differing from the original. A straightforward implementation
ol actually copying the whole array was, of course, not acceptable. lepresenting ar-
rays with trees, allowing logarithmic time accesses, would not be satisfactory either.
Without constant time array clement aceesses, computational complexity of already
existing algorithms would become larger — massively parallel programs written in
such a language would be beaten by sequential programs with large enough problem
size. Henry Baker's shallow binding method |1} or similar methods proposed for
Prolog matched the basic requirements, but the constant overhead associated with
those methods seemed unbearable for the most basic primitives.

In early 1986, [ heard that a constant time update scheme was designed by
a group in a company cooperating with [COT. T talked with them and found a
crucial oversight in their algorithm, but the basic idea was excellent. If there was no
other references to an array except that used as the original of the updated array,
destructive update would not disturb the semantics. While the idea was simple,
the algorithm of keeping the single reference information where I found the bug was
rather complicated, as we had to cope with shared logical variables.

After several days of considering how to fix the bug, 1 reached a solution, later
named the multiple reference bit (MRB} scheme [6]. Only one-bit information in
pointers, rather than data objects, was needed for MIRB, which was especially ben-
eficial for shared memory implementation, since no memory accesses were needed
for reference counting. It was also suited for hardware support.

In later years, as static analysis of logic programs prospered, static reference
count analvses were also studied, vielding reasonable results. Dut this dynamic
analysis by MRB suited well to the human resource we had at ICOT. The lack of
compiler experts has always been a problem with the project. If we had tried static
analysis method at that time, the language implementation would not have been
completed in that short period of time.

4.5 KL1 and Multi-PSI V2

WNear the end of 1986, a group was formed to investigate details of the language
implementation on Multi-PSI. Weekly meetings of this group continued for about
two vears and the discussion there was the hottest [ know of at ICOT. The final
design of KL1 [21] was decided here and most of the proposed ideas were actually
implemented on Multi-PSI [14].

Most of the implementation issues were on optimization schemes, many based on
MRB. The principle there was to make single reference cases as efficient as possible
and have multiple reference cases handled correctly but less efficiently. This decision
later was proved to he reasonable throngh later programming experiences since the
single reference programming style was found to be not only efficient but also more
readable, Some similar languages designed more recently even enforce data structure
references to he single,



The disenssion in the gronp was not confined to implementation issues. Some
aspects of the specification of KL1I, especially on metalevel features, were also inves-
tigated. Although the KL1 language design group had already proposed that KL1
should have the metacall feature simlar to one in PARLOG (8], it only had gquali-
tative execution control mechanisms, while more qnantitative mechanisms such as
priority and resource control were needed as the parallel kernel langnage. It was rea-
sonable, I think, to define details of such metalevel features at the implementation
group, as they could not be clearly separated from implementation issues,

Loard distribution was made explicit by enabling the program to specify the
processor to execute goals. This decision seems to have been appropriate, as we are
still struggling to design good load distribution policies and it would have resulted
in disaster if the language implementation tried to automatically distribute the Inad
within large-scale multiprocessor systeins.

Data placement, on the other hand, was made automatic. Thanks to the side
effect-free nature of the language, data structures can he moved to any processors
and arbitrarily many copies can be made. This simplified the design considerably.

Features for building up a reasonable software development environment, such as
primitives for program tracing and executable code management, were also added.
These additions were designed so that the basic principles of the language, such as
the side cffect-free semantics, were not disturbed. Otherwise, the implementation
would have been much more complicated, disabling various optimization schemes.

As a whole, the design of the language and its implementation was rather con-
servative. We chose a design we could be sure to implement without much problems
and gave up our ambition to be more innovative, We had to provide a reasonable
development environment to allow enough time for parallel software research within
the project period.

The hardware development went on in parallel with the language implementation
meetings at Mitsubishi and the hardware arrived at [COT at the end of 1987, It
had 64 processors with 80MB of main memory each, connected by a mesh network.
The development of KL1 implementation on the hardware continued.

