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Abstract

In this paper, we study inferring negation from disjunctive logic programs. First, we
consider extensions of the GOCWA and the WGCWA for general disjunctive programs
Lssed upon the stable model semantics. We define new rules the GCWA™ and the
WOOWA™ which are natural extensions of the GOWA and the WGCWA. Second, we
introduce a new semantics called the possible world semantics [or general disjunclive
programs, which was initially intreduced in [Sak89] for posilive disjunctive programs.
The pessible world assumption {FWA) infers negation under the possible world seman-
tics, which lies between the GCWA and the WGCWA n positive disjunctive programs.
The PWA is also extended to the PWA™ for general disjunctive programs. Then it
is shown that the PWA™ provides the most carclul negative inference compared with
the GOWA™ and the WGCWA™, We also present a bottom-up modcel generation proof
procedure to compute each negation in general disjunctive programs.

1 Introduction

In Jogic programming and deductive databases, Reiter’s closed world assumption (CWA)
{Rei78) is usually employed as a default rule for inferring negation from a program. llow-
over, it is alsa well-known that the CWA works well only for definite Ilorn programs and
causes an inconsistency in the presence of disjunclive information in a prr:-gram.. In the
context of disjunctive logic programming, Reiter’s CWA is mainly extended in two ways:
ane is Minker's GCWA [Min82] and the other is Rajasckar et al’s WGCWA [REMS89] (or



equivalently the DDR [RT&8]). The GCWA is based upon the minimal model semantics of
disjunctive programs and usually interprets disjunctions exclusively, while the WGCWA is
weaker than the GCWA and interprets disjunctions inclusively. The problem is that both
the GCWA and the WGCWA fairly extend the CWA, but they are inherently different rules
in their own rights. In fact, in the absence of a single uniform framework, one has to use
different rules to treat both exclusive and inclusive disjunctions in the same program. Such
a situation actually happens; for instance, consider the situation that “Calendar days are
usually classified into Sundays, National-holidays and other weekdays. In Japan, when a
National-holiday falls on Sunday, the holiday is transferred to Monday.” This situation is

presented in the program:

Sunday V National-holiday V Weekday

Monday-is-holiday — Sunday n National-holiday

in which Sunday v Weekday is exclugive, while Sunday v National-holiday is inclusive.

T'o treat such a situation, Chan and Sakama [Cha89, 5ak89] have proposed the possible
world semantics {PWS). In a positive disjunctive program, the possible world assumption
(PWA} infers negation under the possible world semantics. The PWA lies between the
GCWA and the WGCWA | and can distinguish both types of disjunctions in a uniform
manmner.

In this paper, we firstly extend the GCWA and the WGCWA to the GCWA™ and the
WGCOWA™ for general disjunctive programs. These are natural extensions of the correspand-
ing rules and defined through the stable model semantics of general disjunctive programs.
Next, we extend the PWA to the PWA™ in general disjunctive programs. Compared with
the GCWA™ and the WGCWA™, the PWA™ enjoys several nice features. Finally, we also
present an algorithm to compute each negation in general disjunctive programs.

The rest of this paper is organized as follows, In Section 2, we review the previcusly
proposed results on positive disjunctive programs. In Section 3, we extend these results
to general disjunctive programs. In Section 4, we present a method for computing cach
negation using a bottom-up model generation proof procedure.

2 Negation in Positive Disjunctive Programs

2.1 Posilive Disjunctive Programs

A posthive disjunctive program is a finite set of clauses of the form:

Aivo.o VA —Bia NEBy (Lbm20D)



where A;'s and B;’s are atoms and all variables are assumed to be universally quantified at
the front of the clause. A clause is called disjunctive (resp. definite, negative) if { > 1 (resp.
I =1,1=10). A program containing only definite clauses is called a definite program and
a program containing definite and possibly negative clauses is called a Horn program. The
disjunction A; V...V A; is called the head and the conjunction By A. . A B, is called the body
of the clause. A ground clausc is a clause which contains no variable. A ground program is
a program in which every variable is instantiated by the elements of the Herbrand universe
of the program in every possible way. A ground program is a possibly infinite set of ground
clauses. From the semantical point of view, a program is equivalent to its ground program,
thus we consider a ground program in this paper unless stated otherwise.

