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Abstract

Because knowledge acquisition is a very difficult process, some
qualitative reasoning systems use deep knowledge representing
principles. But using deep knowledge increases the complexity of
reasoning because the grain size of reasoning that uses only deep
knowledge is sometimes too small. We therefore propose a method for
generating knowledge that has a larger grain size. This method
senerates "aggregated knowledge," representing the behavior of large
components, from deep knowledge representing the behavior of small
components. The generation process consists of three analysis steps. The
first is gualitative simulation to find all possible behaviors of the target
large component. The second is to find all the possible states from these
behaviors. And the last is to find the transitional order of those states.
These steps generate apggregated knowledge that has existential
conditions, relations, and transitional orders for each possible state. Such
aggregated knowledge can represent all kinds of components and 1s
useful in applying qualitative reasoning to large and complex systems.

L. Introduction

Qualitative reasoning is one of the methods for simulating and
explaining behaviors of dynamic systems [2], [3]. It can be used to build a
model that uses a set of differential equations to describe the mechanism
of behaviors, it can be used Lo analyze the results of qualitative simulation,

and so on [5], [6], [7].
Conventional expert systems use shallow knowledge, which is based on
expert's experience. But shallow knowledge has the following problems:
1) It is difficult to acquire knowledge from experts.
2) Tt is difficull to rearranging a knowledge base for application to
other domains or tasks.



3) Reasoning systems using shallow knowledge cannot solve
unpredictable problems.

Unlike shallow knowledge, deep knowledge represents principles, such
as physical rules. Because principles are independent of specific tasks,
one knowledge base can be used to build models of object systems in
various domains. But if a qualilative reasoning system uses only deep
knowledge, the grain size of the knowledge might sometimes be too small.
For example, to solve mathematical problems, we use formulas rather
than axioms. Since formulas are acquired by the process that uses axioms
to solve a certain problem, the grain size of formulas is larger than that of
axioms. Using only deep knowledge thus increases the complexity of
computation.

To apply gualitative reasoning to complex systems, we use knowledge
with a large grain size (like that of shallow knowledge), and we adjust the
grain size of reasoning according to the situations. Falkenhainer and
Forbus present one of the largest-scale systems that has ever been treated
with qualitative reasoning [1). Their method uses hierarchieal knowledge
and shifts the grain size of reasoning. That is, their method can build a
smaller-grain-size model of the target system when a uscr sclects both the
small grain size of model description and the standard behaviors for the
system. But it is difficult to acquire knowledge about the target domain
without contradiction. Liu and Farley propose a set of rules that choose
proper ontologies in reasoning about clectronic cireuits [4]. Their method
is effective because the reasoning system can analyze the same problem
from different perspectives, but it does not use complex circuits and it does
not automatically give the knowledge or the rules for shifting ontologies.
When more complex systems are treated, the acquisition of knowledge
and rules might be an intrinsic problem. It 1s difficult for users to acquire
large-grain-size knowledge because they must analyze all possible states
in which the component specified by the large-grain-size knowledge can
behave. In short, this knowledge must be able to take in the whole real
number space of input wvariables. It is impossible to simulate the
component numerically at regular input values ranging from minus
infinity to plus infinity, so a the method for automatic knowledge
acquisition is needed.

We propose a methed for generating large-component knowledge by
aggregating small-component (device) knowledge. This small-component
knowledge is treated as deep knowledge, and the large-component

knowledge is treated as task-dependent knowledge. In an electronic
cireuit, for example, small-component knowledge represents the function

of devices like resistors and transistors, whereas large-component
knowledge represents the behavior of small circuits like amplifiers or
Schmitt triggers. In this paper, we call such large-component knowledge
"aggregated knowledge.”

