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Abstract

Scalahility 1s an essential notion in predicting the performance of large-scale parallel compu-
tation. Iso-efficiency analysis examines the scaling rule between the numnber of processors and
the problem size that can gnarantee the efficient use of processars. 'I'his paper presents an iso-
efficiency analysis of load balancing strategies for problems that consist of many subproblems
of unpredictable, different sizes. We assume that input data are randomly scattered over the
subprobiems according to a Poisson distribution; and that cach subproblem is independently
solved by the same polynomial-time algorithm of degree d > 1. 'I'he performance of a static
load balancing strategy (assipning an equal number of subproblems to each processor all at
once) is studied. The efficiency {the ratio of the average to the maximum load at each proces-
sor) i8 shown to converge to one for an increasing number of processors p, provided that there
are w(log" p} subproblems of average size E(1) at each processor. llence, this load balancing
strategy can be considered fairlv scalable. A new comparison between polynomials of Poisson

random variables in terms of convex ordering 15 developed and utilized in the proof,

1 Introduction

Recently, there has been prowing interest in ntilizing massively parallel computers for time
consuming fasks. In order to efliciently use parallel computers, we must confront matters that
do not appear in sequential computation. Among others, load balancing is very important to

all kinds of paraliel machines, and deserves to be studied in a general formulation becanse of



its rather machine-independent nature’.

Scalability is an essential notion in predicting the performance of large-scale parallel com-
putation. [so-efficrency analysis examines the scaling rule between the number of processors
and the problem size that can guarantee the cficient use of processors® [9, 10, 11]. We define
the efficiency, 5, as the ratio of the average to the maximum load at each processor. Clearly,
< n < 1holds, and = 1 if and vuly il a perfect balance of load is attained. A load balancing
strategy is considered scafable if the problem size that can guarantee a constant efficiency grows
slowly (polynomially) with an increasing number of processors, since this condition indicates
that one can utilize a large number of processors efficiently for moderately large problems. In
addition, the growth rate succinetly captures the characteristics of scalability.

In this paper, we present an iso-efficiency analysis of load balancing strategics for problems
Lhat consist of many subproblems of unpredictable, different sizes, We assume that inpul data
are randomly scattered over the subproblems according to a Poisson distribution: and that each
subproblem is independently solved by Lhe same polynomial time algorithm. For example, a
problem concerning large geometric data (points, segments, ete.) in a planar region may consist
of subproblems concerning those in the partilioned subregions, A problem of manipulating data
in & hash table may also consist of subproblems of manipulating data in each slot [5].

One of the must naive approaches to solving this kind of problem in parallel is to solve
each subproblen at a different processor. This is referred to as the single assignment strutegy.
However, such an approach is likely to incur large load imbalances due to non-uniform sub-
problem sizes. For example, when each subproblem is solved by a linear-time algorithm, the
load imbalance will vceur exactly in proportion to the variation in subproblem size. Moreover,
when each subproblem is solved by a polynomial-time algorithm of degree d > 1, unevenness in
the subproblem size is translated into larger unevenncss {according to d ) in the load between
processors, as we will see in Section 3.

A simple remedy for such a load imbalance is to assign a sufficient number of subproblems

te each processor. This is referred to as the multiple assignment strategy. Intuitively speaking,

In contrast. the overheads associaterd with interprocessor conmpunications, which are another important
coucern in parallel processing. are likely to be affected by the characteristics of an individual machine suely as

the topology of intereonnections and others [1].
iIn general. the speedup attained by a parallel wachine does wot continue 1o increase linearly with an

increasing number of processors but tends to saturate because there is only a lmited degree of CORCIITENCY
inherent in a problem. However, in many cases, one can obtain an almost linear speednp hy solviug increasingly

large problems [9, 10, 11],



if many subproblems are assigned to each processor, they will consist of small and large sub-
problems and will, hence, yield a comparable load between processors on average; thus a better
result may be expected. In Section 3, we investigate this approach and show that one can
almost balance the load by assigning only a modest number of subproblems to each processor.
Namely, w lﬂgd o) sithproblems per processor is shown to be sufficient for p processaors, pravided
that cach subproblem has size ©(1) on average and is solved by a polynomial-time algorithm
of degree d.

A similar eoncept lies behind the principle of scattered decomposition, which has been suc-
cessfully applied to balance the load in irregnlar matrix problems [2]. It divides a matrix
regnlarly into many fine-grained pieces and distributes them to the processors eyvclically.

These load balancing strategies are static in the sense that the assignment of subproblems
to processors is determined prior to execution. Much work has also been done on dynamic
load balancing strategies, where the assignment of subproblems to processors is adaptively
determined at runtime {2, 3], In general, the latter strategies outperform the former at the
expense of extra overheads, and hence reveal different scalability characteristics [6, 8, L1].

