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Abstract

1o discuss the semantics of normal logic programs, the principle
of negation as abductive hypotheses is considered an excellenl guide
to capturing the meaning of negation by default. We state a criterion
tir classily acceplable hypotheses as negation by default based on this
principle, and, by examining proprams on the basis of the criterion
i terms of Przymusinski’s minimal models, provide three types of
conditions which should be imposed on acceptable hypotheses. The
class of conditions based on the criterion is equivalent to the class of
three operational semantics defined by Dung, Kakas and others. One
of the conditions is equivalent to the semantics proposed by Brogi et
al. based on the expandability of Herbrand interpretations.

1 Introduction

In recent works on the semantics of normal logic programs, the principle
explained by the following three statements is recognized as being of great
importance:

e Regardiug normal logic programs as “positive” logic programs.

s Negarding negation by default as abductive “hypothesis™.



e Forcing some conditions on the hypothesis so it is recognized as “proper”
negation by default.

There are several contributions based on this principle in discussions on the
semantics of normal logic programs. They can be classified into the fol-
lowing three types of approaches according to the frameworks in which the
approaches discuss conditions of proper negation by default:

Operational Perspectives The main idea of this approach is to give the
semantics of a program P through the notion of derivability in the
extended program P UA (A is a set of negative (or abductive) propo-
sitions of the form not.A). There are several variants of this approach,
specifically those by Eshghi [Eshghi89| (stable models), Dung [Duug91]
(preferred cxtensions), Kakas [Kakas91| (stable theories) and Kakas et
al. [Kakas91, Kakas92|{acceptability semantics).

Minimal Models Przymusinski [Przymusinski91} formalized the semantics
of programs in terms of stationary expansions, namely theories ex-
panded with some default propositions of the form not A or —net_A,
and imposed a stationary condition on the theories with respect to the
minimal models of the theories.

Expandability of Herbrand Interpretations Brogi el al. considered ad-
missible iuterpretations of program P as the semantics of P, namely
Herbrand models for PUA (A is a set of negative (or abductive) propo-
sitions of the form not_A). They imposed an admissibility condition on
the Herbrand models with respect to their expanded interpretations,
those are the Herbrand models for PUA' (A" D A).

We may not find any commeon property of conditions among the three
approaches from the appearances of conditions. However, there seems to
exist some common property behind the conditions: for example, in the case
of complete admissible supported models, three approaches give us the same
answers [Brogi®l]. The main contributions of this paper are providing the
common property behind the three approaches based on the above principle,
for more than the special cases such as 'complete’ models, and identifving
the relationship among the threc approaches more clearly.



To accomplish these, we consider an intuitive criterion to classify the
proper negative hypothesis as negation by defanlt (Section 2). Then, we
examine the small programs on the basis of the intuitive eriterion {Section 3).

As a result of the examinations, we achieve the following:

l. We provide three conditions for negation by default in terms of Przy-
musinski’s minimal models on the basis of the intuitive criterion (Sec-
tion 3).

2. We redefine the three conditions in terms of expandability of interpre-
tations (Section 4) (one of the three redefined conditions is cquivalent
to Hrogis” admissible supported maodels).

3. We show that the three redefined conditions are equivalent to oper-
ational semantics, they are preferential semantics, stable theory and
acceplability seinantics {Section 5) (the equivalence to preferential se-

mantics is, actually, given by [Brogi9l]).

The third achievement is very important, because operational considerations
on semantics are supported by model theoretical formalizations. As a result,
we can draw compansons from maodel theoretical perspectives in the three
operaticnal semantics, i.e., preferential semantics is a special case of stable
theories, and stable theories is a special case of acceptahility semantics.

2 Validity of Negative Hypotheses Applica-
tion

As stated in the introduction, we would like to investigate the criterion of
classifying hypotheses as proper negation by default, regardless of the frame-
work in which we consider the condition of the choice. At first, we consider
the validity of application of default in the following staternent:

A set of default A s applicable Hf there is no unsuitable case for
the application of A after A is applied.

In this statement, a set of default A denotes negative hypotheses which
should be considered as negation by default in a certain normal logic program.



Since the meaning of “unsuitable” case is not clear in this statement, we must
analyze the unsuitable cases more precisely.