Our method generates the aggregated knowledge representing the
behaviors of large components, but it cannot decide the structure of
components that consists of more than one small component (device). The
user must therefore specify both the structure of a component and its
input and output variables. Yoshida proposed a method that decides the



structure of components by using the results of qualitative simulations
[13], [14). His method can extract the structures of NOR gates and NOT
gates from the inference pattern of shift registers. When we are not
dealing with design problems, however, we usually know the structure of
the target systems. Our method therefore assumes that their structure is
known,

The method we propose here has the following advantages:

1) Tt reduces the complexity of reasoning, because the analysis of the
internal conditions of the large component is omitted.

2) Aggregated knowledge can be used like deep knowledge because it
has the same form.

3) Aggregated knowledge can represent diseontinuous transitions,
whereas ordinary qualitative reasoning systems can deal only
with continuous transitions.

Therefore, in adopting qualitative reasoning to analyze an specific task,

we can build & model with the proper grain size of knowledge. If we want
to analyze a Schmitt trigger circuit, for example, we can use only device

knowledge and Kirchoffs Law as deep knowledge. But if we want to
analyze a large circuit including a Schmitt trigger, we can also use the
large-component knowledge representing the function of a Schmitt
trigger. The time for computation is therefore reduced. And this method
can generale the knowledge of a much larger component by using large-
component and small-component knowledge recursively.

The knowledge generation process consists of three analytical steps.
The first is qualitative simulation, with small-component knowledge, to
find all poszible behaviors of the target large component. The second is to
use these behaviors to find all possible states. And the last step is to find
the transitional order of those states. Finally, we can generate the
agpregated knowledge that includes the existential conditions, relations,
and transitional order for each possible state.

In this way, we can get a lot of aggregated knowledge according to the
tasks or domains. Thus we can have not only the common database
congisting of deep knowledge, but also the effective library consisting of
aggregated knowledge for specific tasks.

Section IT of this paper gives an overview of our method, Sec. IlI
outlines our gualitative reasoning system Qupras (for gualitative physical
regsoning svstem), and Sec. IV describes the representation of aggregated
knowledge. Section V shows the method for aggregating knowledge, and
See. VI demonstrates twe examples of aggregating knowledge about
electronic circuits. In Seection VII, we discuss the directions for future
research, and finally, in Sec. VIII, we conclude by wvery briefly
summarizing this paper,



I1. Overview of generating aggregated
knowledge

We have developed a decision support system called Desq (for design
support system based on gualitative reasoning) [10], [11], [12] based on the
qualitative reasoning system Qupras [8], [9]. A designer often does not
directly design a new circuit but instead simply modifies an old circuit.
Sometimes designers can satisfy requirements simply by changing the
parameters of components in an already-designed circuit. In these cases,
the designer knows the structure of the circuit and needs only to
determine the new values of the components. We want to apply qualitative
reasoning to these kinds of design decisions, but if our support system
uses only deep (device} knowledge, the complexity of reasoning would be
too great for treating large circuits. Large-component knowledge is
therefore indispensable for supporting the design of large circuits.

Suppose that we want to determine only the value of resistance "Re" in
the circuit shown by Fig. 1. If Desq used only the device (small-
component} knowledge, the complexity of reasoning would be extremely
high because the grain size of reasoning would be too small. Our method
can generate large-component knowledge, however, by aggregating
small-component knowledge. This means that it can gencrate the large-
component knowledge that represents the input and output function of an
oscillator or a Schmitt trigger. Both large-component and small-
component knowledge can be utilized similarly. When the input value for
a large component is given, the output value is determined immediately.
Complexity is therefore reduced because Desq need not analyze the
internal conditions of oscillaters and Schmitl triggers.

By using qualitative simulation, this method can automatically
aggregate small-component knowledge to generate large-component
knowledge. But a user has to specify the the structure of the target
component and its input and output variables. Knowledge is aggregated
in the following three steps:

1) All possible states in all behaviors are found out by simulating
with Qupras, and the existential conditions and relations for each
possible state is extracted from the results of reasoning,

2) Because many of the behaviors found in step 1 are redundant, the
states that have the same characteristics are united.