Kruskal and Weiss [#] studied the performance of several dynamic strategies for allocating
independent subtasks on demand to parallel processors. One of their remarkable conclusions
was that allocating an equal number of subtasks to each processor all at once (hence, not on
demand) provides almost optimal performance, on the assumption that the computation time
of each subtask is an independent identically distributed (i.i.d.} random variable with increasing
failure rate (IFR) [4]. Tn particular, they showed that the efficiency approaches one when there
are w(plog p) subtasks for p processors and p — oo, Note that this strategy is the same as onr
multiple assignment strategy. We will extend their results to non-IFIL cases. Briefly, although
a polynomial time-complexity function translates the unevenness in the input data size intn
larger unevenness in its computation time, it does not affect the scalability seriously. (Note
that a Poisson random variable has TR, while its polynomial of degree d > 1 does not..)

Vitter and Flajolet [13] gave asymplotic estimates of the expected maximum bucketl veeu-
pancy in hash tables based on the results by Kolehin ¢t al. [T], These estimates can be regarded
as predicting the perfonmance of load balancing with Lhe single assigiiment strategy when each
subproblem is solved by o linear-time algorithm. We will give a straightforward extension of
their results to general cases where a polynomial-time algorithm of degree d > 1 is assumed.

Results an the performance of the multiple assignment strategy are derived from the results

on the single assipnment strategy. We can relate them by virtue of the notion of conwvex



ordering for random variables [12]. The essence of the relationship is expressed as follows. Let
X1, Xa,. .., X, be 1id. Poisson random variables with parameter a > 0 and X be a Poisson

random variable with parameter reo, where » and d are positive integers. Then,

(L1) Y XA -1 =2 (X —d+ 1) < X(X - 1) (X =2) (X —d+1)
1=icret
where < denotes convex ordering. This is established in Section 5.
The rest of the paper is organized as follows. In Section 2, we formulate the load balancing
issue and define the efficiency. Section 3 is concerned with the single assignment strategy.
Section 4 provides some mathematical prerequisites for the following analysis. Section 5 is

concerned with the multiple assignment strategy. Finally, Section 6 summarizes the results.

2 Load DBalancing Modecl

In this section, we introduce a formal model that captures the performance of load balancing
with the single and multiple assignment strategies.

Let p be the number of processors and suppose that a problem consisting of m = pg
subproblems is given, where g = 1 for the single assignment strategy and ¢ = | for the multiple
assignment strategy, Let X, Xy ..., X, be the input data sizes of the subproblems, and
assume that they are independent identically distributed {1.i.d.} Poisson random variables with
parameter o > 0. This implies that input data are randomly scattered over the subproblems.
We also assume that each subproblem is independently solved by the same polynomial-time
algorithm of degree d > 1. Let the time-complexity function be ¢{X) = a X" + a, X7 +
s ap X 4 ap with ag = 0,

Note that the average subproblem size is o and that the expected computation time for

solving a subproblem is given by ¢*{a), where ¢*{-) is a polynomial defined by
(21) X)) =afX" + - +al X + af, (X) = af X"+ +alX +af

where X'® denotes X(X = 1)--- (X — k +1).

Under the single assignment strategy (¢ = 1) or the multiple assignment sirategy (¢ > 1},
the load at the i-th processor is given by: L, = 5./;_1)yejzip €l X;) for i = 1,2, ..., p. Hence, the
average load is given by (L; +---+ L,)/p and the maximum load is given by max; <<, L;. We
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define the efficiency, n, by the ratio of their expectations:

E{Ly+---4 L oo
E ( L-) )
PrEEd ™ I ({}}%Zf{hlf—lluﬂ'})
-l.=j
Clearly, 0 < i < 1 holds, and np = 1 ifand only if L; = --- = L, which means a perfect balance
of load,

We will study the asymptotic behavier of  for an increasing number of processors p either
with ¢ — 1 and an increasing o at various rates (in the single assignment strategy in Section
3) or with a fixed a and an increasing g at various rates (in the multiple assiznment strategy

in Section 3).

Example 2.1 A distributed hash table is a parallel implementation of a hash table [3]. A hash
table of size m = pq is divided into p subtables of equal sizc g These subtables are then
allocated to p processors. Let fi be a hash function taking values in {1,2,...,m}. An item x
with Tash value h{z) is stored in the j-th bucket in the subtable at the i-th processor, where
e=[(h{z) +p—1)/p] and ; = h{x) = (i=1)p. Ttems in the same bucket are linked together into
a cliain. Nuw, consider inserting a batch of items in parallel into an initially empty distributed
hash table, where a redundancy check must be performed against cach item already inserted
in the same bucket before each insertion. This checks whether the items coincide with each
other o1 can be wnified into a single item. Let X; be the final number of itcms in the j-th
bucket inside the i-th subtable for | < ¢ < pand 1 € 7 < ¢. On the assumption that the
hash function is ideally random, X;s are 1.1.d. Poisson random variables with parameter o > 0,
where o denotes the average number of items per bucket. Let us define the computation time
m terms of the number of redundancy checks. Assuming that all redundancy checks fail (i.c.,
there is no redundancy), we have the time-complexity function: o(X) = X{X 1)/2 = X'%/2
The parameter « is called the load factor and indicates the expected number of probes per
unsuccessful scarch (or twice the number of probes per successful search} [13); henee o should
be kept small by taking a sufliciently large g. In particular, it is desirable to have o = ©(1) as

p — T,

3 Single Assignment Strategy

In this section, we study the balance of load between processors when a single subproblem

1s assigned to each processor. The input data sizes, X;, Xy, ... X, are assumed to be iid.



