TR-OT70
Architecture and Implementauon of PIM/p
by

K_Kumon, A. Asato, S. Arai. T. Shinogi &
A. Hattori (Fujitsu)

April, 1992

1992 ICOT

Mita Kokusai Bldg. ZLF (0313456-3191 3
l C OT 4-7% Mita 1-Chome Telex 1COT J32964
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Architecture and Implementation of PIM /p

Kouichi KUMON
Tsuyoshi SHINOGI

Akira ASATO

Susumu ARAI
Alkira HATTORI

Fujitsu Limited
1015, Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

Hiroyoshi HATAZAWA
Fujitsu Social Science Laboratory Litd.

Abstract

In the FGCS project, we have developed a parallel in-
ference machine, PIM/p, as a one of the final outputs of
the project [Taki 1992]. PIM/p has up to 512 process-
ing elements{PEs) using two level hardware structures,
Each PE has a local memory and a cache system to re-
duce bus traffic. The special cache control instructions
and the macro-call mechanism redues the common bus
traffic, which may become the performance bottle-neck
for shared-memory multi-processor systems. Eight PEs
and a main memory are connected by common bus using
the parallel cache protocol, we call it a cluster. PIM/p
system consists sinty-four elusters, those are connected
by dual sixth-order hyper-cube netwarks,

The KL1 processing system on PIM/p has two com-
ponent, the compiler and the run-time support routines,
The compiler uses the templates to generate PIM/p na-
tive codes from KL1-B codes. Each KL1-B instruction
hes & corresponding template. The codes are optimized
after the expansion from KLI1-B to pative codes. The
run-time support roubines are placed in the internal-
instruction memory, in the local-memory, or in the shared
memory according to their calling frequencies,

The preliminary evaluation results are presented. Cor-
responding to the hierarchy of PIM/p, two different con-
figuration systems: the network connected system and
the common bus connected system, are compared.

The resuits show that the speedup ratio compared to
one PE is nearly equal to the number of PEs for both
configuration systems. Hence, the bus traffic is not a per-
formance bottle-neck in PIM/p, and the automatic load-
balancing mechanism appropriately distributes loads
among PEs within a cluster at the evaluation.

1 Iniroduction

A parallel inference machine prototype{PIM/p) is now
being used. It is tailored to L1 jUeda and Chikayama
1990], and includes up to 512 processors. A two-level

Kiyoshi HIRANO

Institute for New (Generation Computer Technology

hierarchical structure is being used in the new system: &
processing element and a cluster{Figare 1).

Eight processing elements form a cluster, which com-
municates with a shared memory through & common bus
using snooping cache protocols. The clusters are con-
pected with dual hypercube packet switching networks
through network interface co-processors and packet
routers. The chassis consists of four clusters. The max-
imum PIM/p system includes sixteen chassis. A single
clock is delivered to all processing elements, maintaining
the phase between different chassis.

Some of the features introduced in the PIM/p system
are;

¢ Two level hierarchical structure to allow parallel
programming with common memory and to facili-
tale system expansion with the hypercube network.

The macro-call instructions which have the advan-
tages of both hard-wired RISC computers and
micro-programmable instruction set computers.

» Architectural support for incremental garbage col-
lection Multiple Heference Bit(MRB), which reduces
memory consumption when the executing parallel
logic programming languages such as KLL.

+ Each processing element has a local memory, which
can reduce bus traffic if the accessed data are placed
it the local memory.

* Coherent cache and dedicated cache commands for
KL1 parallel execution, which can also reduce com-
mon bus traffic.

s (Cenerating the native instruction codes from inter-
mediate KL1-B codes by optimizing compiler with
a optimizer.

» The optimizer analyses data-flow for both the tag
parts and the data parts independently, which can
eliminate unnecessary tag operations.

Commeon Bus

Shared
MMemory 256M B

Clusterg

|

" Cluster; Cluster;

Multiple hypercube intercluster network
[1] .
B R N) M | . .

PE: Processing Element
NIU: Network Iaterface Unit

i

i

1

1

]

§

1

1

i

;

1

1

1

]

[}

1

1
Clustergs

Figure 1: PIM/p system configuration

Gd-bit internal data bus
fNEI':IJEk le—s Network router
Interface Unit) [+ _SC3I
| Interface Unit) | Protocal —=5CSI bus
FPU Controller
i Floating
Point Unit) [
internal
IIn
IPU ; o {Internal
{Instruction internal .
. . { Instructicn
Processing Unit) ; Memory)
Instruction Cache address
Ingtruction
— Cache
T cou
Cach
Data Cache éu E
A ntrotler
Tinits]

Common bus

Figure 2: PIM processing element configuration

The processing Element{PE) consists of an /nsirucifon
Frocessing Unif{IPU), a Cacke Contral Unit(CCU) and
network interface unit{NIU). Figure 2 is a schematic di-
agram of a PE.