3) Relations of the transitions from one state to other are determined
from the results of reasoning.
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IT1. Qupras outline

Qupras (Fig. 2} is a qualitative reasoning system that uses knowledge
from physics and engineering textbooks. Qupras can be exccuted on the
parallel inference machines supported by Institute of New Generation
Computer Technology (ICOT) - that is, on PIM, Multi-PSI, or Pseudo

Multi-PSL

Initial data

Behavior Reasoner

Input
Structure
Envisioning Qutput
— | Behaviors
Madel-building
Knowledge base reasoning
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Fig. 2. Qupras.

Qupras has the following characteristics:

1) It has three primitive representations defined as deep knowledge:
physical rules (laws of physics), objects, and events.

2) It determines the dynamic behaviors of a system by using
knowledge of physical rules, objects, and events to construct all the
equations for the syvstem. The user therefore need not enter all the
equations of the system.

3) IiL deals with equations that describe basic laws of physics
qualitatively and quantitatively.

4) It does notl require quantity space to be given in advance, Because
the constraint solver can calculate all parameters included in the
target system, Qupras finds the quantity spaces itself during
reasoning,



5) It has the function of "envisioning.” This means that even if the
conditions of physical rules and objects cannot be evaluated,
Qupras can continue to reason by assuming unevaluated
conditions.

6) Objects in Qupras can inherit definitions from their superobjects.
Physical rules can thus be defined generally by using superobjects
to specify the definitions of object classes.

Qupras is similar to QPT [2] but does not use influence: in Qupras, only
equations are used to describe the relations of values. This is because
Qupras represents the laws of physics given in physics and engineering
texthooks, and there these laws are generally described by using equations
rather than influences. Moreover, Qupras can deal not only with
qualitative but also guantitative values for representations. This makes
the results of reasoning less ambiguous than when only qualitative values
are used.

The representation of objects (one kind of deep knowledge) mainly
consists of existential conditions and relations. Existential conditions are
those needed for the olyects Lo exist, and objects satisfying these conditions
are called active objects. Relations are expressed as relative equations that
include physical variables, If the existential conditions for a state are
satisfied, the relations for that state become known as relative equations
that hold for physical variables of the objects specified in the physical rule
definition.

The representation of physical rules (another kind of deep knowledge)
mainly consists of objects, applied conditions, and relations. The objects
are those necessary to apply a physical rule. The representations of
applied conditions and relations are similar to the representations of
objects. Applied conditions are those required to activate a physical rule,
and relations correspond to the laws of physics. Physical rules whose
necessary objects are activated and whose conditions are satisfied are
called active physical rules. If a given physical rule is active, its relations
become known as in the case of objects.

Qualitative reasoning in Qupras involves two forms of reasoning:
propagation reasoning and prediction reasoning. Propagation reasoning
determines the state of the physical system at a given moment (or during
a given time intervall. Prediction reasoning determines the physical
variables that change with time, and it predicts their values at the next
given point in time. Moreover, the propagation reasoning uses the results
from the predicticn reasoning to determine the subsequent states of the
physical system.

The function of envisioning is useful because even if initial data is
given incompletely, Qupras can analyze a behavior of a target system hy
hypothesizing. For example, if the state of a certain transistor is
unknown, Qupras hypothesizes both "on state” and "off state” and builds
the model based on each hypothesis. Moreover, Qupras can determine the
value (or range) of unknown parameters because the constraint solver
calculates a model that 1s described by a set of simultaneous equations.



‘T'he reasoning process 1s as follows: When the initial data of a Larget
system 1s given, the behavior reasoner builds its model corresponding to
the initial state by evaluating the conditions of physical rules and objects.
The rules and objects are stored in the knowledge base, and model-
building reasoning generates the simultanecous inequalities.
Simultaneous inequalities are passed Lo the constraint solver to check
their consistency and to store them. If an inconsistency is detected, the
reasoning process is abandoned. Conditions in the definitions of physical
rules and objects are checked by the constraint solver. If the conditions
are satisfied, the inequalities in the consequences of the physical rules
and objects are added to the simultaneous inequalities in the constraint
solver. Conditions that cannot be evaluated by the constraint solver are
hypothesized. After determining the model of the target system on one
state, the behavior reasoner calculates all parameters and predicts the
following state. When predicting the following state, the restrictions for
constant parameters are passed and the information on the variable
parameters used to predict the following state is generally passed to the
following state.