Poisson random variables willl parameter & > 0. The implication of different assumptions on
the growth rate of « for an increasing number of processors p is examined. The load at the
i-th processor is given by ol X;), where ¢f-) is the time-complexity [unction of the algorithm
being used. The next theorem estimates the expectation of the parallel computation time,
maxy <z, o X;). This is a straightforward extension of the result by Vitter and Flajolet [13] on
the average maximum bucket occupancy in hash tables. Maost of the essential points in this
section can be found in {7, Chapter T, §6] by Kolchin et al., where the asymptotic behavior of

the distribution of the maximum bucket ocenpancy is studied.

Theorem 3.1 Let ¢ - Hy — Ry be a polynomial function of degree d = 1, and X, ... X,
be 1.1.d. according to the Poisson distribution with parameter o > 0, where B, denotes the set

of all non-negative real numbers. Then we hove, as p — o0,

’ eliogp/ log log p) if a=811).

by unth b= w f o= oflog p).
(3.1) E{max e(X.)} ~ e{b) with {a) if a=oflogp)

cla/v) if o~zxlogp for somezx >0,

of o) of o= wllogp),

where ~ denotes asymptotic equivalence and b = ba,p) is an inleger larger than o and defined

by
(3.2)

E_'-‘ﬂ:b-H ) |. E—rlﬁ_fr

< - g
h+10 —p B
and % — y{x) is the root of the equation

{3.3) v+ z(logy -y +1}=0
in the mterval 0 < v < 1. Moreover, when o = w(logp),
max e[ X;) — ela) ~ '(a) y2clogp (in probability).
g

Proor: For brevity, we write ¢, = c(n) and use the following notations within this proof.

i &J ) .
eua) = E 7 : truncated exponential function up to the n-th term {n =10,1,2,...),
s=0 1

o = plo,pon) — Plmax X; <n) — {e e (o)} (n =0,1,2,...), poq — .

ity

Then, we get an expression:

e =) =
{3'4} E{I"Hjﬁ:ﬁr{xi}} = z ""Tl{ﬁﬂ = 1) =+ E{"'ﬂll - r:u}{l = )
- n=[} =1}



First we shall consider the case with a/logp — z for some = > 0, which includes the
first three cases in (3.1). For a sufficiently large p, an integer b = ble, p) satisfying b > o
and condition (4.2) exists, since ¢ "a"/n! is decreasing in n > a and ¢ “o®/D{a + 1) ~
1/V2ra = w(p~'). Note that b — co holds as p — oo, Applying Stirling's formula to
1< pe~"a/b! < (b+1)/a, taking the logarithm, and multiplying the result by a/{blogp), we

find that

log +/ 2xh +1) < log(b+ 1) B logay o 1
b b b [ logp

{Pfir-i——ﬂ- (lmgr -1 —
log p
where v = a/b and £ indicates that its left side is asymptotically nol larger than its right
side. From this estimate it follows that r — 0 when = = 0 and that r — v when z > 0, where
7 1s the root of the equation {3.3) in the interval 0 < 5 < 1.
Fixing an mteger k > (0, we rewrite (3.4 into

b—k—1
E{E_];}Eif{:t}} = '41 + jl? v -’431 -”1'1 = Z fil[.l'j:r - Pn-].},

u=l}

h4k—1

."-13 - Z C::(.ﬂr- - PJL-],J + C.'.n—|-.l.-“ = Pk 1:|.~ AJ- = Z {‘:u+| - l.'.'"}l::l - ﬂ'u}n

ne=f—i a2l b

and cstimate each term.