In this paper, the hardware architecture and the KL1
processing system are described. In Section 2 to See-
tion 4 we describe [PT, cache and the network syslem.
Then, the run-time support routines for L1, and the
KLI-B compiler code generation and its optimizalion are
described in Section3. Finally in Section 6 a preliminary
performance evalualion resulls are presented.

2 IPU Architecture

The instruction processing unit{IPU) executes BISC-like
instructions which have been tailored to KL1 execution.
The instruction set has many features which facilitate
efficient KL program execution. Io this section, we de-
scribe these features,

2.1 Tagged data and type checking

To execute KL programs, a dynamic data type checking
mechanism is needed to provide:

» Transparent pointer dereferencing.
» Polymorphic operations for data types.
Ineremental garbage colleclion support.

Dereference is required at the beginring of most uni-
fication operations in KL1. In dersference, a register
is first tested to see whether its content is an indirect
pointer or pot. If it is an indirect pointer, the cell pointed
to is fetched into the register and its data type i3 tested
again.

Many operations in KL1 include run-time data type
checks even after dereferencing has been completed. Uni-
fications include polymerphic operations for data whoss
type 1= not konown until run-time.

In eddition, incremental garbage collection by MRB
iz embedded in dereferencing(See Section 2.5 for details).

Therefore, tagged architecture is indispensable for
the KLl processing. In PIM/p, data is represented as
40-bit (8-bit tag + 32-bit data), and the general-purpose
register has both a data part and a tag part. The MRB
is assigned in one bit of the B bit tag.

The tag conditions are specified as bit-wide logical
operations between the tag of a register and the 8-bit
immediate tag velue in the instruction. An instruction
can specify the logical operation as AND, OR, or XOR
or a negalions of one of these.

If an instruction specifies XOR as its logical opera-
tion, it checks whether the tag of the register matches
the immediate value supplied in the instruction, Xor-
mask operation does this matching under the immediate
mask supplied in the instruction, which enables various
zroups of data types to be specified in a conditional in-
struction if the da.a types are appropriately assigned to
Lag bits (See Section 3.1 for details).

Various hardware flags, like the condition code of
ALV operations or hardware exception flags, can be
checked as the tags of dedicated registers, so these flags
can be examined by a method similar to data type check-
ing.

2.2 Instructions and pipeline execution

The processing element uses an instruction buffer and
a four-stage pipr:li.m:, DA T B, to attempt to issue
and complete an instruction. Table 1 shows the pipeline
stages in ALT, memory access and branch instructions.
All instructions except co-processor instructions arc is-
sued in every cycle

Basic instructions such as ALU operations have three
operands, and memory accessing instructions are limited
to lead and store type instructions. Pipeline execution
tends to make the branch penalty large. In PIM/p, the
target instruction starts four clock after the branch in-
struction starts. To reduce the branch penalty, delayed
branch instructions are used. These have one delay slot
after them.

The skip instruction is also useful. This nullifies a
subsequent instruction if the skip condition is met. The
skip instruction does not cause a pipeline break, so ils
use results in efficient instruction execution. Figure 3
shows the pipeline stages in conditional branch/delayed-
branch /skip instructions.

In the PIM/p pipeline, all instructions write their re-
snlts al the B stage and ALU or memory write instruc-
tions require source operands at the beginning of the B
stage. The bypass from the B stage can eliminate inter-
locks. Conditional branch instructions test the condition
at the B stage, the bypass also eliminates condition test
interlocks. However, when the register is used by address
caleulation at the A stage when the value of the register
has just been changed, an interlock may occur even if &
bypass frem B to A is prepared. Figure 4 shows this ad-
dress caleulation interlock. The compiler must recognize
such interlock conditions and should eliminate them as
far as possible.(See section 5.2.3)

2.3 Macro call and internal instructions
A RISC or RISC-like instruction set has advantages in

both low hardware design cost and fasl execution pipelin-
ing. However, naive expansion of KL1-B to low-level
RISC instructions produces a very large compiled code.

ditional branch is taken: condilion lested at B

When con
D A T B : cond. branch instruction
D A T canceled : next external instruction
D A canceled + Ind exterpal instruction
D canceled 1 drd external instruction
D A T : branch target instruction

