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Abstract

Qualitative reasoning has been applied in diverse fields of engineering, mainly
for diagnosis but also for design. Here we present a new application to design:
suggesting valid ranges for design parameters after structure has been
determined. This important design step is implemented by using an envigioning
mechanism that uses qualitative reasoning to determine all possible behaviors of a
system. Our method: (1) all possible behaviors are found by envisioning with
design paramelers whose values are initially indeterminate and with whatever
specifications the designer has; (2) if several behaviors are found, the designer
selects those that are preferable.

The design-support system Desq (Design gupport system based on gualitative
reasoning), based on an earlier qualitative reasoning system Qupras (Qualitative
physical reasoning system), is improved in three features: (1) envisioning, (2)
propagating new constraints on constant parameters, and (3) solving constraint
in parallel.

Like Qupras, the Desq system can decal with quantities qualitatively and
quantitatively. If the parameters can be expressed guantitatively, we may
therefore be able to determine the quantitative ranges, which are more useful than
gqualitative values.



1 Introduction

Although many expert systems have been used recently in diverse fields of
engineering, several problems still exist. One is the difficulty of building
knowledge bases from the experience of human experts, and another is that these
expert systems have not be able to deal with situations that cannot be imagined
[10]. Reasoning methods using deep knowledge, which 1s the fundamental
knowledge of a domain, are expected to solve these problems. Qualitative
reasoning [2] determines dynamic behaviors, which are the states and state
changes of a dynamic system by using deep knowledge of the dynamic system.
Another feature of gqualitative reasoning is that it can deal with guantities
qualitatively. So far, there have been many applications of qualitative reasoning to
engineering [12-14]. The main application has been to diagnosis [25], [20], but
recently there have also been applications to design [11], [26].

In this paper, we show a new application to design that supports decisions by
suggesting valid ranges for design parameters after the structure of the designed
system has been determined. This application 1s not more innovative than the
previous applications [11], [26] to design, but it is nonetheless one of the important
steps of design [3]. Qur previous paper [18] described the intermediate state of our
research, and this paper shows the [inal state.

The key to the design support is using an envisioning mechanism, which finds
possible behaviors of the dynamic system, to determine the ranges of those design
parameters whose values are indeterminate. When the design parameters whose
values a designer wants to determine are indeterminate, all possible behaviors
under those indeterminate parameters can be predicted by the envisioning
process. If the designer gives some specifications, the number of the possible
behaviors may be reduced. In the cnvisioning, some hypotheses may be made to
obtain each behavior. The main reason hypotheses are made is that conditions
written into the definitions of objects and physical rules cannot be evaluated when
the design parameters are indeterminate. Among the possible behaviors
obtained, more than one behavior desired by the designer is expected to exist. The
designer can therefore select the behaviors he prefers. Although the designer
may not know the values of the design parameters, he knows the desired behavior.
The values of the indeterminate parameters can be derived from the hypotheses
that result in the desired behavior.

The method of determining valid ranges for design parameters can be
summarized as follows:

(1) All possible behaviors are found by envisioning with design parameters
whose values are initially indeterminate and with whatever specifications
the designer has,

(2} If several behaviors are found, the designer sclects those that are preferable.

We used a qualitative reasoning system Qupras (Qualitative physical reasoning

system) [15-17] to construct a decision support system Desq (Design support system
based on gualitative reasening) that suggests valid ranges for design parameters.

Qupras, using knowledge about physical rules and objects after being given an
initial state, determines the following:

(1) Relations between objects that are components of physical systems.
(2) The state transitions of the system.
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To construct Desq, we extended Qupras as follows:

(1) Envisioning
In Qupras, if a condition of a physical rule or an object cannot be
evaluated, Qupras asks the user to specify the condition. We extended
Qupras to allow it to continue reasoning by assuming an unevaluated

condition.

(2) Propagating new constraints on constant parameters

There are two types of parameters in Desq, variable and constant. Design
parameters are constant because they do not change with time. In the
envisioning process, constraints related to some constant parameters
become stronger hecause conditions in the definitions of physical rules and
objects are hypothesized. The constraints propagate to the subsequent
states. To find constrainte for constant parameters, Desq calculates the
ranges of all constant parameters after determining the model.

(3) Solving constraint in parallel

Qupras uses a combined constraint solver consisting of three basic
constraint solvers all written in ESP: a Supinf method constraint solver, an
Interval method constraint solver, and a Groebner basc method constraint
solver. The processing load of the combined constraint solver was heavy,
so we converted it to KL1, which is a parallel logic programing language
supported by ICOT (Institute of New Generation Computer Technology), to
speed up processing.