Since
T
o't E—uﬂh+1 = o r.{ » T{f
B D Y= I (L w VTR N I RS 1
[ ( “E_H_ n!) - ( {h+ 1) :E - pli—-r})] ~ I—r
we have
e i
Ay < Zﬂh+£.-+j+1 : 1 —

i=0

Hence, when x = 0, we cbtain A3 = o(e;) by taking £ = 1. When = > 0, it follows that

Ag 2 Cve /{1 = 3)™?, where C is a constant depending only on d, the degree of polynomial

c(+). Therefore, for arbitrary £ > 0, we have A3z e as p — oo by taking sufficiently large k.
We also have

L @ E A e Bb=1)-(b—k+1
Pi.—i.-—15(1—e “m) Eexp{—pb! N ) af }}

Hence, when = = 0, we obtain p_y < e /7 — () by taking £ = 1. When = > 0, we obtain
Ph-t-1 % eXp(—1/4%) < = by taking sulficiently large k for arbitrarily chosen £ > (0. Since
Al £ puor—1Ch—pq and Ay ~ (1 — pu_y_1)ey, it follows that 4, = o(cy) and Az ~ ¢, when = = 0

and that A; £ e¢y, and |, — As) £ eo, when 2 > 0.
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Thus, we obtain E{maxyc,c, (X))} ~ e(b) when aflogp — = = 0. As noted above,
b ~ oy when z > 0. Using Stirling's formula, it is also casily verified that ble,p) ~ T '{p) ~
log p/ log log p far o = ©(1), where I'™! denotes the inverse of Gamma function. These complete
the proof for the first three cases in {3.1).

Next, let ns consider the last case with o = w{log p). By integration by parts, we have

(3“5} 1—e™e,(a) = ——— LIU _ H:I“f“'ﬂdﬁ'_

For nn > «, the integral on the right side is less than 1/(n — o), since {1 — §)" < e ™ for
0= @ < |, Hence, we Lave

pé‘_n('t”+1

L—pa=1~-{e e fa)}’ <p-{l e efa)} < A n—a)

In particular, for n = [2a},

- - Pe—-t&h“ (E)” IIrE
Plze] ~ o[ 20} : 4 1'l'llrr’

and 1 = pag 4 ;;p[efdlj”y' af/m- 27 for k &€ V. Hence, we obtain

A i
{Sﬁ] Z I:‘-"r|+1 - '::uj“ - ﬂu] =P (i) 1[.,l| ; E l:"|_2|'1J-I-J'n;+1‘2 b 0 as o,
nze| B k=1

Now, let & be a positive constant, v = |o + /2ar log p|, and consider p,.

Lemma 3.1 For any fired & = ), we have loglog(1/p,.) = {1 = s +a(l)}logp as p — o0, In

particular, p, =0 for 0 < & < 1, and p, — 1 for s > 1.
Proor: By Eqguation (3.5), we have

E—t‘lar-n-l-l -1 i
iogp,,—-plog{l—TjD (1-6)" d&}.

For v = & Y {log p) '3, since (v — a)y — oo and v+ — 0 as p — oc, we have
¥ T - 1 1
1 - Ey'uﬁdlg""f Y ”"".:iﬂw ——
.['.u ( Jre o v—oa axlogp'
1 1 —le—ly _ —{r—x) 1
-/ (1 8)"e"¥dh < f ety = ’ = r_.l( ) .
" - = ¥ [l 4
Hence

f—ualﬂ-j 1 et ah
A ——— I_HP."Edﬁ-ﬂu‘_(_) .
! .[u ( yre 2 /mrlogp \v

and the logarithm of its dominant factor is

o (v — o)t (v —a) o logp
u—u-+ulog;——T+D(T = —rlogp+ O log p.

From these we obtain the elaim. O



Proor oF THEOREM 3.1 (ConTiNUED):  Taking x = 2 and v = |a + 2,/alog p|, we have
g — Land pp,) =0 as p — oo due to the above Lemma. Hence,

{20]
{3‘?) Z [r:u..l-l_ — n }Ifl - p-"-} E‘ I:-"|_3r':j‘-l{1 - pr*} = U‘l:f.{ﬂ’}} as = 00,

w=p

r—1

[38} z {C!r+l - L::u]l[]' h Pu) E Cw — Cla| = GI:(U - H}E!{V}] = D['ﬁ:ﬂ}} s — 2,
=)
lev]=1
':'Ii-"] Z {C-l+l - Eh!-}[l - pmj ~ |:‘i-.hl_rr'J - f-'ﬂ}“ - ﬂ[-‘r]} - E.‘fﬂ:) s g 2,

=M}

Therefore, from (3.4), (3.6}, (3.7}, {3.8) and {3.9), we obtain

F{max e(X;)} ~ ela) as p — oo with e = w{log p).

1€is,
Moreover, for arbitrary 0 < &y < 1 < &y, we have Pla + /Zar, fogp < max; <<, X, <
a+/Zar, Jogp) — | as p — a0, by Lemms 3.1. Hence,

maxy <, o X;) — ela)
{.1 - - = _.!
(ﬁ - o)y 20 log p

This implies max; <<, e{X,) — e{a) ~ ¢'(a)\/Zalogp in probability. These complete the proof

r:vf'?l)—-»l as p—oo for 0 < Wy < 1 < WKy,

for the case with o = w(logp), O

As an immediate corollary, we obtain the following result. This tells us, in terms of iso-

efficiency, the scalability characteristic of load balancing with the single assignment strategy.