An interpretation of a program ' is a subset of the [ferbrand base HBp of the program.
An interpretation [ satisfies the clanse 4, v .. VA — ZhAn. . . ANB, fBy,... B el
implies 4; € I for some (1 < 1 < {}. Fspecially, if there is a clause such that { = 0 and
Ih,..., By & [, I does nnt satisfly the negative clause. For a program P, a minimal set [
which satisfics every clause in P is called a mindmmal model of P. If P has a unique minimal
model T, it is also called the least Herbrand model. When there exists 2 minimal model of
P, Pis called consistent; atherwise, it is called inconsistent.

2.2 GCWA, WGCWA and PWA

For inferring negation from positive disjunctive programs, two alternative extensions of the
CWA are well known. One is the generalized closed world assumption (GCWA} proposed by
Minker [Min82], and the other is the weak genemlized closed world ussumption (WGCWA)
by Rajasekar et al [RLM29].

Definition 2.1 [Min82] Let P be a consistent positive disjunctive program and MAMp he
the set of all minimal maodels of . Then GCW A(1’) is defined by the set:

GEWA(P)={-A|Ae HBp and A ¢ [ for any T € MMp}. O
The Horn translaiion [RT88] of a disjunctive program P is defined hy:
Horn(Py={Ai=Bin. a8 |4V, . VA —Bia Al ePandl <:¢<1}.

Note here that Horn(#) is always consistent, since it does not contain negative clauses,



Definition 2.2 [RT88, RLM89]' Let P be a consistent positive disjunctive program and
Horn(P) be its Horn translation. Suppose that My, n(p) is the least Herbrand model of
Horn(P). Then WGCW A(P) is defined by the set:

WGCWA(P) = {'lu‘! |A€e HBp and A ¢ MH",.[}:}}, o
FProperties of the GCWA and the WGCWA are as follows.

Theorem 2.1 [Min82, RLM&9] Let P be a consistent positive disjunctive program and A
be a ground atom. Then,

(1) FUGCWA(F) is consistent.
PUWGCWA(P) is consistent.

(i) P AIff PUGCWA(P) = A.
Pl A PUWGCWA(P) & A.

(i) P C I does not imply GCWA(P') C GCWA(P).
P C P implies WGCWA(P') C WGCWA(P).

(iv) WGCW A(P) € GCW A(P).
(v) For a definite program I', GOWA(P) = WGCWA(F) = CWA(P). O

That is, (i) both GCWA(P) and WECW A(F) are consistent with P, (ii) positive facts
proven from P are dnveriant, (i) the GCWA (resp. WGCWA) is nonmenotonic (resp.
monotonic), {iv) the GCWA is stronger than the WGCWA, and (v) for definite programs
cach rule reduces Lo the CWAL

Example 2.1 Let ' = {aVh«, c— anb}. Then GCWA(P) & ~cand WGCWA(P) &
-¢, O

In the above example, the difference between GCWA{P) and WGCW A(F) comes from
the interpretation of a v b. That is, GCW A{P) interprets the disjunction exclusively, while
WGCWA(FP) interprets it inclusively. However, consider the program P’ = PU{~ a A b}
In this new program P, the clause «- a Al inhibits an inclusive interpretation of a v b, then
=¢ should be true, while WGCW A(FP') still cannol infer =e. This is because the WGCWA
does not consider the effect of negative clauses in a program and often fails to capture the

*Here we employ the definition by Hoss and Topor [HT88] who have introduced it in the context of the
disjunciive datobase rule (DOR). According to [RLMBS, LMRI2], the DDR and the WGCWA are equivalent.

4



intended meaning of the program. Generally speaking, the GCWA is too strong to interpret
inclusive disjunctions, while the WGCWA is too weak to treat exclusive disjunctions. Then
to treat both types of disjunctions in a program, one has to use different rules in the same
program.

To improve such a situation, Chan and Sakama [Cha88, Sak89] have propesed the pos-
sible world semantics (PW5) which can distinguish both types of disjunctions in a uniform
manner. The following results are due to [Sak89].

Given a ground disjunctive clause C: A, v...v Ay~ B A ... A B and a non-empty
subset § of {A;,.., A;}, the split of C with respect to 5§ is defined by the set of ground Horn
clauses {A; — By A ... A By | 4; € §}. Here, C has 2! — 1 splits.