Like Qupras, Desg can deal with quantities qualitatively and quantitatively. If
the parameters can be given as quantitative values, we may therefore be able to get
guantitative ranges. Although the usual qualitative reasoning, such as that
described in Ref. 8, gives qualitative ranges, quantitative ranges may be preferable
for decision support.

Section 2 of this paper shows how Desq suggests ranges for design parameters,
Section 3 describes the system organization of Desq, Section 4 shows examples of
Desq suggesting the value of resistors in a DTL circuit and in a Schmitt trigger
cireuit, Section 5 describes related works, and Section 6 summarizes the paper.

2 Method of determining design parameters

In design, there are many cases in which a designer does not directly design a
new device but instead simply modifies an old device. Sometimes designers only
change parameters of components in a device to satisfy the requirements. In such
cases, the designer knows the structure of the device and needs only Lo determine
the new values of the components. This is a common situation in electronic
circuit design, so we apply qualitative reasoning to these kinds of design decisions,

The key process used Lo determine design parameters is envisiomng. Our
method is as described in Section 1:

(1) All possible behaviors are found by envisioning with design parameters
whose values are initially indeterminate and with whatever specifications
the designer has.

(2) If several behaviors are found, the designer selects those that are preferable.



If a condition in the definition of a physical rule or an object cannot be
evaluated, Desq hypothesizes one case in which the condition ig valid and another
in which it is not. Then Desq separately searches each case to find all possible
behaviors. This method is called envisioning, and is the same as the reasoning
described in Ref. 8. If a contradiction is detected, the reasoning is abandoned. If
no contradiction is detected, the reasoning is valid. Finally, Desq finds several
possible behaviors of a device. The specification a designer gives is used to prune
undesired behaviors.

The characteristics of this approach are as follows:
(1) Only deep knowledge is used to determine design parameters.

(2) All possible behaviors with regard to indeterminate design parameters are
found when any specifications are not given. This kind of information may
be useful in safety design or danger estimation.

(3) Ranges of design parameters giving preferable behaviors are found. If a
designer uses numerical CAD systems, SPICE for example, for more detail
analyses he need not simulate values outside the ranges.
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Fig. 1. An example of deciding a of design parameter.



Figure 1 shows an example of suggesting ranges for a design parameter. This
example illustrates the determination of a resistance value in a DTL circuit. The
designer inputs the DTL structure and the value for the parameters of all
components except the resistance Rb, but he does not give any specification.

Desq tries to build the total model for the DTL, which model is deseribed as a set
of simultaneous inequalities. Desq checks the conditions in the definitions of
physical rules and objects. The definitions for objects specified in the initial state
for the DTL cirenit are checked. The definitions for physical rules in knowledge
base of Desq are checked. If their conditions are satisfied, the equations of their
conscequences are added to the model of the DTL and they are sent to the parallel
constraint solvers. But because resistance Rb is indeterminate, it is not known
what state the diode D1 is in. The first condition is whether the voltage of D1 is
less than 0.7 volts. Desqg hypothesizes two cases: in the first the condition is not
satisfied, and in the second it is. The first hypothesis is abandoned because the
parallel constraint solver detects a conflict with the other equations. In the second
hypothesis, no conflict is detected. After some more hypotheses are made, a state
is detected in which it is not known whether or not the condition giving the state of
the transistor Tr is satisfied. Desg similarly hypothesizes these two conditions.
Finally, Desq finds two possible behaviors for the initial data. Then Desg
caleulates the resistance Rb. The resistance must be greater than 473 ohms to
give the desired behavior, that the eircuit acts as a NOT circuit because the
transistor is "on", If the resistance is less than 473 ohms, the circuit shows an
undesired behavior. We can know that the resistance Rb must therefore be
greater than 473 ohms.
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Fig. 2. System organization.



3 System organization

This section describes the system organization of Desq. Figure 2 shows that
Desq mainly consists of two subsystems:

(1) Behavior reasoner
This subsystem 1s based on Qupras. It determines all possible behaviors.