When delayed branch is used: condition fested at B

D AT

D A T B ; cond. branch instruction
D AT B : next external instruction

D A canceled ¢ Ind external instruction

v canceled : 3rd external instruction

: branch target instruction

When conditional skip is taken; condition fested at B

D A TEBEB : cond. skip instruction
D A T canceled : nmext external instruction
D A T B : Ind external instruction
D A T B :irdexternal instruction
Figure 3: Pipeline stages of conditional branch/skip
instructions
D A TB 1 register write instruction.
D DD A T B ;inter-lock occurs
D A T :nextinstruction

Figure 4: Interiock caused by address calculation

This may cause frequent instruction cache miss-hits and
may fill up the common bus band width with instruction
feed, especially in tightly-coupled multiprocessors such
as & PIM/p cluster. Here, reducing common bus traf-
fic is & most important design issue as is reducing the
cache miss-hit ratio. On the other hand, the static code
gize can be small in a high-level instruction set computer
with micro-programs, such as PSIL.

To meet both requirements, the processing element
of PIM/p has two kinds of instruction streams, external
and iniernal. External instructions are mostly RISC-like
instructions with KL1 tag support[Shinogi et al. 1988],
Internal instructions are fed from internal instruction
memory like micro-instructions.

The external instruction set includes macro-call in-
structions, which first test the data type of & register
given as an operand, then invoke programs in the in-
ternal instruction memory(lIM) or simply execute the
next external instruction, depending on the test result.
Every time & maco-call instruction is executed, the cor-
responding macro-body instruction is fetched from IIM
to reduce the calling overhead, but it is not executed un-
less a macro-cell test condition is met (See the S and C
stages of Table 1). Figure 5 shows the pipeline stages of
macro-call instructions, A macro-call instruction can be
regarded as a light-weight conditional subroutine call or

Table 1 Pipeline stages of ALU, memory access and branch instructions

AL operation Memory access ___ Braneh
B Set 1IM address, valid only for m-call or internal instructions
{C) Fetch instruction from IIM, velid enly for m-call or internal instructions
Decode [Decode [
D Decode Register read for address Register read for address
Memory address Branch address
A = caleulation calcalation
T Hepister read Cache tig access Cache tag access
ALTU operation | Cache data access [Cache data access [
B Register write Condition test

F,EE‘utm: write

When the condition mel: condition test al A
D A + macro-call instruction
D' canceled + next external instruction
5 C D A TEBE 2 first internal instruction
§ C D A T B :Zndinternal instruction

When the condition 15 nof mel: condilion fest at A
D A ; macro-call instruction
DA T B : mext sxternal instruction

D A T B + 2nd external instruction

Figure 5: Pipeline stages of macro-call instructions

as a high-level instruction with data type checking.

Te reduce the overhead of passing parameters from
a macro-call instruction to the macro-body, the FIM/p
processing element has three indirec! registers. The in-
direct registers are pseudo registers whose real register
numbers are obtained from the corresponding macro-call
instruction parameters.

These mechanisms may appear to be similar to those
ol conventional lnicru—prusrammable computers. Pro-
grams stored in [IM are written by system designers inte
internal instruction memory, like micro-programs. How-
ever, the internal instruction set is almost the same as
the external instruction set, so a designer can use same
development tools to generate both external and inter-
nal programs. Therefore, system designers can specify
internal or external at the machine-language level, with-
oub writing complicated micro-instruetions, as in conven-
tional micro-programmable computers.

2.4 Dynamic test stage change

As discussed in the Section 2.3, internal instruction exe.
cutions require an additional two pipeline stages, 5 and
C, before the D) stage, internal conditional branch causes
& five clock cycle branch penalty when the branch is
taken. In the case of an external branch instruction, tar-
get mnstruction fetch starts at A as an Dpl:rmd and the
fetch finishes at the B stage, thus testing the condition
before the B stage cannot reduee branch penalty.
However, internal instructions must use the § and

Table 2: The advantages and disadvantages of B and A
eondition check

Test stage Advantages Disadvantages
B Mo interlock 57 branch penalty
A It branch penalty 0/1/2r interlock
1r=1 clock cycie

C pipeline stages to fetch the target internal instrue-
tion. It canoot not start before the condition test. I
the branch condition is determined earlier, say &t stage
A target fetch can be started earlier. This reduces the
branch penalty. However, an early condition test causes
interlocking, which is common to memory address calcu-
lation, and this will cccur even if the branch 1s not taken.
Table 2 shows the advantages and disadvantages of both
B stage and A stage condition tests. Some sample cod-
ings show internal conditional branches are often placed
jusi after memory read or ALU operation instructions,
and it is hard to insert non-related instructions between
them. To minimuze pipeline stall, an A stage test should
be used if the previous instruction does not interlock the
condition test, otherwise B stage test should be used.