Definition 2.3 Let P be a positive disjunctive program. Then Horn( F) is the set of all
ground Horn programs such that each Horn program P in Horn(F) is obtained hy

(i) replacing each ground disjunctive clause from P with the clauses in one of its splits;

(ii) keeping other (non-disjunctive) ground clauses from F. O

Definition 2.4 Let I’ be a positive disjunctive program. Then the set of possible worlds
W of Pis defined by the set of least Herbrand models of consistent programs in Horn{ F).
]

Example 2.2 Let P = {avb+~—, bVece—, ~—bAc}. Then Horn(P) = {{a —, b+, «
baeh{am—, e=, =brel, (b, —bAch{br, co—, —bac}{a—, be—, c=
, = bact} Since the last two of Horn(P) are inconsistent, the set of possible worlds of
s PWpe = {{a,b}, {a,e},{b}}. O

Lemma 2.2 |Sak80] A consistent positive disjunctive program has at least one possible
world, O

Lemma 2.3 [Sak89] A possible world of a pesitive disjunctive program F is a model ol P.
O

The notion of possible worlds is different from minimal models. In fact, in Example 2.2
{a,b} is a possible world, bul not a minimal model. By definition, the set of all possible
worlds includes the set of all minimal maodels.,

Lemma 2.4 [Sak80) Let P be a consistent positive disjunctive program, MM p be the sel
of all minimal models of P, and PWp he the set of all stsihlE worlds of P. Then the satl
of all minimal elements from PWpe coincides with MAMp. O



Especially, a definite program has a unigue possible world which is the least Herbrand
model of the program. Under the possible world semantics, negation is defined as follows.

Definition 2.5 Let F be a consistent positive disjunctive program and PWp be the set of
all possible worlds of F. Then the possible world assumption (PWA) of F is defined by the

set:
PWAP)={-AlAecHBpand A I forany I € PWp}. O

Theorem 2.5 [5ak20] Let P be a consistent positive disjunctive program and A be a
ground atom. Then,

(i) P PWA{FP) is consistent.

(i) PEAIfFPUPWAI) = A

(iti) P C P’ does not imply PWA(P") C PWA(P).

{iv) For a definite program P, PWA(P) = CWA(P). I

The next theorem presents that the PWA is stronger than the WGCWA and weaker
than the GUWA.

Theorem 2.6 [Sak89] Let P bea consistent positive disjunctive program. Then WGCOW A(P) C
PW A(P) C GCW A(P) holds. Especially, if P U Horn(/’) is consistent, WGCW A( P} =
PWA(P). O

Fxample 2.3 (cont. from Example 2.1) Let P = {aVb .+« c—anb}and P' = Pu{—
a Ab}. Then, PWA(P) £ —¢, while PWA(/”) = -c. O

[t should be noted that P' U Horn(P') 15 inconsistent in the above example, hence
PWA(P') infers proper negation compared with WGCW A( ).
3 Negation in General Disjunctive Programs

3.1  General Disjunctive Programs

A general disjunctive program is a finite set of clauses of the form:
AV N Ay By A By AnotBma AL Aot (120, n 2 m > 0)

where 4;'s and fI;’s are atoms and all variables are assumed to be universally quantified at
the front of the clause. An operator not preceded each atom By(m + 1 € £ < n) denotes
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negation by failure [ClaT8]. A clause is called disjunciive (resp. normal, negative), if [ > 1
(resp. { = 1,1 =0). A program containing only normal clauses is called a normal program
and a program containing normal and possibly negative clauses is called a general logic
program. A program which contains no predicate defined recursively through its negation is
called stratified. A general disjunctive program reduces to a positive disjunctive program,
when m = n (containing no not) for every clause. The notion of head, body, ground clause
{program) are defined in the same way as in the pravious section.

An interpretation [ satisfies the clause Ayv.. vy — Ao Abganel By Al AnotB,
if By,..., By € 1and Buyy,. .., B, @ Iimplies A; € I for some ¢ (1 <1 < [). Especially, if
there is a clause such that [ =0, By,. .., 8m € [ and Bnyq...., By € 1, [ does not satisfy
the negative clause. An interpretation which satisfies every clause in a program is called a

maodel of the program.
As for the semantics of general disjunctive programs, we consider the stable model se-
mantics of disjunctive programs which was initially introduced by Gelfond and Lifschitz

[GL88] for normal programs.