IV. Aggregated knowledge representation
A. Classification of component

Although there are various types of input and output functions, we
want to gencrate their component knowledge by using the same method.
We therefore analyzed the classification of large components to determine
the syntax of aggregaled knowledge. In this paper, these functions are
classified as follows:

1) Type 1: The function can be represented by a single cquation.

2) Type 2: The function representation requires more than one
equalion,

3) Type 3: The function representation requirces more than one
equation and is overlapped.

Each equation in the function means one state of behavior in qualitative
reasoning. A function can be represented concisely by mutually
substituting simullaneous equations that represents the model of one
state. Qupras repeatedly builds a model and changes it aceording to the
predicted following states. When conditions in the following state are
changed, model is also changed. The equation representing the model is
therefore also changed according to changing state.

The Type 1 - 3 functions can cover with behaviors of all kinds of
components. Since a Type 2 function consists of more than one equation, it
is regarded as a set of Type 1 functions. The Type 3 function is regarded as
a particular patiern of I'ype 2 functions that overlap each other. Our
method can therefore generate the aggregated knowledge to all kinds of
components by dealing with these three types.



Figure 3 shows two examples of Type 1 funections: a direct
proportionality, and a constant. The aggregated knowledge of an
amplifier that has no saturated state, for example, can be described
simply by the relation between inpul and output in the same way that
describing Ohm'’s Law is enough to represent a resistance.

As an example of a Type 2 component, Fig. 4 shows diode transistor
logic, an inverter that has three states. Its output value is high when the
input value is low, and the output value is low when the input value is
high. Here these are called "H" (high) state and "L" (low) state. There is
also a transitional ("T"} state between these two states. This type of
function is represented in the same way that a diode is represented: as
"on” state when the voltage between the terminals is under 0.7 volts and
"off" stale when this voltage is above 0.7 volts. This type of component can
therefore be represented by deseribing not only the relations but alse the
existential conditions for each state.

A Schmitt trigger (Fig. 5) is an example of a Type 3 component. It has
four states: a low-level state, a high-level state, and two transitional
states. Here these are called the "L" state, "H" state, "Tu" (upward
transition) state, and "Td" {(downward (ransition) state. The
characteristics of a Schmitt trigger show hysteresis, so the "H" and "L"
states are overlapped partially. Because of this overlap, a Type 3
component cannot be represented only by existential conditions and
relations. When the input value is between 5.8 and 7.4 volts, the siate may
be either "H" or "I." In addition to existential conditions and relations,
the transitional information of a Schmitt trigger is needed to determine its
state exactly. When the input value is in the overlapped range, the state is
determined by the preceding state. If the preceding state is "L" or "Td,"
then the current state is "L." But if the preceding state is "H" or "Tu,” the
current state is "H.” The representation for all kinds of aggregated
knowledge therefore needs the following three factors: relations,
conditions, and transitional information.

Unir{\"] Vout{V)
‘I.
- -
Vin(V) Vin(V)
(a) direct propotionality (a) constant

Fig. 3. Example of Type 1 functions.
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B. Representation for discontinuous behaviors

Qualitative reasoning generally deals with continuous behaviors. That
is, the prediction of the following state is based on analysis of the
continuous change of variables. But discontinuous behawvior can result
from positive feedback, so aggregated knowledge must also be able to deal
with discontinuous behavior. For example, although a Schmitt trigger
hasz four states, two of them instantly transit to another state because both
transistors in the circuit are "on" state. Since these "Tu" and "Td" states
are instantaneous, they can be omitted. In other words, a Schmitt trigger
would actually have only "H" and "L" states. In describing the knowledge
for a Schmitt trigger then should we exclude or include the instantaneous
states?