Preparing two sets of branch instruetions, a B stage
test and an A stage test, adds instructions to the PIM/p
instruction set, because the PIM/p instruction set has
many conditional branch instructions for various tag
checking.

Without adding instructions, the PIM/p pipeline con-
troller decides between internal conditional branch A or
BlAsato et al. 1991). When some instructions inter.
lock the test stage A of a successive internal conditional
branch, the test stage is changed to B to avoid interlock,
otherwise the test is done at A stage. We call this a
dynamic conditional branch test stage change. If 2 com-
piler or a programmer can put two or more instructions
between a register write instruction and & conditional
branch based on the register, the test is done at the A
stage,

2.5 MRB support

Incremental garbage collection support is one of the most
important issues in parallel inference machines. The
PIM/p instruction set includes several instructions for
efficient execution of MRB garbage collection[Chikayama
and Kimura 1957].

Using the MRB incremental garbage collection, value
cells or structures are allocated from free lists, and when
those allocated areas are reclaimed, the areas are linked
to free lists. To support these free list operations, the
push and pop instiuctions are used.

The MRB of each pointer and data object has to be
maintained in all unification instructions. Especially in
dereference, the MRB of the dereferenced result is off
if and only if MEBs of both the pointer on a registes
and the pointed cell are MRB-off. MEE is assigned to
one of the eight bit tag data. MRB-on means the bit
is 1, MRB-off means 0 respectively. Therefore logical
or of bath the pointer MRB bit and the pointed data
MEE bit represents the pointed data's multiple refer-
ence status. Dedicated instructions Head Tag WordMrlor
and Deref support this operation. ResdTagWordMrbar
ioads memory data pointed by address register into des-
tination register, accumulates both the address register’s
MRD and the destination register's MRB that is MRB
of the memory data, sets the result status in the destina-
tion register, Derefis similar to the ReadTag WordMrbor
instruction, but loads memory data into address regis.
ter and the old address register value is saved to des-
tination register simullaneously. Therefor, succeeding
instructions can examine that the pointed data can be
reclmmed or not by testing destination register’'s MRB
hat,

These dedicated instructions can minimize the over-
head te adopt MAE incremental garbage collection.

3 Memory Architecture

3.1 Cache and bus protocols

Each PIM/p element processing has two 64K bytes caches
for instructions and data. PIM/p uses mp}'back cache
protocols which have been proved effective for reducing
common bus traffic in shared-memory multiprocessors,
Tox maintain cache coherence, Lthere are basically two
mechanisms, invalidating the modified bleck and broad-
casting the new data to others.

PIM /p uses the invalidation method for the following

reasons. 1o use icremental ga.rha.ge collection MIDB, a
veclaimed memeory area need not be shared. Next time
the area is used it may not be shared with the same
processars which previously shared the area. In other,
KL1 ioad distribution is achieved by distributing goal
records in a cluster from one processor to another. Usu-
ally the distributed goals will not be referred from the

source processor. In these cases, the broadcast method
will produce unnecessary write commands to the com-
mon bus on every write to the newly allocated area or
distributed goals. The invalidation method is much more
efficient.

PIM/p eache protocol is similar to Illincis protocol.
However, FIM/p protocol has the following cache com-
mands optimized for KL1. In normal write operations,
a {etch-on-write strategy is used; however, it is not nec-
essary to fetch the contents of shared memory when the
block is allocated for a new data structure. That means
the old data in the block is completely unnecessary. In
KL1, when free lists are recreated after grand garbage
collection, the old contents of memory have no mean-
ings, To accomplish this, Direct. Write i3 used.

Diirect.write: If cache misses at the block boundary,
write data into cache without fetching data from
MEmory.

The following instructione are used for inter-processor
communication through a shared memory, for example
goal distribution.

Read Invalidate: When cache misses, fetch the block
and invalidate the cache block on other CPUs. This
operation guarantees that the block is exclusive un-
less the other CPU subsequently request the block.

Read Purge: After the CPU reads a block, it is simply
discarded even if it iz modified.

Exclusive_read: Same as Head Invalidate except for the
last word in & cache block, When it is used to read
the last word in a cache block, it purges the block
fike Read_Purge.

Using these instructions, unnecessary swap-in and swap-
out can be avoided by invalidating the sender's cache.
block after receiver the gets the block, and by purging
the receiver's cache block after the receiver reads all data
in the block.

Nl-behaved software may cause these instruction to
destroy cache coherency, However, these instructions are
used only in KL1 processing system, and only systems
programrmers use them.

There are hardware switches which can change the
actions of those special read {write instructions to normal
read [write actions. By using these switches, the systems
programmer cad examine their programs consistency.