An unsuitable case for the application of A is a case where there is some
set A" of defaults which derives a counter to A. But A’ should not include
any hypothesis in A, because we have already applicd A. Of course, we
consider only the case where A by itself does not derive any counter to itself
(we call this notion coherency to distinguish it from the classical notion of
“consistency” ). Now, we show an example.

Example 2.1
P not_g

g +— not_r

We would likc to discuss the applicability of a set A = {not.q} (A is coher-
ent}. Because {notr} derives a counter to A, g, we conclude that A is not
applicable,

Even though a counter is derived by some default set A" after A is applied,
there seemns to exist cases in which there is no relation to the applicability of
A. Let us consider the following example by Kakas and Mancarella [Kakas91].

Example 2.2
B +— not_g

g +— nol_g

We would hike to discuss the applicability of a set A = {not p} (A is co-
herent). If A" = {not_q} is applied, the counter to N, p, 1s derived by A’
However, {not_g} is not coherent because q 15 also derived by A’ Since A
is not applicable, there 1s no possibility of that the counter lo A is derived.
Se we do not need to consider the case of application of A'.

Here, on the basis of the above discussion on unsuitability of default
application, we paraphrase the above statement for the validity of default
application:

[The Statement of Default Applicability] A set of default A
is applicable iff the application of any default set A’ other than
A does not derive any counter to A after A is applied, or A s
not applicable after A is applied.
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This statement contains recursiveness because it refers to a case where A’
15 not applicable. In the next section, we clarify the not-applicable case to
break the recursion in the above statement by examining the PIOgranms.

3 Acceptability Supported by Minimal Mod-
els

The paraphrased stateiuent in the previeus section is still rather vague, In
[Przymusinski9l], Pryzmusinski provides us with an elegant framework to
deal with negation by defanlt as abductive Lhypotheses. The framework is
based on minimal models. In the following, we cxamine t¥pical normal logic
programs in terms of Pryzmusinski’s minimal models to formalize the above
staterment,

We refer to the lerminologies of logic programming. A normal lugic pro-
gram " 35 & set of clauses of the form

-"ri £ L]! sy L.‘t

where A 1s an atom and [,,..., L, (n = 0) are literals, Negative literals in
clause bodies are denoted by nofA to clearly distinguish between negation
by default (or by failure) “not™ and classical negation “=". We consider only
{possibly infinite) propositional programs'.

Let P be a program and HB be the lerbrand base associated with P.
As mentioned above, negative literals not A are deall with as positive aloms
not.A, where not_A is a new propositional symbol. Iy uther words, PP is trans.
formed into its positive version P by replacing each negative literal notA in
P's clause bodies with the corresponding positive literal not A, The positive
literal not_A is nol only a propositional symbol but an abductive hypothesis.
We denote the set of abductive hypotheses as not {1 B (= {not AlA € HBY).

In the following, we arc going to explain Praymusinski’s minimal models
i [Praymusinski91]. Given a logic program I, an expansion T is a theory
ublained by adding some default propositions of the form not_4 or —nef A
tu P. Given a theary T, a Herbrand interpretation | of T is identified with
a subset of the Herbrand base HB U not_ HB. Given an interpretation I,
a dufault or objective proposition F of the form not A or A ig true in 1 if

"This way of restriction on programs s well known in literalure,



[ € I, otherwise it is false. We say that [ is a model of T if I satisfies all the
statements in T.

Definition 3.1 A model M of theory T is minimal iff there is no model N
of T'st. NC M and N coincides with M on default propositions.

The class of all minimal models of T is denoted as MIN(T). T =y F
means that a formula F is true in all minimal models of T, and T |=p F
means that a formula F 15 true in minimal model M.

Based on the concept of minimal models, we consider the coherency of hy-
potheses before examining the programs. In the sequel, A C not_H B. When
we assume some hypotheses as negation by default, the hypotheses should
be coherent at least. Here, we give the following definition of coherency of
Lhe hypotheses, where we use the immediate consequence operator T'p for a
positive program P.

Definition 3.2 A sel of hypotheses A is coherent to a program P iff there
erists no proposition A s, A€ Tpya Tw and not_A € Tpp T w.

This definition is equivalent to the following model theoretical definition.

Definition 3.3 Cohcrent Hypotheses
A set of hypotheses A is coherent to the program P iff

SM & MIN(T), YA€ HB, T = not A = T =p = A,
Theorem 3.1 FAoth definitions are equivalent.

Proof: By proposition 4.1.0
At this point, we are ready to examine the programs in terms of minimal
models.