In this paper, we include the instantaneous states because otherwise
the reasoning could contradict itself. Figure 6 shows an example of
contradiction, resulting from using knowledge of only the two states.
Here, shown in Fig. 6.1, Component 1 (C1) and Component 2 (C2) are
connected. The input and output of C1 are respectively x1 and y1, and
thoze of C2 are x2 and y2. Because of the connection, v1 is equal to the x2.
Figure 6.2(a) shows the behavior of C1: its output is first proportional to its
input, then it increases instantaneously (discontinuously), and finally it is
saturated. Figure 6.2(b) shows the behavior of C2: first its output is
proportional to 1ts input and then it is saturated. Finally, Fig. 6.2(c) shows
the behavior of the connected components. When the input x1 is increased
from zero to "a,” the output ¥2 is between "s" and "t.” Because x2 is in an
increasing state and the qualitative reasoning system automatically finds
the change of state, the next analysis is for the point at which x2 is equal
to 'r" and the behavier of C2 changes. But because of the discontinuous
deseription, there are no cases where y1 is equal to "r.”

To represent this instantaneous state, the deseription must be as
follows:
condilions: x1 = a
relations: p<yvl<q

C. Description of knowledge

Based on the discussions in Secs. 4.1 and 4.2, Fig. 7 shows a part of the
description of a Schmitt trigger. This description is similar to the object
definition in Qupras, but one difference is the description for the
transitional information. The Schmitt trigger is defined as an "object,”
and the "attributes” field specifies internal variables in this object. The
four states of the Schmitt trigger, "H," "L,” "Tu,” and "Td," are
respectively equivalent to "s1," "s2)" "s3," and "s4." Each state has
conditions, relations, and transitional information. The "@" indicates a
parameter, and the "vin@Schmitt" represents the input voltage value of
the Schmitt trigger. The "vin@Schmitt > 5.8255911" specifies that the
input voltage is greater than 5.8255911 volts. The "transitions" field
specifies transitional information that describes the candidate following
state and the conditions to reach that candidate state.

— 11 -
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V. Process of aggregation
A. Simulating all possible behaviors

To generate the aggregated knowledge for a large component, all its
possible behaviors must be found. This knowledge must therefore be able
to include the whole real number space of input variables, Since it would
be impossible to simulate the component numerically at all input values
from minus infinity to plus infinity, we simulate it gualitatively by using
Qupras to find all possible behaviors. Qupras can do this because it
regards as one state the interval over which the target system behaves as
described by one model. Standard qualitative reasoning, however, cannot
find ull behaviors. In this section, we first describe why the standard
reasoning is not appropriate, and then we deseribe our method.

To see why the standard qualitative simulation cannot find all possible
states, consider the Schmitt trigger shown in Fig. 8. In this case, all
states cannot be analyzed even if the behavior simulations are based on
both initial conditions: increasing and decreasing input values. The "L1"
and "H1" states exist for both increasing and decreasing conditions, but
"L2" or "H2" state exists for cither an increasing or decreasing condition,
If aggregated knowledge is based on the behaviors of these simulations,

=— 12 -



object thing:Schmit
attributes

vr_register_1 - variable;
ir_register_1 - variable:

vout - variable;
vin - variable;

sile 51
condilions
vin@Schmit = 58285911 ;
relations
vout@Schmit = 12.0;
transitions
transition_conditions
vin@3chmit » 58255011 ;
transition_state
sl
transitions
Eransition_vonditions
vin@Schmit = 58255011 ;
transition_state
&1 ;

shitl 2@
conditions
vind@Schmit s= 0.;
vin@Schmit < 7.4301796;
relatinns
ir_vegister_T@5chmit = iv_tanshi_19§Schmit + ir_tanshi_23&Schmit;
ir_register_1@Schmit = ir_register_13@8chmit + ir_tanshi_22&Schmit;

vr_register_1@Schmit = -1.0 * vr_tanshi_2@Schmi + 12.0;

transitions
transition_conditions
vinTESchmit >= 0.0;
vin@Sehmit « T.4301796:
transition_state
s2;
tiansilions
Lransition_conditions
vin@Schmit = T.4301794;
Lrinstbion_state
w3

end.