Corollary 3.1 Under the assumptions of Theorem 3.1, we have, as p — oo,

(i} 0~ (aloglogp/logp)! if o = B(1),

(1) 71 —10f o = oflog p),

(it} n—" ifa~zlogp for some x > 0, where v = ) is the root of (3.3) inD < 5 < 1,
(iv) n—1ifo=wllogp), |

where 1 1s the efficiency defined by (2.2).

Thus, the efficiency can be maintained in cases (i) and {iv) for an increasing number of
processors. In these cases, the overall input data size (problem size) amounts to Q{plog” p) for
an increasing p. Hence, the single assignment strategy can be considered to be fairly scalable.
However, this strategy should not be applied to the distributed hash table (Example 2.1 with
9 = 1), because load factor o should be kept small and, hence, cases (iii) and (iv) are not
useful. Tts proper implementation is given by the multiple assignment strategy {Example 2.1

with ¢ = 1), as we will see in Section 5.



4 Convex Ordering and Its Properties

In this section we prepare some mathematical prerequisites for the analysis in the next
section. The definition and basic propertics of convex ordering for random variables are briefly
described.  Although the first two propositions are general, the last proposition concerns a
rather special situation which we will encounter in the next section. Within this section, M
denotes the class of all non-negative random variables with finite expectations, and P¥ denotes

the distribution of X € M. We often write X v ¥ = max{X,Y).

Definition 4.1 For X.Y € M, we define PY < PY {or simply, X =< Y}, if and only il
FiXve)< EiY ve) forall e 2 0.

The binary relation < is called conver ordering [12]. Strictly speaking, it is defined on the class
of probability distributions rather than on the class of random variables. However, for brevily,
we will often write X < ¥

Convex ordering < is weaker than stochastic inequality [12], as is shown in the next proposi-
tion. Let g and ¢ be probability distributions over the set of non-negative numbers, B,. Then,
g is said to be stochastically smaller than v, denoted p <, v, if and only if their distribution

functions, ¢, (t) = p([0,4]) and ¢, (f) = ([0, ]}, satisfy ¢, {t) = ¢.(f) for all £ = 0.

Proposition 4.1 Let X, V. 2, X, Y, € M, wheren = 1,2,....
(i) IfX <Y as (almost surely), then X < Y.

(if) ffX <Y andV < Z, then X < 2.
(i) If X <Y and ¥V < X, then PX = PY.
(iv) If X <Y, then E(X) < E(Y).

(v) If PY < PY, then X < Y.

(vi) Assume that PX and PY converge to PY and PY respectively as n — oo. If X, < Y,

for any n, then X < ¥,

I'rooOF: Since (i), (i), (iv) and (vi} are trivial by definition, we shall only prove (iii] and
(v). Let ¢x{t) = P(X < ¢) and ¢y (f) = P{Y <t} be the distribution functions of X and V'
respectively. And deline ¥ x(t) and vy (t) by

vx(t)= [T(e=-tdéx(@),  vv(t)= [ (v - t)dev(v).

10



Then we have
Uxl+0) =0, k() —ex(t) -1, E(XV)=t+idxlt) (V20
Wy (400) =0, () =y (t) = 1, E(Y Vi) =t+yyplt) (vt = 0).
(i) X <Y and ¥V < X, then 'y = 1y, oy = ¢y and Y = Y follow.
(vl PX <, PY implies éx > dy. Ilence ¢y <y and X < Y follow. O
Proposition 4.2 Let X, Y, 2 ¢ M, and 2 be tndependent of X and Y,
(i) X <Y, thenXvZ<YVvZ,
(i) X <Y, then N +Z2 <Y | Z.
i) IfX <Y andVZ e M, then XZ 2 Y Z.
{iv) Let f: R, — R, be a Lebesgue measurable function and f{X,2), f(Y, 2} € M for ¥z = 0.

IF X, 2} = fY,z) for ¥z 2 0, then fIX . Z) < f(Y,Z).

Proor: Since (1}, (11} and (11} follow from (iv), we shall only prove (iv). For arbitrary ¢ > 0,

since f(X.z), f(Y.2) € M for ¥z >0,

E{f(X,Z)V e} = f E{J(X,z)Ve| Z = 2}P(d:) =fux E{f(X,z) v c}P*(dz)
< [“ E{f(Y,z)ve}P?(dz) = L" E{f1Y,2)Ve| Z = =} PZ{dz) = E{f(Y,Z) V c}.

Thus, we obtain f(X,Z) < fIY, Z). O
By repeatedly applying Propositions 4.1 {ii} and 4.2 (i}, we obtain the following corollary.

It shows that the convex ordering is useful in comparing the expectation of maxima.

Corollary 4.1 Lel X, ... X, € M and ¥7,... ¥, € M be i.i.d. according to u and v respec-
tiwely, If p < v, then .
E{max X;) < E max Y;).

1<ign 1=t
T'he next proposition extracts the essence of comparison that will be made repeatedly in

the next section.