Example 3.1 Let us consider the following program and a hypothesis A =
{not_p} (A is coherent) which we would like to apply.

p +— not-g,

q — not_p.



fleve, we show the minimal models for 1" = P U A:

My : A{notp, netgq, p, g}
My {not.p, =not.g, -p, q}

On the basis of the statement of defaull applicability in the previous aection,
sinice there is no counter to A in My, we do nef need to consider this case. In
My, A" (= {not q}} is not applicable because A’ is incoherent (T =u, not_g
but T Faniw ).

This example is suggestive of the condition that A’ is not applicable after A
ts applicd. The next definition is based on this examination.

Definition 3.4 Admussible hypotheses supported by minimal models
A cohierent liypotheses set A for a program P (T = PUA) is udmissible
acceptable off T satisfies the condition:

YN e MIN(T), YAe HEB,
T EnotAundT =y A = Jnot A" ¢ AT Ex not A" and

T A
Admissible(P) denotes the class of all admissible hypotheses sel for a program
F.
We show the definition of stationary expansions in [Przymusinski9l] to

make a comparison with the above definition.

Definition 3.5 (Stationary crpansions)
A consistent theory T = PUA, with A C not_H B —not.H B, is a stationary
erpansion of a program P iff VA € HB, T safisfies the condilions:

L. TEnot At = —A.
2Tk -notAeTEA

Here, we use the set of —not HE = {-not_Ajnot_A € not i}, We say
that the admissibility supported by minimal models is a generalization of
stationarity as shown in the following proposition.

Proposition 3.1 For a stationary expansion P U A, a hypotheses set of
Aot B s admissible.



We proceed to the next example.

Example 3.2 Lot us consuder the followrng program and a hypothesis A =
Inel_p} (A 13 coherent) which we would like to apply.

P+ nol_q,

q +— not_g.

Here we show the minimal models for T = P LA

My {netp, nolg, p q}
M, : {notp, -netq, -p, —g}

Like in the previous example, we eramine the minimal models on the basis of
the statement of default applicability. Since there is no counter to A in M.,
we do not need to consider this case. In My, A" (={noi_g}) is not applicable
because A" is incoherent (I =y not g Ag). In this example, the situation is
different from the premous example, 1.0, T i g

This example provides us with another suggestion of the condition that 4’
is not applicable after A is applied. The next definition is based on this
examination.

Definition 3.6 Weakly Admissible hypotheses supported by minimal models
A eoherent hypotheses sel A for a program P (T = PUA) is weakly admissible
tff T satisfies the condition:

YN € MIN(T), VA € HB,
ThEnotAadl Ex A= Inol A ¢ AT Exn not A A A,

Weakly Admissible(P) denotes the class of all weakly admassible hypotheses

sef for a program P,

The next example is the last to be considered in [ormalizing the statement
of default applicability.

Example 3.3 Let us consider the following program and a hypothesis A =
{not_p} (A s coherent) which we would like to apply.

p +— noi_q,
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§ — nol g, not_r.

Here we show the minimal models for T = PUA:

My: {notp, notgmnotr, p g T}
My: Anofp,  -mot g neta, =p, -q, -r)
Ms: {notp, not.g,-notr, p, -q, -r}
My {not p, -mot.y,~notr, -p, i, o)

Siunce there is no counter to A in My and My, we do not need to consider these
cases. fn My, A" {={not_q,not_r}} is nol applicable because T Fa, notoghg
(this 15 the same reason as in the previous ezample). However, there is no
meohereney on A" (={not g} ) in My, which implies a counter to A.

if we can say that A' {—{net_g}) is not applicable, A iy Justified 1n being
applicable by the statement in previous section. Here, we consider models
after A" is applhed in addition to A, ie. M, and Ms. We find that M,
vuplies a counler, g, to AL Furthermore, in My, A" (={not_r} ] iz upplicable
because A" is coherent. This means that we should recognize the counter to
A" as the unavoidable one, since the counter to A is devived by applying
the applicable default A", In other words, we conclude thut in My A" 15 not
applicable after A 15 applied.

This investigation provides us with another suggestion of Lthe conditions
where A" s not applicable after A is applied.