Definition 3.1 Let P be a general disjunctive program and [/ be its interpretation. Con-

sider a positive disjunctive program P! obtained from P as follows:

Pl o= {AV.. VA — Bih... A By | thereis a ground clanse Ay v ...V 4 —
Bya . NBgnanotBeag Ao AnotB, ([ >0)from Pand Bryy,-...Ba € I}

Then if I coincides with a minimal model of P, I is called a stable model of P. O

Note that the above definition is an extension of the original one in the sense that stable
models are defined for programs containing disjunctive clanses as well as negative clauses.
Similar extension is also found in [Prz00a]. We say that a general disjunctive program is
eonsistent if it has a stable model; otherwise, it is called inconsistent.

3.2 GCWA™, WGCWA™ and PWA™

In this section, we extend the GOCWA, the WGCWA, and the PWA to general disjunctive

Programs.

Definition 3.2 Let P be a consistent general disjunctive program and 57 p be the set of
all stable models of P. Then GCW A™(P) iz defined by the set:

CCWAT(P)={-A|AcHBpand Ag [ forany [ € §Tp}. O



To define a suitable extension of the WGCWA, we introduce a translation which trans-
forms a general disjunctive program into a normal program.

Definition 3.3 The normal translation of a general disjunctive program P is defined by:

NP(P) = {Ai= B A . AByAnotBy AL AnotHy | Ayv .. v A —
Byao ANByAnotByug AL AnotB, € Pand 1<i<l}. O

The NP(F)is a direct extension of fforn(P), but it is not always consistent.
Example 3.1 Let P = {aV b nota}. Then STp = {{b}}, while STyppy =0. O

Definition 3.4 Let P be a consistent general disjunctive program and NFP(F) beits normal
translation. Let §Tp and ST ypep) be the sets of all stable models of P and NP(P),
respectively. Then WGCW A™(P) is defined by the set:

WECWAT(Py={~A|AeHBp and A & [ for any [ € STp U STnppy ). O

Next we define the possible world semantics for general disjunctive programs.

Given a gronnd disjunctive clause C : 4yV.. VA — H AL A Bamtanot B AL . AnotB,
and a non-empty subset § of {4y, .., Ar}, the split of C with respect to 5 is defined by the
set of ground clanses {A; — By A ... A By AnotBug AL AnotD, | A; € 5). Here, C has

20~ 1 splita.

Definition 3.5 Let I’ he a general disjunclive program. Then GLP{P) is the set of all
ground general logic programs such that each general logic pragram P in GLP(F) is
obtained by

(i) replacing each ground disjunctive clause from P with the clauses in one of jts splits;

(i1) keeping other (non-disjunctive) ground clauses from P. O

Delinition 3.6 Let P be a general disjunctive program. The set of possible worlds PWp
of P is defined by the set of stable models of consistent general logic programs in GLP(F).
]

Lemma 3.1 A consistent general disjunctive program has at least one possible world, 0O

Lemma 3.2 A possible world of a general disjunctive program P is a model of P, O



Lemma 3.3 Let P be a consistent general disjunctive program, ST p be the set of all stable
models of P, and PWp be the set of all possible worlds of P. Then the set of all minimal
elements from PWp coincides with ST p.

Proof: By definition, a stable model M of P is also a stable model of some split program
in GLP(P). Then M is also a possible world of P. Since M is minimal, it is also a minimal
element in PWpe. On the other hand, if M is minimal in PWg, it is also 2 minimal model
of P (by Lemuma 3.2). By the definition of possible worlds, it is also stable. O

Especially, possible worlds coincide with stable models in general logic programs.

TNefinition 3.7 Let F be a general disjunctive program and PWpe be the set of all possible
worlds of P. Then PW AT(F) is defined by the set:

PWA™NP)={-A|lAeHBpand A ¢ I forany { € PwWp}l. O

Now we investigate properties of cach rule. In the following, P l=s7 A (resp. F Epw A)
iff far any I € §Tp (resp. 1 € PWp), I E A.

Theorem 3.4 Let P be a consistent general disjunctive program and A4 be a ground atom.

Then the following propertics hold.

1. (i) PUGCWAT(F) is consistent.

(i) P sy Aiff PUGCWA™(P) Egp A.

{iii) P C P does not imply GCW A~(P') C GCWA™(P).

{iv}) For a positive disjunctive program #, GCWA (P)=COWA(P).
2. (1) PUWGCWAT{P) is consistent,

(YVPEsT AT PUWCOCWA™(FP) Esy A

{iii) P € P does not imply WECW AT ) CWECOW AT (F).