3.2 Exclusive control operation

To build a shared-memory parallel processor system, lock
and unlock operation are essential guarding critical sec-
tions. KLI requires fine-grain parallel processing. The
frequency of locking and unlocking operation needed for
shared data is estimated at mare than 5% of all mem-
ory accesses. Thus these operation must be executed

with low overheads by using hardware support. How-
ever, locking operations should seldom conflict with each
other. It is therefore useful to introduce a hardware lock
mechanism which has low overhead when there are no
lock conflicts. In PIM/p, the cache block has ezclusive
and shared status. When the block is exelusive, it is not
owned by other PEs. Henee there is no need to use the
common bus. A marker called the lock address register
which remembers the block is locked by the CPU. When
the CPU locks a block, other CPU cannot get the block
data until the block is unlocked by the original CPTL
Even when the block is shared, fetching data and invali-
dating the block before locking i= sufficient. The cost is
nearly equivalent to the normal write operation.

In KL1 processing, unification requires frequent lock-
ing, but the locking time is fairly short. A bhardware
busy wait scheme is better for lock cooflict resclution.
If & longer locking time is needed, & software lock can
be made by combining [oek, mead and conditional jump
mstructions. For LI, no bus cycles are nesded for most

of the lock reads hitting exclusive cache blocks.

4 Network Architecture

4.1 Network interface unit

Mulliple clusters are connected by a hypercube topology
network. At the design stage, we assumed that ten log-
ical reductions require a hundred-byles packet transfer.
The target speed of PIM/p PE will be betwsen 200K
LIPS to 300K LIFS. This means 2M to 5M bytes per
second network bandwidth is required by each PE. Thus
16M to 40M bwvtes per second network bandwidth is re-
quired to & cluster which contains eight PEs. If this
data flows into the comimon bus. network packet data
occupies about 10% te 25% of the total bandwidth of
the common bus. Froviding & network interface to each
processing element reduces such common bus traffic.
Each cluster has § PEs, and each PE has a net-
work interface co-processor called a network interface
unit (NIU). By attaching a NIU to cach PE, a PE can
send Lo or receive from a packet without using the com-
mon bus. The NTU performe the following functions:

+ Builds a packet into the NIU's paclet memory, and
sends it to the network router{RTR).

* Heceives a packet from the RTR, stores it to the
packet memory. and signals the arrival of a packet
to IPLL

s Communicates to & SCSI bus driver chip which
connects to PIM/p front-end processors(FEPs) or
dizks.

All these actions are controlled by the IPU's co-processor
instructions.

f

To build a packet, the IPT] first makes a header which
contains the packet destination and mode for broadcast-
ing. It then building a packet body by executing co-
processar write instructions, which packs data one, two,
or four bytes at a time. Finally the IPU puts a end
of packet marker to send the packet to RTR. A whole
parket of data is stored in packet memory before send-
ing it, to minimnize KTH busy time. The send and receive
packet memories are both 16K bytes lang.

Each cluster has four $CSI ports which are connected
to the PEs. Two have non-differential SC5I interface
ports, and the other two have differential SCSI inter-
face ports. The differential 3CSI interface is able to ex-
tend the interface cable up to twenty five meters. It is
used to connect SCSI disks which need not be placed
beside the cluster. The PIM/p FEP is connected to
& non-differential interface, and various other SCST de-
vices, such as an ether-net transceiver, can be connected
through the SC51 bus. This extends PIM/ p’s application
domain.

4.2 Inter-cluster network connection

While the NIU sends and receives packets, the network
packet router{ KT'R) actually delivers packets. Each RTR
connects four NIUs and up to six other RT'Hs to build &
sixth order hypercube network topology. Thus each clus-
ter has two RTRs which construct twe independent hy-
percube networks to improve the total network through-
put. The RTR can connect a maxdmum of sixty-four
clusters(512 PEs).

RTR uses the wormhole routing method to reduce
traveling time when the network is not so busy, to avoid
packet length restrictions caused by RTR packet buffer
limitation. Betwesn RTRs data is transferred at system
clock rate. RTR has approximetely 1K bytes of packet
buffer for every output port, in order to reduce network
congestion, The static routing method is used and dead-
locks are avoided by the routing method. Broadcasting
to the sub-cube is available. This can be used when the
system is at the initial program stage.

In the PIM/p system, one chassis contains four clus-
ters. The maximum 512PE PIM/p system is sixteen
chassis. Building for such a large system can be prob-
lematic. Transferring data between these chassis by syn-
chronous-phase matched clock is impossible, because the
gystem occupies an area of aboul sixteen meters square.
This means thet the traveling time of data is about
one system clock tick. Introducing ancther hierarchy
between inner-chassis communication and inter-chassis
communication eomplicates the distribution strategies of
the KL1 processing systems. This should be avoided.