Proposition 4.3 Let [: (R.")" — R, be a measurable function such that
f{‘TJ"'ery!z‘cl-h'"'l'zr}+f{y1~-~!y|w1zk+ls~--1=r}

= f(m?"'1:1"’:1"131'{1:"'1:1'}4' f{yr-":yry1zk+h'“szr]|

max{ fle,....x ¥ 2ep, 02, fly, v ez, 250}

<max{flz,...,ox 2,02, flyc v 20, z. )},

11



for 2 < ¥k < 7 and Ve, y,2y,..., %, € R And let g 0 (RL")” — I, be a symmetric

measurable function, that 1s,
alzy,....¢)=glz,,. ...z, ) for¥e=(o,...,0,) €S, Ya,,..., ¢, € ",

where &, denotes the symmetric group of degree v, And let X,,..., X, be t.i.d. random vectors

of dimension n, and F[f( X, X ,... . X ), Elgl X, Xs ..., X,])] < 4oo. Then,

(4.1) FIX). Xo X )49 X Xoo 0 X )< XL X X)) el X X, X)L

Proow: By induction on k, it is sufficient to show that

Xy X X we,.ox )+l X e oo X Tegr, -, &)

= f{x'.u----Xbxh-'rm-h---ril?r]'-i-g{-xhv":mm,In--hXJL-J:JL-.:,---,J‘!,-}

for cach k = 2,3,.. ,r and arhitrary @s, ... 80 1, &5 1,002, € B, Since this reduces to
(4.1} with » = 2, we may assume r = 2 from the beginning. Note that the assumption on f

implies
flesyi Vet flyse) Ve < fle,e)Ve+ flyw)ve TorVe,ye RY, Yo 0.
Henee, for arbitrary o 2= 0,

2EM{ (X, Xo) 4 g( X, X)) PV o
= F{AX 1, Xa)+a( X, Xa)}Ve+ {f(Xe, X)) +0(Xa, X1)} V<
< B{AX1, X0+ g{X1, Xa)} Vet {f( Xz Xo)+ (X1, Xa)} V]
= 2E[{f(X, X1) +g( X1, X2)} V]

Thus, the claim is established. U

As a special case of this propasition, we obtain Lthe following.

Corollary 4.2 Let X,,..., X, € M be t.i.d. and assume that Y,... Y, Z € M are indepen-
dent of Xy, ..., X.. Then we have

X4+ XY, +Z<Xi(Yi 4 +¥)+ 2
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5 Multiple Assignment Strategy

In this section, we investigate the balance of load between processors when a sufficient
number of subproblems are assigned to each processor. We shall derive the results from theose
oblained in Seclion 3, where only a single subproblem is assigned to each processor. These two
cases can, in fact, be related by virtue of convex ardering. The next theorem is the hasis of

this approach.

Theorem 5.1 Let {X;},c .0 be t.i.d. Potsson random variables with parameler o > 0, and X

be a Poisson random varieble with pavameler ro, where v € N Then we have

This theorem is proved by approximating a Poisson variable by a sum of {0, 1}-valued
random variables and reducing the claim to its binary counterpart. The first lemma relates a
polynomial of a Poisson variable to a polynomial of binacy random variables in the limit. The
following several lemmas examine the propertics of Uhe latter polynomial. Subsequently, the
prool of the theorem will be given. Now, define o homogeneous polynomial funetion of degree
din dn variables, A" (R — I, by

Ay, ey = S Ty, Ly for @, ={rq,.... T (1<q<d).
1§, <Ly 5

For brevity, we wiite A'{a) = Af{z,...,x) and A" (,y) = AUz 2.y, .. y).
C— — — —

ol s
Lemma 5.1 Lel X be a Poisson random variable wilh parameter o > 0. For ¥n = d, let
Notooo N be wind such that P(X,., = 1) = a/n and P(X
(X o X)) Then

=) =1=a/n, and X, =

N

X =dl lim AY(X,) (eonvergence in law).

T e T

I’'roor: Since X, =0o0r 1 for each 1 <4 < n,

¥ r il - — -~ i~ - I

'-.-"l.l | A= + -':"-n.n] E "‘Ilai.il o '/Y'u..m - E -.k g T }":lr..l.,;_'_l +d E 'lll..il e :1' rl.i-.,|1
1] 4oty R i dger £ Haendd Sont
{cistinet ) {listinet) [elistinet)

namely, (X1 + - 4 X, = d) - d AYX L) = (d+ 1) - A™HX,) holds. Hence, we obtain
(Nt + X0 d-AYXL) by induetion on d. Here the distribution of X, +- -+ X, .
converges to the Poisson distribution with parameter @ due to the classical law of small numbers.

Therefore, we abtain the desired result. O

13



Lemma 5.2 Lef {A*fJ.}lE';ET'lE"J?"" bhe {01 1}»-uafuf;d ii.d. and X,- = (){;1,. Cay Jf,—,,} fm"l ";_: i E .