Fig.7. A Schmitt trigger described by aggregated knowledge.
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the reasoning will sometimes be inconsistent. When the simulation is
based on the condition that input value decrcases from "q" after it
increases from zero to "g,” the correct behavior is to keep the low-level
state. But the low-level state does not exist under the condition that input
value is decreasing between “p” and "r.” The simulation therefore passes
through the "L1," "L2," "H2," "Td," and "L1" states even though the "H2"
and "Td" states are incorrect.

Our method first finds out all possible states and then simulates the
states following from each. All possible behaviors can be acquired by the
transitional relation between every possible state and its following state.
To find out all states, the initial conditions of qualitative simulation differ
from those of the above-mentioned method: the initial input value is not
defined in the initial conditions, but the changping states of input variables
are defined as increasing, decreasing, or constant.

To acquire the transitional relation between two states, our method
uses simulations to find all the following states from each possible state.
These simulations need not be completed, and they are interrupted when
the following state is found.

"Envisioning” is used to find all states. To compensate for the
incomplete information (the initial values of input variables are not
defined in the initial conditions), Qupras hypothesizes all possible cases.
According to each hypothesis, Qupras builds models that represent all
possible states and that consist of a set of equations. Then Qupras solves
those ranges of input variables that lead to each possible state. The

— 14 -



relations between input and output, on the other hand, can be acquired
from the equations in the model. As a result, Qupras can get the
existential conditions and relations for all possible state.

Two kinds of description are used to represent relations. If the output is
constant during the state, the relation directly describes the output value
as a certain constant because Qupras can get the value of the output
variable by solving the equations of the model. Since the output value is
constant independent of the value of the input variable in the state, the
value of the input variable is not needed to get the value of the output
variable. If the output depends on the input, the relation is described by all
equations of the model. When the input value is given, Qupras can get the
value of output variables by substituting that value as the input variable.

As input variables change increasingly, decreasingly, or constantly, all
the states that follow from all acquired states can be found out. Therefore
the results of all the qualitative simulations by Qupras cover all possible
behaviors.

B. Uniting and arranging the states

Because the results of simulations are redundant, a second process
unites the states that have the same characteristics. Under certain
conditions, this process unites two states that have one of the following
features:

1} Both states have the same constant output value.
2) Both states have the same model (which is described by
simultaneous equations).

Feature 1 has priority over feature 2. The characteristics of a state are
determined by its own model describing the internal conditions. If two
states have the same output value, they are united even if they have
different models.

But even though two states may have the same model or output values,
sometimes their existential conditions are different. When those
conditions are overlapped, those states are united. Otherwise they are not
united. The new united conditions are extended to the range over which
the two conditions cover each other,

To acquire the transitional information, the last process arranges the
united states aecording to the transitional order as analyzed by
simulation.

V1. Example
A. Generation

We have generated the two knowledge: Type 2 represents diode
transistor logic, and Type 3 represents a Schmitt trigger. To demonstrate
the total process of generating the knowledge, Fig. 9 shows the example of
a Schmitt trigger. Figure 9(a) corresponds to Sec. V.A of this paper, and