One of main feature of RTR is the interconnection be-
tween PIM/p chassis. To attain a transfer rate equal to
system clock rate for both inner-chassis and inter-chassis
data, RTE uses a data synchronization mechanism for

inter-chassis eonnections. This makes the inter-chassis
conmection transfer rate equal to the inner-chassis trans-
fer rate, with little increase in data traveling time. This
simplifies the cluster hierarchy.

5 The Kl1 Language Processing
System for PIM/p

The KL1 language processing system for PIM/p is de-
signed on the basis of the VPIM [Hirata et al. 19932]; it is
the commen specifications of the KL1 language process-
ing svstem on the two level hierarchical multi-processor
system. Most specifications of VPIM are used for PIM/p
with no changes, Some modification, however, were ap-
plied to exploit the PIM/p bardware efficiently.

The KL1 janguage processing system is implemented
as the KL compiler and the run-time support routines.
The KL1 program must be compiled into PIM/p na-
tive machine code when it is executed on PIM/p. The
KLl compiler for PIM/p consists of three passes — the
compiler to the intermediate code, the native machine
code generator and the optimizer. Compiled KLI pro-
grams mav call some run-time support routines as cir-
cumstances demand. The run-time support routines are
classified into three groups, which corresponed o PIM/p
memoty atchitecture.

5.1 Changes for PIM/p

There are some changes from VPIM to FIM/p. These
were applied to exploit the PIM/p hardware efficiently.

(1) Data Structure

The basic K11 data are realized by tagred words;
each of them consists of a B-bit tag part and a 32-bit
value part, and all KL1 data are realized by tagged words
in VPIM. The memory of PIM/p consists of 64-bit width
wards. Tageed words are placed in aligned G4-bit width
words in the PIM/p memory svstem [Gote et al. 1528).
Although KLL data density will be low in this scheme,
this will not eause performance degradation.

The PIM/p instruction processing unit can access the
memory not enly in the unit of tagged data, but also
e the 3-bat, 16-bit, 32-bit and 64-bit unils. A string
— an avray of integers can, therefore, be realized us-
ing fd-bit wiedth words, as shown in figure 6. A module
wlich holds KL1 compiled code, is alse realized under
the same scheme. Since PIMOS [Chikavama et al. 1988)
uses many string data and module data, this scheme can
promote efficiency of memory using,

{2} Data Type Checking

The PIM/p instruction processing unit has special
instructions for data tvpe checking: JumpXorUnderMask

YPIM: ; A-bit
STRG j—-—CNST our. of TW
INT |
: elements
INT |
PIM/p: f4bit

IsTRG| G—ENST] — loum. of words
| |

elements

| |]
Figure 6: String data of VPIM and PIM/p

and JumpNotXerUnderMask. These have the following
functions:

if{tag of(Reg)&Mask = Const) goto Label;
and
if(tag.of{Reg)&Mask # Const) goto Label;

These functions can test not only if the data type is
correctly specified, but also if the data type group is
correctly specified, since the bit assignment of tag field
iz designed effectively.

The KL1 language processing system uses 44 kinds
of data types; these can be expressed in G bits. The tag
part, however, is T-bit width except MRB. We use 7 bits
in atag part to express data type; data types are assigned
sparsely in order to check data type group easily by
JumpXorUnderMask or JumpNotXorUnderMask., There
are the following data type groups:

» Atomic — atom or integer.
» Wector = null vector, short vector or long vector.
» Short Vector — vector containing 1-8 elementa.

¢ Undefined — variable in some conditions.

These data type groups are often checked in KL1 execu-
tion, and this assignment can reduce execution costs.

5.2 Compiler

The KL] program must be compiled into PIM/p native
machine code when it is executed oo PIM/p. The KL1
compiler for PIM/p consists of three passes — the com-
piler to the intermediate code, the native machine code
generator and the optimizer. In the first pass, the KLI
program is compiled into intermediate code; its instruc-
tion set is called KL1-B. The native machine code gener-
ator expands intermediate code into PIM/p native ma-
chine code. The optimizer improve the expanded code.

5.2.1 Intermediate Code

In the first pass of the KL1 compiler, the KLL program
is compiled into intermediate code; its instruction set
is called I{L1-B. It is designed as the instruction set for
the abstraet LT machine [Kimura and Chikayama 1957)
amd interfaces between the KL1 language and the PIM
hardware, just as the Warren Abstract Machine {Warren
1983] does for Prolog. The KL1-B for PIM is extended
frem KL1-B for Multi-P5I to exploit the PTM hardware
efficiently.