4.6 PIMOS

When the design of the basic meta-level primitives was completed, a team to develop
the operating system for parallel inference systems, PIMOS, was formed in 1987,
Given the well-considered language features, the design of PIMOS was not very
difficult.

As the real parallel hardware was expected to be ready much later, we needed
some platform of the operating system development. Although an implementa-
tion of GHC upon Prolog by Ueda was available, its performance was too low for
large-scale program development and many newly added features of KL1 for system
programming were lacking. A team led by Mivazaki made a fuller pseudoparallel
implementation in C, ealled PIMOS Development Support System (PDSS) to fill up
the needs,

Coding and debugging of PIM(S were done by a team of about 10 participants
using PDSS, until the langnage system on Multi-I’'SI V2 became barely operational
at the end of the summer of 1988,
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As we expected, but nevertheless to our surprise, the operating system developed
on the psendoparallel PDSS counld be ported immediately on to the real parallel
hardware. With multiple processors, the execution order ol processes on Multi-
P51 was completely different from PDSS. In theory, the dataflow synchronization
feature of GHC was expected to avoid anv svnchronization problems. But with
my own experience in developing a multitask operating system SIMPOS, 1 was
ready to encounter annoying synchronization bugs, On physically parallel hardware
on which scheduling-dependent bugs were hard to reproduce, debugging should he
much more difficult than on single-processor multitask systems. All the bhugs we
found were those of the language implementation except. for a few problems of very
high-level design.

This experience clearly showed us the merit of using a concurrent logic program-
ming language. In a parallel processing environment, not only a limited number
of system programmers, but also application programmers have to solve synchro-
nization problems. The dataflow synchronization mechawism can reduce the bhurden
almost entirely. The language implementation might be much more difficult than for
sequential languages with additional communication and synchronization features,
but the resnlts of the effort can be shared by all the software developers using the
language.

After abont two months, the language implementation and the operating system
on Multi-I'"SI V2 became stable, We could exhibit the system at PGCS'S88 held in the
beginning of December with several prelimivary experimental application software
systems [7).

4.7 Application Software Development

With its 64 processors, Multi-PSI V2 ran more than 10 million goal reductions per
second at its peak. This figure was not ontstanding, being only about ten times
faster than Prolog on main frame machines, but good enough to invite some of the
application researchers to parallel processing. Several copies of Multi-PSI V2 were
manufactured in the following years and nsed heavily in parallel software research
in various areas [15].

For about a vear or two, we heard manv complaints from those who were ac-
customed to Prolog and ESP. The lack of automatic backiracking made the lan-
guage completely different from Prolog, while their syntactic similarity prevented
some from easily recognizing the difference. Many tried to write their programs
in Prolog-like style, recognizing after the debugging struggle that the language did
not. provide antomatic search features and they had to write their own. Then they
reluctantly started writing search algorithms. This often resulted in much more
sophisticated searches than Prelog’s blind exhaustive search. They also had to con-
sider how these scarches could be parallelized in an efficient way. The language lured
Prolog programmers to the strange world of parallel processing with its syntactic
decoy,

Another typical difficulty seems to have been in finding a good programming
style in the language with too much freedom. The object-oriented style [19] be-
came recognized as the standard style later. Designing programs in KL1 became
synonymous with desiguing process structures.



Load distribution with decent communication locality is the kev to efficient paral-
lel computation. Load distribution strategies that made success for some particular
problems were compiled into libraries and distributed with the operating system
[11], accelerating the development of many application systems.

Although some application systems attained almost linear speedup with 64 pro-
cessors rather easily, others needed more eflorts to henefit from parallel execution,
Some needed a fundamental revision in the algorithm level; some could run only a
few times faster than on a single processor; some seemed to have attained reason-
able speedup, hut when certain changes in the algarithm successfully improved the
overall performance, the speedup figure went down considerably. Parallel algorithm
study with much more realistic assumptions on the hardware than PRAM is one of
the most important arcas of study in the future.