Then, for ¥d, s =0, 1,2,..., we have

(5.1) SATYXL Y X)) < AN XY X
1=k h=1 b=t

Proor: Since both sides of (5.1) are identical for d = 0, we may assume that f > 1. For

k=0,1,...,n— 1, wedefine A}T] - Ry x R} x R} — R, by

DA s T 3 . - -
A eyz)l — Z Ty Thapr Tarer " Tadgas
'_E_”-;n ':‘-'J|+:-+|.£"'
sipr S+l
.
R 1 -
+ L N WinTy, nz.m+e Fhda gl
10y S i a1 27
Mg 2hA42

fﬂr 11-':|::I|_._.--1IH}1 ?:r':{yh---qyu], .3:(:1....13”)].

Fixing an arhitrary 1 < k < n, we write X, = (X,;,..., X, ) for 1 £i < 7. Taking an arbitrary

(Tiiheicr bs12icn € H:E“_“, we define nl{i'l,_ LX) by

r

.
u{.X.. . -..:‘.I:J-} - Z-ﬁfi_i‘*{xu X-l.- Z X’r:‘1

i=l1 h=1
where X, = {X;, ..., N, 2ipe1, ..., z) for 1L < W1 <, Since
" ils+2
il .5 " T P . .
A XL XY X = Y > X XiiraanZiowz = %500 %00 S
-1 2 12015 i) S0
Gipr BE g By
+ E Xijr o N T i1 20040 7 Fingas
1201 e | S
i =kl
4l
+ Z ): -Xl..u o ')iur_l-ler o E LT Shier T Shdgasrt

F=1 1=i1s€ijpagl S
Jdgy 2k gr g bty

where 2, S X <3<k, oz idt Ny (k+1<j5<n),

h=1 fi—1

we have a(X,,. .. X,) = f(X,,..., X,) +g{j{l.,...1ji,}, where

- - " A1
AX.. . X 3 (.u, S X, ---Xw) +3 (w )3 Xu:---?hi._.) ,
12

=L\ 1gi<<igsk i=1 o Sk

H

442

-
g[x]:--.1x:-} = z Z {(E}'ih"'xﬂluu) Ej.ru‘“‘":Ja_lzi:""’"’vjqi|.«¢-|.}:
F=e42 1€ 2 sl = =1
FRTR ST AT RS T

and w; and v, are non-negative constants determined by k and {x, }i<p<r by 1<g<n for each

l1<i<randl <{<d+ 1 Notethat

Y Xy Xy, = (A“ * " ”“*) (1<¥i<r 0SVE<dY 1),

1€ a-<irsk

14



since we have X;; = 0 or 1 by assumption. Thus, we can apply Proposition 4.3 to obtain
alX: X X)) < AIX XL X))+ 9(X,,Xs.....X,). Hence, by Proposition 4.2

{iv). we ohtain

h=i

Z_\.;f*i*rx,.x. ZX:J -<Za»."*“ x,,x,,zx,l _

i=1

Since this holds for arbitrary 1 < & < n. we abtain
r [
STATX L X, Z X = Zﬁ’““[x,-,xl._ ST X
=1 =1 =1

This is the desired resnlt, O

Lemma 5.3 Let {X;} e e, be (0,1} -valued iid, and X, = (X;.... X)) for1 <i <
ri. Then, for¥d,s —0,1,2, ..., we have

Z.:'er-‘[_x le_pqn 1;,.}'42-_\'1.! -X E.X.ll

i=l ool fim]
'roor: This claim is immediately established by repeatedly applying Corollary 1.2, Namely,
i dominating the left side, we replace X.ip.oq),; by Ny for each {2,h,7) € {1,...,r} %
{L..oorpbx{l,...,n},where L< W <vand M =i+h— 1l modr. U

Lemma 5.4 Let { X} haiset 12 zizn be {0, Lp-valued vad. and X - (X, .., X)) for1 <4<

. Then we have

2 ANX) < AYX + -+ X,

Legs
Proor: By Lenuna 5.2, we have

Z ANX ) <A X Exh

h=]
Counsider the sum of r such expressions as that on the right side with distinct indices. Succes

sively applying Proposition 4.2 (i), Lemma 5.3 and Lemma 5.2 to the sum, we obtain

T AUX) < S ATHXL Y Xvgen) < AT XL Y X)) < ATHXLL Y X))
im i=1 =1 i=1 fi=] h-1

Applying again Proposition 4.2 (i}, Lemma 5.3 and Lemma 5.2 to the sum of v such expressions

as that on the rightmest side with distinct indices, and so on. We finally obtain

Za ~ AV X.,th =ANX; +---+ X,).

fi=

Thiz completes the proatf. O
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PROOF OF THEOREM 5.1:  Tet n be an arbitrary integer greater than d, and (X )i<icrd, 1<5<n
be i.i.d. random variables such that P{X,; = 1} = a/n and P(X,,, = 0) = 1 = a/n. We
write X, = (X, N for 1 £ ¥ £ r!. By Lemma 5.4, we have 3 ;o ANX,) <