KL1-B contains passive unification instructions, ac-
tive unification instructions, argument /element prepara-
tion imstructions, incremental garbage collection instrue-

tions and goal manipulation instructions. These specifi-
cations are identical with VPIM [Hi.ral'.a. et al. IQ'Q'EI.

5.2.2 Mative Machine Code Generator

The intermediate code, which consists of KL1-B instruc-
tions, is expanded inte native machine code according
to the template; the template is & set of rules governing
transiation from KL1-B instructions to native machine
instructions. These rules are defined according to the
following principles:

[lze the special instructions for KLI effectively.

« Dhen't jump in the main pass.

* Minimize the pipeline break ratio.

¢ Maximize the hit ratio of the instruction cache.
The translating rules are classified into the follow-

mg 3 groups according to the properties of the KL1-B
instructions.

(1) Expand to In-Line Code

These KL1-B instructions which can always be real-
ized by a few native machine instructions are translated
accordingly. Consider the following examples:

load Rgp.FPos Reg

= ReadTagWordShortOffset Reg, Pos*8+40{Rgp)
read Fsp. Pos Reg
— ReadTagWordMrbOr Reg,Fas*8(Rsp)

is.vector Reg lab
— JumpNotXarlUnderlask

put.nteger Const,Reg

Reg VG, Lab, VGM

~+ MoveTagWordWithTag Rrero,Reg INT
(Const = 0)
— Addimmediate Reg, Rzero, Const
Move Tag WordWithTag Reg Reg INT
[0 = Const < 256)
= Loadimmediate Reg, Const
Move TagWordWith Tag Reg Reg, INT

{Const = 256 or Const < 0)

Load is translated into a sic.e native machine in-
struction. In this sample, Pos, the position specifying
an argument, is adjusted to the offset in a byte unit.

Read is not 2 simple read instruction; it must main-
tain the MEB. PIM/p, however, has a special instruction
for this use. Read can be realized by a single native ma-
chine instruction: Read TagWordMrbOr,

Is_vector tests if the data type group of Regis a vector
group. This is translated into a single native machine
instruction: JumpNeotXerlUnderMask.)

Fut_integer has three translation rules from which is
selected according to the value of Const, in order to gen-
erate fast, concise code. These translated codes take
1clock-cycle/4bytes, 2clack-cycles/Sbytes and 2clock-
eycles/10bytes respectively.

{2) Expand to Conditional Subroutine Call

The KL1-B instructions whose main pass can be re-
alized by a few native machine instructions are trans-
lated into these instructions, together with the instruc-
tions Eaﬂi.:l:tg a subroutine mnditiuna]lj‘. The subroutines
are elassified inte two groups; the macro library and the
rmundabout routines.

The macre library is a set of the run-time support
routines and called by the macre call instruction. These
routines realize common functions in executing KL1, and
are shared with all compiled codes (See section 5.3).
Consider the following examples:

reuse_vector Arity,Reg
— MacroCallAnd Reg, MRE.Arity,m_AllacVector

Reuse_vector does nothing when the MRB of the vec-
tor pointer on the register is not marked. It can, there-
fore, be transiated into a single conditional macro call
instruction. When the MRB of the pointer is marked,
reuse.vector allocates a pew vector; this allocation is
doae in the macre lilrary.

The roundabont routine is placed in the compiled code
of the KL1 program. It realizes a local function, and is
used from the compiled code of a single KL1-B instruc-
tion. Consider the following example:

reuse_vector with elements 3,Reg.{1,0,1}

= Jumpdind Reg MREB,LC001

LROOI:

LCoo1:
MaeroCall Bworkl,0,Arity,m_AllocVector
Read TagWordMrbOr Rwork2 0f Reg)
WriteTagWordShortOffset Rwork2,0{ Rworkl)
Read TagWordMrbOr RworkZ2, 16(Reg)
Write TagWordShortOffset Rwork2,16{ Rworkl)
JumpDelayed LROO1
Move TagWord Rworkl,Reg

Reuse_vecter.with_eferments is translated into a single
JumpAnd instruction as a main pass, and some addi-
tional instructions as the roundebou! routine. In KL1
applications, the MRB of the structure pointer is often
unmarked, and roundabout routine is not executed. This
roundabou! routine is changeable according to the third
arguments of the KL1-B instruction. It cannot, there-
fore, be shared with some KL1-B instructions.