_'”.'_‘_
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Fig. 9. Process of generating aggregated knowledge.
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Figs. 9(b) and 9{c} correspond to Se¢. V.B. The description "on - off" refers
to the states of the transistors in Fig. 5(a) : Trl is in the "on” state and Tr2
is in the "off" state. The descriptions of "on - on" and "off - on" similarly
refer to these transistors. The "on - on" states are in posilive feedback and
instantaneously change to another state. In Fig. 9(a), all possible states
and hehaviors are found out by several kinds of simulations. Each
simulation is expressed by a different hatching pattern. The conditions for
these simulations are as follows: the value of input variable (Vin) 15 not
determined and the changing state of the input variable (dVin/dt) is
defined as increasing, decreasing, or constant. The undefined variable
Vin iz incomplete information for "envisioning.” In Fig. 9(b), the states
that have the same model are united: "H" and "L" states are united and
the existential conditions are extended. Since these two states exist in all
conditions (Vin increasing, decreasing, or constant), the changing states
of Vin are not described in the existential conditions for these two states.
The "I'u" and "I'd" states have the same model representing the "on - on”
state, but they cannot be united because the ranges of Vin do not overlap.
The "Tu" state therefore exists in the condition that Vin 1s only
increasing, and the "T'd” state exists in the condition that it is only
decreasing. In I'ig. 9{(c), the states are arranged according to the
simulations chown in Fig. 9(a). The arrows represent the directions of
transitions, and the hatching pallerns correspond to those in Fig. 9(a).
The results of these process are thus described as the knowledge of the
Schmitt trigger.

As to uniting states, the diode transistor logic example is used to
explain another case. Because the output from this kind of component
sometimes has the same value even if the models are different, we use the
output value instead of a model to represent the relations of aggregated
knowledge. Table I lists the results of simulating the initial condition that
the input value iz increasing. The terms "on,” "off," and "sat"' represents
the states of the diode and transistor, and "sat” means saturated state.
Qualitative simulation finds out continuous states ranging from minus
infinity to plus infinity and shows that two kinds of states are repeated by
turns. One kind of states continues for a certain period, and the other
changes instantly. The behavior consists of nine states, but the second to
fourth states have the same model because of the same internal condition.
The fifth and sixth stales also share-a model, as do the seventh and eighth
states. So this behavior consists of five states based on models (internal
conditions). But because of the output values, the aggregated knowledge
congists of only three states. The "H" state unites the first to fourth states,
the "T" state is the fiith state, and the "L” state unites the sixth to nine
states. Even if the states have different models, the function of states is the
same if their output valucs are the same.

__l"l'.‘_



B. Effects

The purpose of aggregated knowledge is to reduce the complexity of
reasoning, and this section mainly demonstirate this effect. Table II
shows how complexity is reduced when Qupras simulates diode
transistor logic or a Schmitt trigger. This data is for simulations of the
condition that the input varables are increasing from zero. Small-
component knowledge is a kind of standard deep knowledge and
represents the function of devices like resistors and transistors. Large-
component knowledge is an aggregated knowledge and represent the
relations between input and output.

Table I

Simulated behavior of diode transistor logic.
e[ oodion | g [ owpw e

1 | ON-OFE-OFF (-20,0.860 ) 4.940

2 ON-ON-OFF ()86 4 040
T onGoNcorE | (0860 1400y | e T H
4| ononeopr | taon T T aes0 T
—5 ON-ON-ON {1400, 1.401 ) (0.200,4940)] T
e | oNONON T T T e

7 | ON-ON-SAT | (1.401.1.494) 0.200
...E... -‘-alﬁr_"dﬁd'_'éj&‘-—f-‘" ..........li;l.é:j_-"-..... ........i;-.l.l.}.[;.uuu- L

9 | OFF-ON-SAT | (1494, +o0) 0.200

{a,b): a<x<b

Table 11
Effects of reducing complexity.
diede transistor logic Schmit rigger
small large LEHT small jarge ratio

componens | wingument| small / large component | component| small [ large

numiber of slaies in 10 [ 1.53 13 7 1.86

behavior . i I

nuther of equations 107 48 4,28 S 21 4.05

i one slate (average) - - .

1otal number of cualions -

e hahavior 1070 JELY 790 H 1105 37 4,66
TroCEssing Lme 10703 332 q6.43 To ik 1123

{sec)
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The first effect 12 to reduce the number of states in the behavior. As
shown in Table I, when using small-component knowledge, the states
change according to the internal conditions., When using large-
component knowledge, Qupras need not evaluate the internal conditions
because the states change only according to the relations between input
and output. As a result, the number of the states in behavior is reduced by
about half.