(iv) For a positive disjunctive program P, WGCWAT(F) = WGCWA(P).
3. (i) PUPWAT(FP)is consistent.

{ll:l P I:pw Aiff Fu PH".‘JJ_'{J.’}I |=.l'"1‘|r‘ A.

(i) P C P does not imply PWA(F') C PWAT(P).

{iv) For a positive disjunctive program P, PWA™(P) = PWA(P).

Proof: 1. (i) Since P is consistent, it has at least one stable model and every negated
atom in GCWA™(P) is not in any stable model of P, hence PUGCWA™(P) is consistent.
(i) For invariance ol positive facts, il PUGCWAT(F) |Esr A, A is true in every stable



model, hence P =57 A. The converse is also true. (iii) Nonmonotonicity is clear since the
GCWA”® includes the GCWA (by (iv)) which is nonmenatonic. (iv) Since stable models
coincide with minimal models in a positive disjunctive program, the result immediately

follows.

2. (i} Consistency of WGCWA™(P) follows from the fact that STp € STpUST yppy
and any atom assumed false under WGCW A™(P) is not included in any stable model of .
(i) The result also follows {rom the proof of (1}. (iil) For nonmonotonicity, see Example 3.2.
(iv) Since ST p UST ypppy reduces to MAMp U Mtroen(py in @ positive disjunctive program
P, and each minimal model in MMp is a subset of My gmp), the result also holds. The
part 3 is proved in a similar way to part 1. 0O

Note that in contrast to the WGCWA, the WGCWA™ is nonmonotonie,

Example 3.2 Let Py = {aVh — note, ¢ —d}and P, = PAU{d «}. Then WGCW 4™ () |=
—¢ and —d, while WGCWAT(A) = —aand =b. O

For consistent general logic programs, the three rules coincide with each other.

Lemma 3.5 Let F be a consistent general logic program. Then, GCW A™(P) = WGCWA™(P) =
PWA™(P).

Proof: For a consistent general logic program P, STpUST npipy = STp. Then the rela-
tinn GCWAT(FP) = WGECW A™(P) holds by each definition. The relation WGOW A= (P) =
PWAT( ) also holds since §Tp = PWp for a consislent general logic program 7. O

T'he next thearem presents the relationship between each rule in general disjunctive

pPrograms.

Theorem 3.6 Let P be a consistent general disjunctive program. Then,

(i) WGCWA™(P) C GCW A~(P).
(i) PWA(P)C GCWA™(F).

Proof: When P is consislent, STp C STp U ST wpipy by definition, hence (i) follows.
The part (i) also follows from the fact that §7T C PWe. O

As for the WGCWA™ and the PWA™, there is no inclusion relationship.
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Example 3.3 Let P = {avbVe— notd, e — anbAnote}. Then §Tp = {{a},{b},{c}}
and ST wpipy = {{a,b,c}}, hence WGCWA"(FP) | ~d and —e. While, there is a possible
world {{a,b,e}}, then PWAT(P) £ —e. Hence WGCWA™(P) € PWAT(P). Clearly, the
converse inclusion relation does not hold by Theorem 2.0 either, since each rule reduces to
the PWA and the WGCWA in positive disjunctive programs. O

ln the above example, WGECW A7(P) treats the disjunction & v & V ¢ inclusively, then
it infers —e, This is also the case for GOW AT P) which treats it exclusively., On the other
hand, there is a possible world in which a and b are inclusively true and ¢ is exclusively
false at the same time, then —e is not inferred by PW A™(P). This example illustrates that
the possible world semantics also properly treats both types of disjunctions in a general
disjunctive program and provides the most careful negative inference compared with the
GCWA™ and the WGCWA™. Moreover, when a program is inconsistent, the PWA™ often

behaves interestingly.

Example 3.4 Let P = {avb —, b — a, — mola, ¢+~ notb}. Then §Tp = B,
STrnppy = {{a,b}}, and PWp = {{a,b}}, hence GCWA™(FP) is not well-defined, while
PWA™(P) and WGECWAT(FP)imply ~e. D

Nute that the above program is inconsistent (hence Lemma 3.3 does not hold here), but
{a,b} is a model of P (Lemma 3.2). Observing the above program, the third clavse asserts
that a should be true, which possibly holds by the first disjanctive clause. While, the truth

of a implies the truth of b in the second clause, then it seems natural to assert the falsily

of ¢ by the last clause.
By definition, the PWA™ is well-defined whenever the GCWA™ or the WGCWA™ is.