(2) Parallel constraint solver
This subsystem is written in KL1 and can be executed on the parallel
inference machines supported by ICOT, which are PIM, Multi-PSI, or
Pseudo Multi-PSL
When the designer specifies initial data, the behavior reasoner builds its model
corresponding to the initial state by evaluating the conditions of physical rules and
objects. The rules and objects are stored in the knowledge base. Model building
reasoning builds the simultancous inequalities in the same way that they are built
in Qupras. Simultaneous inequalities are passed to the parallel constraint solver
to check their consistency and to store them. If an inconsistency is detected, the
reasoning process is abandoned. Conditions in the definitions of physical rules
and objects are checked by the parallel constraint solver. If the conditions are
satisfied, the inequalities in the consequences of the physical rules and objects are
added to simultaneous inequalities in the parallel constraint solver. Conditions
that cannot be evaluated by the parallel constraint solver are hypothesized. After
determining the model of the DTL on one state, the behavior reasoner calculates
all parameters and predicts the next state. When predicting the next state, the
restrictions for constant parameters are passed. The information on variable
paramelers used (o predict the next state are basically passed to the next state.

3.1 Behavior reasoner
3.1.1 Qupras outline

Qupras, a qualitative reasoning system that uses knowledge from physics and

engineering lextbooks, has the following charactenstics:

{1) Qupras has three primitive representations: physical rules (laws of physics),
ohjects, and events.

(2) Qupras determines the dynamic behaviors of a system by using knowledge of
physical rules, objects, and events to construct all the equations for the
systemn. The user need not enter all the equations of the system.

i3} Qupras deals with equations that describe basic laws of physics qualitatively
and quantitatively.

(4) Qupras does not require quantity spaces to be given in advance. It finds the
gquantity spaces itself during reasoning.

(5) Objects in Qupras can inherit definitions from their superobjects. Physieal
rules can be thus defined generally by using superocbjects to specify the
definitions of object classes.

Qupras is similar to QPT (4] but does not use influence. The representations

describing relations of values in Qupras are only eguations. Qupras aims to
represent laws of physics given in physics textbooks and engineering textbooks.



Laws of physics sre generally deseribed in the textbooks not by using influences,
but by using equations. Qupras therefore uses only equations,

The representation of objects mainly consists of existential conditions and
relations. Existential conditions are those needed for the objects to exist. Objects
satisfying these conditions are called active objects. Relations are expressed as
relative equations that include physical variables. If existential conditions are
satisfied, their relations become known as relative equations that hold for physical
variables of the objects specified in the physical rule definition.

The representation of physical rules mainly consists of objects, applied
conditions, and relations. The objects are those necessary Lo apply a physical rule.
The representations of applied conditions and relations are similar to the
representations of objects. Applied conditions are those required to activate a
physical rule, and relations correspond to the laws of physics. Physical rules
whose necessary objects are activated and whose conditions are satisfied are
called active physical rules. If'a given physical rule is active, its relations become
known as in the case of objects.

Qualitative reasoning in Qupras involves two forms of reasoning: propagation
reasoning and prediction reasoning. Propagation reasoning determines the state
of the physical system at a given moment (or during a given time interval).
Prediction reasoning determines the physical variables that change with time,
and predicts their values at the next given point in time. Moreover, the
propagation reasoning uses the results from the prediction reasoning to
determine the subsequent states of the physical system.

3.1.2 Behavior reasoner

The behavior reasoner is little different from that of Qupras. It differs in the
following three features:
(1) Envisioning
In Qupras, if the conditions of physical rules and objects cannot be
evaluated, Qupras asks the user to specify the conditions. It is possible for
Desq to continue to reason in such situations by assuming unevaluated
conditions.
(2) Calculation of all parameters
Alter propagation reasoning, the behavior reasoner asks the parallel
constraint solver to caleulate all parameters including in the ecireuit.
(3) Propagation of new constraints on constants
There are two types of parameters (quantities): constant and variable. In
envisioning, the constraints reclated to some constant parameters become
stronger by hypothesizing some conditions in the definitions of physical
rules and objects. The constraints propagate to the subsequent states.
Before the reasoning, all imitial relations defined in the imitial state arc sct as
known relations, which are used Lo evaluate the conditions of objects and physical
rules. Initial relations are used mainly to set the initial values of the physical
variables. If there is no explicit change in an initial relation, the initial relation is
held. An example of an explicit change is the prediction of the next value in the
prediction reasoning,



Propagation reasoning finds active objects and physical rules whose conditions
are satisfied by the known relations. If a contradiction is detected after passing
relations of the active objects and physical rules to the parallel constraint solver,
the propagation reasoning is stopped. If no condition of physical rules and objects
can be evaluated, the reasoning process is split by the envisioning mechanism into
two process: one hypothesizing that the condition is satisfied, and the other
hypothesizing that it is not.