The second effect is Lo decrease the number of equations that Qupras
evaluates in one state. The fewer equations, the less the complexity. There
are two kinds of equations, and we will consider them separately. One
kind is described in the existential conditions of knowledge. When using
small-component knowledge, Qupras evaluates the conditions of all
devices: the more devices in the circuit, the more eguations evaluated.
When wusing large-component knowledge, Qupras evaluates the
conditions of large components only once. Therefore the number of
equations described in the conditions is reduced. The other kind of
equation is described in the relations of knowledge. When using small-
component knowledge, Qupras must solve simultaneous equations that
describe models, and this is a very hard process. Even if Qupras uses
large-component knowledge, this situation is the same. When the state
has constant output, however, Qupras need not solve the cquations
because that output value 15 described in the knowledge. Therefore the
equations described in the relations of knowledge are greatly reduced. As
a result, both the number of states and the number of equations are
reduced. This reduces processing time almost fifty-fold for diode
transistor logic and over ten-fold for a Schmitt trigger.

VII. Future work

This aggregated knowledge is useful for applying qualitative reasoning
to a large and complex system, but two problems remain:

1) The parameters in the target large component must be determined
previously.
2) The structure of the component must be determined previously.

In principle, it is easy to solve the first problem. We want to have
variable parameters in the aggregated knowledge. When users determine
the wvalues of the parameter according to the intention of their
simulations, they can get the desirable speciflications for the large
component. To generate knowledge that has variable parameters, we
simulate the target large component in special conditions. Just as we do
not define the initial input value when we simulate the component to find
all possible behaviors, we do not define the parameter value in the initial
conditions. Like input wvariables, all the possible states are found
according to the values of the parameters. But this problem results from
the ability of our constraint solver, which solves simultanecus equations
or inequations, Our constraint solver needs much time to solve them and
presently can solve only some kinds of simultaneous quadratic equations
or inequations, Therefore if the number of the variables are increased or



the equations are more complex, the constraint solver cannot solve the
equations. T'o generate knowledge that has variable parameters, we need
a much higher performance system for solving equations.

We do nol think the second problem is important. Except in design
problems, we generally know the structure of the target systems we want
to simulate. The condition that the structure is known previously is
therefore appropriate.

We think that the key Lo improving our method will be the users skill in
Judging which details can be neglected under which circumstances. To
build a large and hierarchical knowledge base that can be applied to
qualitative reasoning about complex systems in various domains, it will
be necessary to represent one component from different perspectives. This
will require consideration of the applied conditions as well as the
existential conditions. If a circuit is used at high frequencies, for
example, some of the condensers can be omitted. The aggregated
knowledge should thercfore have applied conditions and modified
relations in which some of the variables in the simultaneous equations
are neglected. We think, however, that such knowledge cannot be
generated automatically.

VIII. Conclusion

We have described a method for generating aggregated knowledge for
use in qualitative reasoning. Aggregated knowledge represents the
function of large components, and it is made of the deep knowledge that
represents the functions of small components. This kind of aggregated
knowledge is uselul when applying qualitative reasoning to large and
complex systems. By using the deep knowledge in the database, we can
get the knowledge for specific components automatically, As a result, we
can get the library for the target domain, Moreover, since the aggregated
knowledge has the same format as the standard deep knowledge of
Qupras, we can aggregate the knowledge of much larger components by
using large-component and small-component knowledge.

To make aggregated knowledge, we have to specify the structure of the
target component and the names of input and output variables. The
method of aggregating knowledge is as follows:

1) Qupras finds out all possible behaviors that the large component
can transit.

2) The simulated states that have the same model or the same output
value are united.

3) The united states are arranged according to the order of behaviors.

The description of aggregated knowledge has three factors for each
possible state: existential conditions, relations, and - to allow
representation of behaviors like hysteresis - information describing the
transition to following states. Moreover the descriptions of relations are
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extended for representing discontinuous behavior. As a result, the
aggregated knowledge can represent all kinds of components,
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