Further, the above example suggests that even in an inconsistent program, the PWA™ often
infers proper negation which cannot be obtained under the GCWA™.

4 Computing Negation

4.1 Dottom-up Model Generation Proof Procedure

The algorithm we use to compute negation in disjunctive programs is hased upon the
bottom-up model generation proof procedure. In this section, we consider a program which

cansists of clauses of the form:

Nhyw.. . wl— Boa..on Dy
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where I'; {1 < ¢ < {}is a conjunction of atoms, B; (1 < § < m) is an atom, and all variables
are assumed to be universally quantified at the front of the clause. A positive disjunctive
program is regarded as a special case where each I'; is an atom. We also assume here and in
the next subsection that a program is function-free and range-restricted?, such conditions
are usually imposed upon a program in the context of deductive databases.

Let P be a program presented above and conj{T';) be the set of conjuncts from ;.
Then for a given set of interpretations I}, the following algorithm generates the new set of
interpretations Ip''. Let I% = {0} and NOGOOD = §. For i > 0 do:

1. For every non-negative clause Cy, in P of the form:
Co:Thv.. v~ B A...AB,

such that [ € T4 and T = (B A ... A By )o for some substitution o, put J U
Ug, {eoni{'j}a}

(1 <7 <) into Tp™ if it is not a supersel of any element of NOGOOD.

2. If there is a negative clause in / of the form:
— B]. A .I'"- B‘m

such that J & TL and T | (B, A ... A B, )o for some substitution a, then put { into
NOGOOD.

d. Iterate the above two steps until it reaches the fixpoint Z2*' = I3 which is closed
under the above two operations.

The ahove procedure performs forward reasoning based upon hyper-resolution and case-
splitting on non-unit derived clauses. Note here that since a program is range-restricted,
each disjunct T'; generated in step 1 is completely instantiated, hence soundness of case.
splitting is guaranteed [MB88]. Moreover, since we consider a finite function-free program,
the above procedure always terminates in a finite step. The NOGQO D records nnsatisfiable
interpretations of a program, which is nsed to avaid unpecessary expansion during the
closure computalion.

The next theorem preseats that the fixpoint closure computed by the above procedutre
exaclly provides the set of all possible worlds of a program. In the following, let T3 be the
fixpoint closure obtained by the ahove procedure.

Theorem 4.1 Let P be a positive disjunctive program and PWp be the set of all possible
worlds of 7. Then PWp = T3,

TThat is, any variable in a elause has its accurrence in a positive atom in the body,

12



Proof: [ isin I§ iff for each A; in I, there is a ground clause 4, V...V A= Bin...ABp
from P such that 1 <4 </land {B,...,Bn}C 1

iff T is the least Herbrand model of a split program P' in Horn{ P} such that 4; — B A
oA By isin P

T I'isin PWp. O

Especially, if I% = @, P is inconsistent. By Lemma 2.4, the following result directly follows.

Corollary 4.2 Let P be a positive disjunctive program and MM p be the set of all minimal
models of P. Then MAp = min(Tg) where min(Tg) = {/ € T§ | AJ € I3 such that J C
I}. O

Theorem 4.3 For a consistent positive disjunctive program P and a ground atom A,

(i) GOWA(P)E ~A Iff A g [ for any [ & min(Ig).
(i) If PU Horn(P) is consistent, then WGCWA(P) b -A T A ¢ I forany T € Ip.
(i) PWA(P) = ~A iff A g I for any J € T%.

Proof: (i) and (iii) directly follow from each definition and the above theorem/corollary.
When P U [Torn( "} is consistent, the WGCWA coincides with the PWA (Theorem 2.6),
kence the result also holds. O

Example 4.1 Let P = {av b ~, + b} where P U Horn(F) is inconsistent. Then

b {a} € In, while WGCWA(P) £ -b O

4.2 Program Transformation

For general disjunctive programs, Inoue et al [IK1192] have proposed a program transforma-
tion which transforms a general disjunctive program into a semantically equivalent not-free
program. According to [IKH92|, given a gencral disjunctive program P, each clanse

Adiv.ooovA =B A ABnAnotBa i n L A netD,
in P is transformed into the fellowing clause in P™:

(A A =KHBppi A A=KV LV (A A SKBRga AL A KB,
VKB4 V.. . VEE, - By ... n By (1)
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In addition, for each atom A from P, the following clauses are in P*:

— ANKA {2}
= KA A =KA {3}

where KA and -KA are newly introduced atoms meaning A is believed and disbelieved
respectively,

In the above transformation, each not 1; in the body is rewritten in ~KB; and shifted
to the head of the clause. An intuitive reading of each rule is that (1) if By, ..., By are
true, then some A; {1 < ¢ < [) becomes true with the condition that B 4y,..., B, are
disbelieved; otherwise, some By (m+ 1 < j < n}) is believed. While, (2) (resp. (3)) says
that it cannot happen that A is true (resp. believed) and disbelieved at the same time.

Using this translation, every general disjunctive program P is transformed into a not-
free disjunctive program ", Since P* is a subiclass of the program presented in the previous
section, its model generation proof procedure is already defined. Let /* he an interpretation
of #*. Then [ is called canonicel, il KA € I* implies 4 € /" for each atom A. Civen
the mterpretation /* and the set of inlerpretations Zp«, let abi (Y = I" 1 HBp and
0bj.(Ip<) = {oby(i*) | /* & Tps and I* is canonical }. Then the following relationship
holds.

Theorem 4.4 [IKHY2] * Let I be a general disjunclive program and /7" he its trans-
fured program. Then STp = obj(min(Tg.)). Especially, if obj(min(Z8.)) = 0, P is

inconsistent. O

Lemma 4.5 [[KII92, IS92] Let P be a general logic program and P* be ils transformed
program. Then §Tp = obj(Ip.). O

Theorem 4.6 Let I’ be a general disjunciive program. Then PWp = altjo (T )

Proof: Let [ be a stable model of some consistent general logic program /™ in GLP(F).
Then by Lemma 4.5, I is in obj(Th.). Since P'is a program obtained by splitting each
disjunctive clause in P, Z§.. is a subset of T, Hence J is also in obi(I%.). The converse

is also shown in the same manner. O

Theorem 4.7 For a consistenl general disjunctive program I” and a ground atom A,

(i) GCWAT(P) = =AM A ¢ 1 for any [ € obj(min(14.)).

*In [IKH$2), a slightly different procedure is used, but the result still holds here.
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(il) WGCW A™(P) | ~A iff A ¢ I for any I € obje(min(Zg.)) U 0bse(Ti pipye)-
(iii) PWA™(P) |z ~A iff A & I for any I € obj(Tg.).

Proof: (i) and (iii) directly follow from Theorem 4.4 and 4.6. (ii) also follows from Lemma
4.5 and the definition of the WGCWA™. O

Fxample 4.2 (cont. from Example 3.4) The pragram P is transformed irto P* = {aVb —

boe—a, Kam—, {(cA-Kb)vKb—}U{—An-KA —KAA=KA]A=a,b, c}. Then
v, = {{a,b,Ka, Kb}, {b,Ka,Kb}}. Thus, obj.(Tg.) = {{a,b}}, which contains the unique
possible world of P. On the other hand, min(T%.} = {{b,Ka,Kb}}, then obj.(min{Tg.)) =
@, hence P has no stable model. O

5 Related Work

The GCWA and the WGCWA are initially introduced for positive disjunctive programs in
(Min&2, RLMS89]. For stratified disjunctive programs, the GCWAS [RMB89] and the ICWA
[GPP8Y] are known as the extensions of the GCWA. The GCWA™ clearly reduces to them
in stratificd disjunctive programs. The GCWA™ is a dircet extension of the GCWA and is
usually assumed to infer negation under the stable model semantics when a program has
multiple stable models. Alternative approaches for inferring negation in general disjunctive
programs are presented by several researchers in the context of the extended well-founded
semantics [Ros39, BLM90, Prz90b, Prz01, Dix92]. Under the well-founded semantics, nega-
tion assumed under the CWA corresponds to the unfounded set [VRS91] of a program.
Although all of these approaches are the extensions of the well-founded semantics, each
semantics provides a slightly different framework with each other. (A comparisen between
some of them is presented in [BLMS0, Dix92}.) Roughly speaking, the difference between
the GCWA™, the WGCWA™ and those previously proposed approaches corresponds to the
difference between the stable model semantics and the well-founded semantics of normal
programs.