4.8 Parallel Inference Machines

In parallel with the development of the experimental Multi-PSI V° 2, design of more
powerful parallel inference machines, PIMs, was going on by a team headed by
Goto and later by Keiji Hirata. I participated in this hardware project only to
a limited extent, but I may have influenced on the grand design of the langnage
implementations on PIMs considerably.

Five different models were planned, corresponding to five different computer
manufacturers. This decision had a wore political than pure scicntific basis. Five
different meodels not only required more funding but also incurred considerahle re-
scarch management overhead. Qu the other hand, it may have been quite effective
in diffusing the technology to Japanese industry.

Asat was still difficult to fiud many language implementation cxperts, we decided
to use basically the same implementation, Virtual PIM (VPIM], for four out of five
models to minimize the efforl. The one remaining model inherited the design from
the implementation on Multi-PST V2. VPIM was written in a language called the
PIM System Langnage (PSL), which is a small subset of C with extensions to control
low-level hardware features. The idea was that the same implementation shonld be
ported to all the models by only writing PSL compilers. VPIM was developed
at ICOT nsing a PSL compiler built on Sequent Symmetry. The responsibility of
porting it to each mode] was on each manufacturer.

The first model of PIM to have become available in mid-1991 was PIM /m, the
successor of Multi-PSI V2 by Mitsubishi. It had up to 256 processors with its peak
speed of more thau 100 million reductions per sccond {ie., ahout ten times faster
than Multi-PSI V2). PIMOS and many application software developed on Mulli-
PSI were ported to PIM/m without much effort, as the programming language was
identical. Almost all of the software that showed near-linear speedup on Multi-PSI
V2 also did so on PIM/m.

Farly in 1992, another model, PIM/p, manufactured by Fujitsu, got ready for
software installation. This system had up to 64 clusters each with 8 processors shar-
ing the main memory throngh coherent cache memory. Load distribution within
clusters was automatic by the language implementation, while it was utill pro-
gramumed among clusters. This made the scheduling quite different from Multi-PSI
or PIM/w, but PIMOS and application software were ported without much of a
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problem except for hardware and language implementation problems, to be solved
in time for exhibition at FGCS'02 [5]. Again we thanked the language for its datafiow
synchronization.

5 Conclusion

There have been pros and cons on the onteame of the project.

One might argue that the project was a fallure as it could not meet its goal
described in the project’s grand plan, such as a computer that can speak lhike a
human. The grand plan didn’t actually say such a computer can he realized within
ten yvears. The goal of the project was to establish the basic technologies needed for
making such a dream come true. | consider such dreams a much better excuse than
Star Wars to obtain funding for basic research.

The FGCS project was the first scientific Japancse national projects conducted
by MITI. All the projects carried out before FGCS started, and many that followed.
were aiming primarily at promoting industry. This may have been greatly due to
the intransigent character of the project leader, Kazuhiro Fuchi. The results of the
project may not be immediately commercialized. But we have not been aiming at
such a short-term goal. Our goals are much longer-term: technologies that will he
indispensable when even personal computers can have multimillion processors,

Omne of the weak points of our project was, as mentioned earlier, the shortage
of human resource in basic softwarce technology. If we had three times as many re-
searchers who could design a programming language and who could write optinizing
compilers, the design of the parallel inference machines might have heen much differ-
ent. At least, more ambitions systems (scveral of them) could have been designed.
The language system was not our ultimate goal. Research in parallel software ar-
chitecture was a much more important goal, For securely providing a development
environment for parallel software research with the limited human resources, we
chose one safe route, which, I believe, was the best choice.

As a whole, I think the project was quite successful. It made considerable contri-
bution to the parallel processing technologies, especially in programming langnage
and software environment design. Research in parallel software for knowledge pro-
cessing has only begun, but without the project, there would have been nothing.

Further refinements of the design of the kernel langnage, its implementation both
in compilation scheme and hardware are needed, but they are relatively minor issnes.
The most important research topic of the future, T believe, is in the design of parallel
algorithms, The [argest achievement of the project was showing a way to build a
platform for such research activities.
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