Prediction reasoning first finds the physical variables changing with time from
the known relations that result from the propagation reasoning. Then it searches
for the new values or the new intervals of the changing variables at the next
specified time or during the next time interval. Desqg updates the variables
according to the sought values or intervals in the same way they are updated in
Qupras. The updated values are used as the initial relations at the beginning of
the next propagation reasoning.

3.2 Parallel constraint solver

The parallel constraint solver [19] tests whether the conditions written in the
definitions of physical rules and objects are proved by the known relations obtained
from active objects, active physical rules, and initial relations. And if conditions
of active ohjects and active physical rules are satizfied, the constraint solver
receives those relations and checks their consistency.

To test the conditions in the definitions of objects, physical rules, and events, we
want to solve nonlinear simultaneous inequalities. More than one algorithm is
used to build the combined constraint solver because we do not know of any single
efficient algorithm for nonlinear simultaneous inegualities. We connected the
three solvers as shown in Figure 3. The combined constraint solver consists of the
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Fig. 3. Parallel Constraint Solver (Consort).
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following three parts:

(1) Nonlinear ineguality solver based on the interval method [23],

(2) Linear inequality solver bazed on the Simplex method 7],

(3) Nonlinear simultaneous equation solver based on the Groebner base method

[1].

If any one of the three basic constraint solvers finds new results, the results are
passed on by the control parts to the other basic constraint solvers. This combined
constraint solver can solve broader equations than each individual solver can, but
the results of the combined constraint solver are not always valid because each
basic constraint solver cannot solve all nonlinear simultaneous inequalities.

The reason we can get quantitative ranges is that the combined constraint
solver can process quantities quantitatively as well as qualitatively.

4 Example

We show two examples. One is another DTL circuit example, and the other is a
Schmitt trigger circuit.

initial_state dtl 4,1 DTL circuit

ohjects 4.1.1 Description of
Rl-resistor ; maodel
Rg-resistor ; We use a DTL
Rb-resistor ; circuit identical to that
Ty-transistor ; shown in Figure 1. In
D1-diode : this example,
D2-diode? however, the input

initial_relations
connectitl!Rlt1Rg} ;
connect(t2!Rg t1'D1,111D2) ;
connect{t2!D3,t1'Rb,tb!Tr) ;
connect(t2!RLte!Tr) ;
resistance@R1=6000.0 ;
resistance@Reg=2000.0 ;
resistance@Rb »= 0.0;

vt 1Rl = 5.0 :

viat2!D1 >=0.0;

vi@t2!D1 =< 10.0 ;

viate!Tr = 0.0

vi@t2'Rh = 0.0 ;

end.

Fig. 4. Initial state for DTL.

voltage and the
resistance Rb are
indeterminate.

The initial data is
shown in Figure 4.
The "objects” field
specifies components
and their classes in
the DTL circuit. The
"initial relations”
field specifies the
relations holding in
the initial state. For
example,
"connect{t2'Rg, t1!D1,
t1!D2)" specifies that
the terminal t2 of the
resistor Rg, the



terminal t1 of the diode D1, and the terminal t1 of the diede D2 are all connected.
The "!" iz a svmbol specifying a part. The "t2!Rg" expresses the terminal t2,
which is one part of Rg. Rg is specified as a resistor in the "objects” definition.
The "@" indicates a parameter. The "resistance@RI]" represents the resistance
value of Rl, The "resistance@R] = 6000.0" specifies that Rl is 6000.0 chms. The
resistance b is constrained to be positive, and the input voltage, which is the
voltage of the terminal t2 in the diode D1, is constrained to be between 0.0 and 10.0
volts. Both values are indeterminate, and Rb is a design parameter.

olyect terminal:Terminal
attributes
v
1;
end.

object two_terminal deviece:TTD
parts_of
t1l-terminal ;
t2-terminal ;

end.

ofyject  diode:Di
supers
two_terminal_device;
altributes
v
1]
resistance-constant ;
initial relations
v@Di=v@t1!Di-v@t2!Di ;
state on
conditions
viaDi == 0.7 ;
relations
vialhi= 0.7 :
1@Di ==0.0;
state off
condition
vigDh < 0.7,
relations
resistance@Di=100000.0 ;
vi@Di=resistance@Di*i@Di ;
end.

Fig. 5. Definition of a diode.