Definition 3.7 Acceptable hypotheses supporied by mintmal models
A coherent hypotheses set A for a program P (T = P | AL is acceptable off
T satisfies the condition:

YN e MIN(T), YAe HE,

T =not A and T | A,

then Inol A€ AT |y not_A"A A",

otherunse INN(£ N) st. T =y ot A" = T =wn not_ A’
dnot. A" AT Exynot A NT =pn A

and dnet A" st Ty not A, T Eyy not A A — A’

Acceplable(P) denotes the classes of all acceptable hypotheses set for a pro-
gram P,



We show the inclusion of three class of conditions defined in this section.

Proposition 3.2 For a program P, Admissible(F) C Weakly Admissible(FP)
C AceeplablefFP).

4 Expandability of Interpretations

In this section, we redefine the three conditions provided in the previous sec-
tion in terms of the negatively supported interpretations and expandabilities
first shown in [Brogi9l].

First, we restate the basic concepts in [Brogi9i]

Definition 4.1 [Supporicd interpreiations) Lel P be a program. An inter-
prefalion M of P fi.e. M C HB Unol .H B 15 a supported interpretation of
FPiff HC M such that M = Tpuy Tw.

Given an interpretation |, f™ stands for /M H H and [ stands for [MNnot _HB.
The supported interpretation M({A) such that M{A) = Tpua Tw is called a
negatively supported interpretation. We may express a negatively supported
interpretation M{A) sumply as M {A = M~ ). For an interpretation M, M
is a coherent interpretation if M~ is colierent to the program.

At this pomnt, we can give the natural correspondence hetween minimal
madels and negatively supported interpretations.

Proposition 4.1 1. Let M be a negatively supported interpreiation, T =
FoM™. For any negalively supported interpretation Nsi. N- 2 M-,
there exists a mintmal model N s, {not . AlT =x not.A} = N,
{A|T Ex A} = N, Especially, in the case of N = M, {not AT =y
not_A} = {not_A[T | not_A} = {not_A|T E=arv not_A}{= M~), and
{AT =y A} = {A[T' |= A} = {AT F=pan A= MT)

2. For a minimal model N for T = P U A, there 1s a negatively sup-
ported interpretation N such that N™ = {not A|T =y not_A}, Nt =
{AIT =y A}, Especially, in the case of {not A|T Ey not A} = A,
N~ = {not A|T Ex not_ A} = {not AT = not_ A} = {not AT E=pn
not A= A), N* = [A|IT Ex A) = {A]T = A} = {A|T l=pun A}
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The following series of definitions and theorems show rewriting of the
conditions in the previous section in terms of negatively supported inlerpre-
tations,

Detinition 4.2 [Brogi91] Admissible supported inferpretation and models
Let M be a negatively supported interpretulion of a program P. M is an
admissible supported interpretation iff:

W negatively supported inferpretation N: N= O M-,
M~ UNT - incoherent = MY U N~ : incoherent.

M is an admissible supported model if M is coherent. ASM{F} denotes the
class of all admissible supported models for P.

Theorem 4.1 admissible hypotheses = admassible supporled model
1. M is an admassible supported model = M~ is admissible.

20 A is admissible =» a negabively supported interpretation M{A) is an
admssible supported model.

Proof: See the appendix,

Definition 4.3 Acceptable Inlcrpretations and Models
Let M be o negatively supported interpretation of @ program F. M 15 an
acceptable interpretation 1ff:

¥ negatively supported interpretation N: N= 2 M~

if M= U N* - incoherent then 3 negatively supported interpre-
tation NN: NN— 2 N=0 N- — M~ U NNt . ineoherent and
NN= — N= U NN* : coherent.

M is an acceplable model if M is colierent. AM{P} denotes the class of all
acceptable maodels for P.

Theorem 4.2 qceeptable hypotheses = acceptable model
1. M s an acceplable model = M™ s acceptable.

20 A is acceplable = a negatively supported interpretaiion M{A) &= an
neceptable maodel.

11



Proof: Same as the proof of theorem 4.1.

Definition 4.4 weakly admissible supported inferpretation and model
Let M be a negatively supported interpretation of a program £. M is a weakly
admissible supported interpretation ff:

Y negatively supporied interpretation N: N= 2 M-,
M- UNY : incoherent = N- — M~ U N* : incoherent.

M 15 an weakly admissible supported model if M is coherent. WASM/(P)
denoles the class of all weakly admissible supported models for P,

Theorem 4.3 weakly admissible hypotheses = weakly admissible supported
madel

1. M ie a weakly admissible supported model = M~ is weukly admissible.

20 A s weakly admissible = a negutively supported inlerprelation M{A)
is a weakly admissible supported model.

Proof: Same as the prool of theorem 4.1.
Before closiug this section, we define special cases of acceptable interpre
tations which are used in the nextl seclion.