The possible world semantics is also independently discovered by Chan [Cha80] and
lately by Decker [Dec92] under the name of the supported model serantics. Decker and
Casamayor [DC92) have also shown that their supported world assumption, which corre-
sponds to the PWA, satisfies the properties such as cautious monotomnicity, cummulativity
and rationality in the sense of [KLM90]. While these works have characterized the PWS
from different points of view, they consider only positive disjunclive programs and its ex-
tension to general disjunctive programs is not studied in the literature. Ross [RosB9| has
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proposed the optimal well-founded semantics which can treat both inclusive and exclusive
disjunctions in a general disjunctive program. However, his semantics requires each rule
to be clarified whether it is exclusive or inclusive, and it cannot treat a disjunctive clause
containing both types of disjunctions at the same time as is presented in the introductory
example. Recently, Dung [Dun01] has also presented a completion theory of negation which
can distinguish both types of disjunctions in a program. However, it is defined for only
positive disjunctive programs and also cannot treat both types of disjunctions in the same
clause. Gelfond [Gel91] has developed another theory of negation from the epistemic point
of view, which is also different from ours,

To distinguish two kinds of disjunctions, one may consider that instead of inserting
negative clauses, inserting cyclic clavses under the usual minimal model semantics is enough.
But this is not the case. Consider to interpret the disjunction a v b inclusively, adding eyelie
clauses o «— b and b — a to it. The resultant program now implies the equivalence a <> b.
Applying it to the introductory example, it implies Sunday < National-holiday, which is
ol course not our intention.

We have used negative clanses to distinguish exclusive disjunctions from inclusive ones.
However, instead of using negative clauses, we can also use ezplicit negation in the context
of cxtended logic programs [GLI1). For instance, we can replace — aAb by —aV =b — in an
extended disjunctive program and also introduce the possible world semantics for extended
digjunctive programs which is defined in e same manner presented in this paper. Note
here that the answer set semantics [GLO1] of extended disjunctive programs is also based
upon the minimal model semaatics, hence cannot distinguish two kinds of disjunctions in
general. For example, the programs {a v b —} and {a Vb —, -gV =b ) have answer
sets {a}, {6} and {u,=b}, { -, b}, respectively. In both programs, the disjunction is treated
exclusively,

A battom-up model generation proof procedure for computing minimal and stable mod-
els in disjunctive programs is also developed in [I'M91, FLMS91). Compared with theirs,
our algorithm is dedicated [or computing not only stable models, but also pessible worlds.
Further, our algorithin has seme computational advantages over them even for computing
stable models [I1502]. Chan [Cha89] also presents a different procedure which, given a pos-
itive disjunctive program F and its model M, finds a subset of M hat is also a possible
world of P A top-dowu prool procedure for evaluating queries under the possible world

semantics is also presented in [Sakg9).
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6 Concluding Remarks

This paper has presented a theory of negation for disjunctive logic programs. The GCWA,
the WGCWA and the PWA for positive disjunctive programs are naturally extended to the
GCWA™, the WGCWA™ and the PWA”™, respectively for general disjunctive programs. It
is shown that the GCWA™ is stronger than the WGCWA™. On the other hand, the PWA”™
provides the most careful negative inference compared with the other two, and often infers
proper negation from an inconsistent general disjunctive program. We have also presented
a bottom-up model generation proof procedure for computing possible worlds and negation
in disjunctive logic programs. It is sound and complete to compute stable models, possible
worlds, and corresponding each negation for function-free range-restricted programs. The
proof procedure is also implemented on a bottom-up parallel model generation theorem
prover called MGT P developed at [COT.

The possible world semantics presented in this paper is based upon the stable model
semantics of general logic programs, hence it does not salisfy cumulativity nor medularity
principle in general [13ix02]. However, these properties are not serious shortcomings of
the possible world semantics; if one desires such properties, we can easily construct an
alternative possible world semantics based upon another cumulative and modular semantics
such as the well-founded semantics. In fact, our possible world semantics is defined through
the set of general lagic programs, it is easy to construct its well-founded version by employing
the well-founded models instead of stable models in its definition. In other words, we can
comstruct a possible world semantics of digjunctive programs corresponding lo eny semaniics
Jor general logic progroms.  And such a possible world semantics promises to have nice

pruperties as is presented in this paper,
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