Figure 5 shows the definition of a diode. Its superobject 15 a
two_terminal_device, so the diode inherits the properties of
two_terrminal_devices, i.e., it has two parts, both of which are terminals. Each
terminal has two attributes: "v" for voltage and "1" for eurrent. The diede has an
initial relation, which specifies the voltage difference between its terminals. The
diode also has two states: an "on" state where the voltage difference is greater
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than 0.7, and an "off" state where the voltage difference is less than 0.7. If the
diode is in the "on" state, it behaves like a conductor. In the "off" state, it behaves
like a resistor. A transistor is defined like a diode but has three states: "off", "on’,
and "saturated” (In the example of Figure 1, we used a transistor model with only
two states, "off” and "on").

Figure 6 shows the definition of a physical rule, Kirchhoff's law when the t1
terminals of three two_terminal_devices are connected. It is assumed that the
current into t1 of a two_terminal_device flows to the terminal t2. In fact, three
two_terminal_devices can be connected in eight ways.

physics three_connect 1
ohjects
TTD1 - two_terminal_device ;
TTD2 - two_terminal_device ;
TTD3 - two_terminal_device ;
T1-terminal partname tl part_of TTD1;
T2-terminal partname tl part_of TTD2;
T3-terminal partname t1 part_of TTD3 ;
conditions
connect(T1,T2T3);
relations
vEAT] = vaT2 ;
viE'l'? = vaTd ;
1@T1 +1@T2 +1@T3 =0
end.
Iig. 6. Definition of physical rule.

Table 1. All behaviors of a DTL circuit.

State Range of input  |Range of resistance value |Output
(vols) (Ohms) {volts)

1 ON-ON-SAT | 140081 - 1.5381 | 486.16 - infinity 0.2

2 ON-ON-ON | 1.4 - 140081 482.75 - infinity 0.2 - 5.0

3 ON-ON-OFF [(0.7-1.4 (- 233,567 4.94

4 ON-OFF-ON |0 - 1.4007 100,000 - infinity (0.842 - 5.0

5 ON-OFF-OFF| - 1.4 (- 233,567 4.94

& QFF-ON-SAT| 1.40081 - 10.0 | 460.9 - infiniry 0.2

7 OFF-ON-ON |1.4-10.0 457.8 - 48853 0.2-50

# OFF-ON-OI1-1 0.7 - 10.0 -484.1 4.94

9 OFF-OFF- * |Conflict
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4.1.2 Results

Table 1 lists all behaviors of the DTL circuit obtained by envisioning. The state
column indicates the states of the diode, the diode2, and the transistor. The
following columns show the range of the input voltage (volts), the range of the
resistance Rb (ohms), and the output voltage (volts). As shown, the envisioning
found nine states. DBecause the input voltage and the resistance Rb were
indeterminate, the conditions of the two diodes and the transistor could not be
evaluated. So Desq was used to hypothesize both cases and to search all paths.
Figure 7 shows the relationship between the resistance and the input voltage. The
ranges in Table 1 overlap because the models of the diodes and the transistor are
approximate models,
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By looking at Figure 7, a designer can decide the resistance that Rb must have
for the DTL circuit to behave as a NOT circuit. The value of Rb should be greater
than about 0.5 k ohms and less than about 100 k ochms so that the DTL circuit can
output a low voltage (nearly 0 volts) when the input is greater than about 1.5 volts
or can output a high voltage (nearly 5 volts) when the input is less than about 1.5
volts. The range is shown by the area enclosed by the dotted lines in Figure 7.

Vee

(a) Circt structure

i
12 |
Vot
(volts)
Hﬁ =
54 .
! -
0 59
Vin (volts)

{b) Specification of behavior

Fig. 8. Inputs for design support of a Schmitt trigger circuit.

4.2 Schmitt trigger

The second example is to determine the value of the resistance RE of a Schmitt
trigger circuit shown in Figure 8. This example differs from the previous
example in that here the input voltage changes with time.

Figure 8(a) shows the structure. A Schmitt trigger circuit includes positive
feedback, and its behavior shows hysteresis. When the input voltage increases,
the input voltage change from low-level to high-level output differs from the input
voltage change {rom high-level output to low-level output.
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The inputs to determine the value of the resistance RE of a Schmitt trigger
circuit are the circuit structure of the Schmitt trigger and the specification of its
behavior. The parameter RE in the circuit iz indeterminate, and the speafication
is as shown in Figure 8(b): if the input voltage is greater than 5.9 volts, the output
voltage should be 12 volts; if the input voltage is 5.9 volts, the output should be
between 8.4 and 12 volls; and 20 on. The specification shows how the circuit
should behave when the inpul voltage deceases from 12.0 volts to 0.0 volts.