Definition 4.5 Strictly Aceeptable [nterpretations and Models
Let M be a negatively supported interprelation of a program £, M is a strictly
acceptable interpretation iff:

V negatively supported interpretation N: N° 2 M~

of M~ U N* o dneoherenl then  negatively supporicd inlerpre-
tation NN: N\N- 2 N N — M UNN® : incoherend and
YNNN= 2 NN=, NN~ — N~ UNNN' : coherent,

M is a strictly weeepluble model if M iz coherent. SAM{P) denoles the class
of all strictly aceeplable models for P.

Corollary 4.1 [or a program P, ASM{P} C WASM(P) C SAM{I'} C AM(F)

12



5 Acceptability from Operational Perspec-
tives

In this section, we show Lhat the netions of acceplability in negatively sup-
ported interpretations in the previous section are equivalent to operational
semantics based on the principle of negation as abductive hypothesis defined
by Dung [Dung91], Kakas and Mancarella [Kakas1]. Kakas, Kowalski and
Toni [Kakas92]. Therefore, we conclude that the class of acceptability sup-
ported by minimal models is equivalent to the class of operational semantics.

Here, we present the ideas of operational semantics based on the principle
of negation as abductive hypotheses. Eshghi [Fshghi89] firstly showed the
treatment of ncgation as hypothesis to refurmalize the stable model semanties
by Gelfond and Lifschitz [Gelfond88]. The main idea of this approach is to
give the semantics of a program P through the notion of derivability in the
extended program PUA (A is a set of negative (or abductive) propositions
of the form not_A).

In the sequel, we recall the definitions in [Kakas92] of operational seman-
tics according Lo our terminologies. Given a set A (< not_ HB}, a set A (C
not IL0) attacks Af P AF A for some not_ A € A

In |EshghiBY], a set of acceptable hypotheses A is caherent and A should
result in a total model, ie. PUA derives A or not A for each proposition A.
Dung [Dung91] relaxed the condition of totality to the maximality of A, But
he needed another condition on acceptability in his preferential semantics,
that is the admissibilily of hypotheses A:

YA A atlacks A, A attacks 4.

Then, to save unintuitive examples in the preferential sernantics, Kakas
and Mancarella [Kakas91] consider one other aceeptability condition en hy-
potheses in their stable theory, that is the weakly stability of hypotheses A:

PA: A attacks A AUA attacks 4 — A,
In the next theorem, we restate the result in [Brogigl].
Theorem 5.1 [Brogi91] admussible supported model = admissible

Ioa coherent hypotheses set A 1s admissible = a negatively supported
mferpretation M{A) s an admissible supported model.

13



2. M 1s an admissible supported model = M~ is admissible.

ln addition to the above theorem, we can state the next theorem, which
gives the equivalence between weakly admissible supported models and weakly
stable hypotheses of Kakas and Mancarella.

Theorem 5.2 stable theory = weakly admissible supported model

1. a coherent hypotheses set & 15 weakly stable = a negatively supported
interpretation M{A) is a weakly admissible supported model.

2 M 5w weakly admissible supporled model = M~ is weakly stable.

Proof: Sec the appendis,

In [Kakas91], to save unintuitive examples in stable theories, they provide
an allernalive condition of acceptability in their acceptabilify semantics, that
i the acoeplability of hypotheses set. A: for some initial hypotheses set Ay,

&1 acceptable to Ay ff WA A atracks A, A is not acceptable to A LU Ay,

In the sequel, we only consider whether A is acceptable to §. As shown
in [Toni®2|, we can unfold the recursion using the above definition of accept-
ability once:

A s acceptable to !
iff WA A attacks A, 9D D attacks A = A st D is acceptable to 41U AL

Finally, we can state the next theorem which gives the equivalence be-
tween acceplable models and acceptable hypolheses to §.

Theorem 5.3 acceplabilily semantics = acceplable model

1. A s acceptable to ) = a negatively supported interprefation M{A) is
an acceptable model.

2. M iz a strictly acceptable model — M7~ 15 acceptable to .
Proof: See the appendix.

The following example shows the case where M ™ is not acceptable to §f though
M is not a strictly acceptable model but acceptahble madel.