ANX 4 -+ X,,). Letting n — oo, we obtain the desired result duc to Lemma 5.1 and

I'roposition 4.1 (vi). O

Theorem 5.2 Let {X;jhizizpizjoy be v2.d. Poisson random variables with parameter o > 0.
For any fired o > 0, according to different assumptions on the growth rate of ¢ = q(p) as

P o0, we JFlI.'Zrl-'i.-'f-:'-'

(logp/ loglogp)'  if q=0(1),
r Ll - - _ 1 : it
F max X = U with b= w(g')  if ¢ = ollog" p),
=5 ls <
4=l I'_:l:"i{ill.l'l"r'ril Ij' ﬂ‘IIq — :r:.,l! IGEJF fﬂ‘?' sOTE T {}’

: (ma'x: 2 _-‘(,-T]) ~ o'y if q=wilog"p),

where b = blag"'™, p) is an integer larger than aq'* and defined by

L

P 140 }l'|+1.

tg P e (gt
b+ 1)! p b '

and ¥ = y(x) 15 the root of the equation (3.3} in the interval 0 < v < 1.

Proor: The e.st.imates from above are obvious by Theorems 5.1 and 3.1 and by Corollary 4.1.
In the last case, we alsa have I (nnxlﬁ,;p Ylicig X“”) > F (Z,,\Iw X“h) ~ wu'g, Thus, the

asymptotic equivalence holds. O

Now, let us diseuss the scalability of load balancing with the multiple assignment strategy.
As before, p denotes the number of processors and ¢ denotes the number of subproblems per
processor. Let X,; be the size of the j-th subproblem assigned to the i-th processor for 1 <1 < p
and 1 € 7 € g. These are assumed to be iid. Poisson random variables with parameter &,
where o denotes the average subproblem size. The load at the i-th processor is given by
Yorcj<q 0 Xy5) for 1 <i < p, where o(-) denotes the time-complexity function of the algorithm.
The expectation of the maximum load among the processors can be immediately estimated by

the above theorem as follows:

Corollary 5.1 Letc : By —— R, be a polynomial function of degree d = 1, and { X, }ici<pa<izq

be i.i.d. Poisson random variables with parameter o > 0. For any fized o = 0, according lo
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different assumptions on the growth rate of 4 = gqlp) as p — oo, we have:

c(log p/ loglog p) if q=9i1),
g ( Y e, }) £ 4 efb) withb=w(g) if g =o(log'p),
- gelae/y) if wlq~ztlog®p for somez >0,
E (1[‘-1:53‘ Z ‘-":Xn'.a]) ~  gc (o) if q=wllog"p),
Sy

where b = b{og"™ p) and v = y(x) are the same as in the preceding theorem and ¢*(-) is a

polynomial defined by (2.1).
Therclore, we oblain the lollowing result.

Corollary 5.2 Under the assumptions of Covollary 5.1, we have, as p — o0,

(it 5 —1 if a'g=wlog"p),

(i) nz~" if a'g~z'log”p for some x >0,
where 7y is the efficiency defined by (2.2), and v = (&) 15 the roof of the equation (3.3) in the

mterval 0 < < 1.

Thus, a coustant efficiency is maintained for an increasing number of pracessors p, provided
that there are Q{plog” p) subproblems of average size 9(1). For example, the distributed hash
table in Example 2.1 works efficiently in parallel, provided that there are {){plog” p) items. The
size of the subtable at each processor should be (log® p) in order to keep the load factor o
small.

In contrast, for a fixed a > 0 and ¢ = o{(log p/ loglog p)¥}, we have n — 0 as p — oo, since

I (max of X,-J-}) > FE (max L‘{XU}) ~ ¢(log p/ loglog p) = w(g)
=iy e

1=i<
=Sl gy 1554

due to Theorem 3.1. We conjecture that  — 0 holds for g = I':n{lu:ng‘E p) for d == 1 as well as for

d = 1 {cf. Corollary 3.1 (i) }.

6 Conclusions

We have presented an isc-cfficiency analysis of the load balance between p processors, when
an equal number ¢ of subproblems are independently solved at each processor by the same
polynomial-time algorithm of degree d, on the assumption that the inpul data are randomly

scattered over the subproblems according to Poisson distribution with parameter o > 0. The

17



efficiency {the ratio of the average to the maximum load at cach processor) is shown to he

asymptotically at least 47, provided that o'y ~ 2 log" p holds for a fixed > 0 as p — oo

Here, v = «v(r) denotes Lthe root of the equation v+ 2(log y—v+1) = 0 in the interval 0 < 4 < 1.

And one can take v arbitranly close to one by chovsing a sufliciently large @ > 0. Thus, this

simple load balancing strategy is shown to be fairly scalable.
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