Vin=12.0 59<Vin<12.0 | Vin=59 0i0<Vin<5.9 Vin=0.0
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Fig. 9. Determination of a design parameter in a Schmitt trigger.

Desq determines the ranges of the resistance RE satisfving this specification.
Figure 9 shows the process for determining the range, Desq finds the behavior of
the Schmitt trigger satis{ying the specification, and at the same time it determines
the ranges of the resistance satisfying the specification.

The constraint solver determines that when the input veltage is 12 volts, there is
no conflict only when the two transistors in the Schmitt trigger are in the "on and
off" states: with other combinations, there is conflict. The numbers below the
circled state combinations in Figure 9 show the range of RE. For example, in this
"on and off” state, the resistance must be greater than 933.6 ohms. There are two
possibilities from this state. One is "off and off" when the input voltage is between
5.9 volts and 12.0 volts. But this state finally cannot satisfy the given specification.
The other state, which is "on and off", becomes three states when the input voltage
15 5.9 volts. Positive feedback instantly changes the "on and on" state to the "off
and on" state. And the "off and on" state when the input voltage is 5.9 volts
changes to the "off and on" state when the input voltage is between 0.0 and 5.9
volts. And when the input voltage is 0.0 volts, it remains in the same "off and on”
state. The range of RE is reduced in finding the behavior satisfying the
specification. In the final state, the range of RE is from 1885.1 to 1999.4 ohms, so
we can find that the Schmitt trigger can behave satisfying the given specification if
RE is between 1885.1 and 1999.4 ohms.



5. Related Work

Desq does not suggest structures of devices like the methods described in Refs.
11 and 26 do. Rather, it suggests the ranges of design parameters for preferable
behaviors. This supgestion is also useful, though because determining values of
design parameters is one of the important steps of design [3].

This approach may be regarded as an application of constraint satisfaction
problem solving. There are several papers dealing with constraint satisfaction
problem solving that use electronic circuits as examples [24], [6], [9]. Sussman
and Steele's system cannol suggest ranges for design parameters because their
system uses only equations. Ieintze, Michaylov, and Stuckey's work using
CLP(R) to design electronic circuits is the most similar to Desq, but Desq differs
from their work in the following points:

(1) For Desq, knowledge on objects and laws of physics is more declarative.

(2) Desq can design ranges of design parameters (of devices) that change with

time.

(3) Desq can deal with nonlinear inequalities and can in some cases solve

nonlinear inequalities.

Mozetic and Holzbaur use numerical and qualitative models, and in their view,
our approach uses numerical models rather than qualitative models. But if a
constraint solver is used to solve inegualities, it is possible to use both numerical
and qualitative caleulalions.

6. Conclusion

We have described a method of using gualitative reasoning to suggest ranges
for design parameters and have implemented the method in Desq. The ranges
obtained are quantitative, because our system deals with quantities guantitatively
as well as qualitatively. In an example using a DTL circuit, Desq suggested that
the range of a resistance (Rb in Figure 1) should be greater than about 0.5 kilo
ohms and less than about 100 kilo ohms to work the DTL circuit as a NOT circuit.
If the designer nceds a more detailed design - for example, Lo minimize the
response time by performing numerical caleulation - he need not calculate outside
the range. This cun save on the calculation cost, which is greater for direct
numerical calculation (outside range). In the other example of the Schmitt
trigger, when the Desq input was the structure of the Schmitt trigger and a
specification of how the circuit should behave, Desq found that the design
parameter, resistance RE, should be between 1885.1 and 19994 ohms to satisfy the
specification.

There are some possibilities, however, for which Desq cannot suggest valid
ranges or the best ranges for design parameters. This is because

(1) Consort has a limited ability to solve nonlinear inequalities

Desy may suggest invalid or weak ranges because Consort cannot
perfectly solve nonlinear incqualities. But almost all results can be
obtained by performing more detailed analysis using numerical analysis
systems - SPICE, for example.

(2) Inexact definitions are used
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[t may be difficult to describe the definitions of physical rules and ohjects.
This is because inexact results may be obtained from inexact definitions.

We are investigating a feature to modularize the definition of components by
building the definition of an object from the definitions of components which are
parts of the object. In an experiment in which we made the definition of a Schmitt
trigger from its components [22], the CPU time for simulation was only about one
a tenth of that required for simulation using the definitions of the components of
the Schmitt trigger circuit. The modularizing feature is expected to improve the
performance of Desq.
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