14



Example 5.1 Lef us consider the following program and a hypothesis A =
{not_p{0)} (A is coherent).

pIX) e not_p(s( X)),
q‘l:.l]} —_—
Hypothesis A ts an acceptable wmodel, but not a strictly aceeptable model.

Moreover, A is not acceptable to @ because we need mfinite recursive calls of
acceptability definition.

6 Concluding Remarks

We consider an intuitive criterion to classify acceptable hypotheses as proper
negation by default, and examine the small programs on the basis of this
criterion. Then, we provide thiee variants of conditions for acceptable nega-
tive hvpotheses in terms of minimal models. The condilions are rewritien in
negalively supported interpretations. We have proven that the class of op-
crational semantics is equivalent o the class of couditions. The table shows
these equivalences among conditions:

:_l I'ramework r Minimal ]'-'vl-crclelﬂ_ Fxpandability f Operational q|
| Acceptable  Acceptahble Acceptable

] Weakly Admissible | Weakly Admissible | Weakly Stable
3 Admissible __ | Admssible J_".dmiﬁﬁi}:-l&

Now, we have two directions in which to proceed with future warks, The
first direction is coneerned with the way in which the minimal models are
discussed. ln Section 3, we discuss minimal models by regarding not.A as
a positive hypothesis. If we may treat nof_A as =LA in autoepsitemic logic
(L i= a modal operator, and LA means that “A is believed™ ), we might
provide the conditions in autoepistemic logic terminologies. Another topic is
the maximality of hypotheses, which is not mentioned in thie paper. Since
maximality is an important measure, as stated in [Dung91] and [Kakas91],
we would like to incorporate maximality into our formalization.

The second direction is relaled to extensions of languages. We would like
to specify the semantics of extended logic programs and abductive logic pro-
grams which have positive and negative hypotheses {with or without ntegrity
constrainis) in the same wayv as in this work.
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Appendix

FProof of theorem 4.1
By proposition 4.1, we show the following correspondences between minimal
models and negatively supported interpretations: for not_A4 € A,

Ti=not A not Ae M,

TeEyAs de N*,

arl
not A" ¢ AT Exnol A" not A'e N™ — M~

T IZMJTN ."-1’ b3 .r’i'l € Jil’f'i'.

So the condition

YN e MIN(T), VA & I 13,
T'ErnotAand 1 e A =2 dnet A" @ AT =xn not 4 and
I'Fagin A

1= equivalent to the condition

YN NT DM,
M7 UNT :incoherent = MY UN" — M~ incoherent.

Sinee M is coberent, MY UN™ — M~ is incoherent iff M*UN s incolierenl.
O
Proof of theorem 5.2
b} Assurne M{A] is not a weakly admissible supported model. Then IN
N= 2 M~ st M UNT is incoberent and N~ — M~ U N7 is coherent, Lhiat
18 ¥not A€ N™— M~ st, PUN" I A, This contradicts ihe weakly stability
of A because we can regard Lthat V™ = AU A.
2) It is enough to consider the case where N- = 4st. A DA O
Froof of theorem 5.3
L} If & s incoherent, then 34, A attacks A and A € A, So, there is no D
s.t. D attacks A ~ A because A — A = . This contradicts the acceptability
of A,

Assurne that M{A) 1s not an acceptable model, e, IN : N- 2 M~ st
M~ UNT is incoherent, YAN © NN~ 2 N, N= — M~ U NN* : coherent
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or NN~ = N~ U NN* @ incoherent. By regarding N© = 4 and NN- = D
we obtain that NN~ is acceptable to N~ because A is acceptable to @ if
N™ — M~ UNNT is incoherent. However, this is a contradiction sinee NV~
attacks NN~ — N~ buf there is no T which attacks NN~ — (NN-UN-) = .
2) Assume that M~ is not acceptable to @, 1e. 34, A attacks M, ¥D,
I is not acceptable to 4 LU M~ . Let us consider the case where 4 2 M,
otherwize let ns consider AU M~ as a new A. Since M 15 acceptable model,
NN~ attacks A — M~. S0, NN~ 1s not acceptable to A. Therefore, 3.4
attacks NN° — A, A" is acceptable to NN~ [However, this contradicts the
fact that YNNN- 2 NN, NN° — N° U NNNY: coherent (M is a strictly
acceptable model), since A" NN~ attacks NV- — A4 O
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