{3) Expand to Subroutine Call

The KL1-B instructions which always execute com-
plicated functions are translated into the subroutine call
instruction or the maero call instruction. The processing
of complicated functions are executed by run-time sup-
port routines. Most KL1-B instructions for active unifi-
cation and body built-in predicates are translated using
this rule. This is because the calling cost is low compared
to the cost of executing complicated functions, and the
size of the compiled code can be minimized.

5.2.3 Optimizer

The compiler for PIM,/p supports the optimization of the
expanded code; the expanded code is the native machine
code transiated from the intermediate code according to
the template, Since expansion according to the template
is applied to each KL1-B instruction separately, some
redundant instructions may be generated, and the order
of instructions is not refined. Optimization is applied
to the expanded instructions as a group, and these in-
structions are removed. Two optimization techniques are
introduced,

(1) Optimization by Data Flow Analysis

The optimizer analyzes data Bow among the instrie-
tions in the expanded code. It then trims some redun.
dant msiructions and merges some instructions into a
singie instruction; for example:

+ The optimizer trims the instruction which puts a
daturm onto a rcgister, even if the datum is oot
used later.

» The optimizer generates an instruction which cal-
culates with a constanl datum, instead of an in-
struction which puts the constant onto a register
and an instruction which calculates with the datum
on the register,

In this optimization, the data flow analysis is applied
separately to the tag part and the value part of a datum.
This i3 because the KL1-B always treats a datum as a
set of the tag part and the value part, while some native
machine instructions disregard the value part,

The sample code 15 shown as follows; this 1s the com-
piled code of a guard built-in predicate: add(X, 1, V).

s intermediate code:

put.integer 1, R2)
integer.add R1, R2, R3, fail

+ native machine code (not optimized):

Addimmediate R2, Rzero, 1
Move TagWordWith Tag R2, R2, INT
Add R3, R1, Rz
JumpAnd CCR, CCV, fail

¢ pative machine code (optimization #1):

Addimmediate R2, Rrero, 1
Add R3, R1, R2
JumpAnd CCR, CC_V, fail

s pative machine code [optimization #2):

Addimmediate
JumpAnd

R3, R1, 1
CCR, CCV, fail

There are two KL1-B instructions, and each of them
is expanded inte two native machine ipstructioms. In
the unoptimized code, the Add instruction uwses RZ as
the input, but disregards the value part; therefore the
Move TagWordWith Tag instruction has no effect and can
he removed [np't.imisa.t.iun #1} ﬁ;dditinna.ﬂ}'. Addlm-
mediate A2, Rzere,] and Add R3,R1,R2 can be merged
into a single native machine instruction: Addimmediate
R3,R1,1. In this sample, optimized code takes Zclock-
cycles/10bytes while unoptimized code takes 4clock-

cycles/18bytes,

{2} Pipeline Optimize

The processing element for PIM/p uses a four-stage
pipeline. In expanded eode, the dependencies between
instructions which have been expanded from different
KL1-B instructions, are disregarded, and delayed branch
instructions are not used as often. The optimizer rear-
ranges the order in which instructions are executed, to
ensure smooth pipeline processing.

In KL1 execution, pointer operations — pointer read-
ings and address calculations are often done while pointer
operations may cause interlocks. This optimization, there-
fore, is very effective.

5.3 Rup-time Support Routines

The run-time support routines are called from the com-
piled KL1 program in order to execute complicated func-
tions. They are divided into three groups corresponding
to PIM/p memory architecture (Figure T).

Compiled
KLI Program

Macro
Library
(TIM)

Subroutines
{Local memory

Shared memory)

eesessnmenenens Ropn -time Routines

Figure T7: Run-time support routines

{1) Maero Library

The macro library is called using macro call instruc-
tions. This is a kind of subroutine library, but is stored
in the internal instruction memory (I1IM) of IPC, like
microprograms. There are oo instruction cache misses.

The characteristics of macre call instructions are as
follows:

¢ Ina maecro call instruction, a fag conditional branch,
applied to & ruo-time KL1 data type check, is car-

ried outl in one instruction atep,

* Argument registers or short (3-bit) immediate val-
ues are specified in the macre call instruction, so
the operands of &2 macro call can be efficiently passed

Lo its macro Ii!lmr'y function.

The IIM can store 8K-step instructions. We imple-
ment the most frequently used functions, for example,
the dereference and unification functions, in the macre
library,

(2) Frequently-used Libraries

Other frequently-used libraries are stored in local mem-
ory. The cost of instruction fetches in local memory is
small, because it doesn’t use the common bus.

Functions for the suspend,/resume processes for KL1
goals and the copying GC routines, are implemented in
Lhese libraries.

{3} Ocecasionally-used Libraries

Occasionally-used libraries are stored in shared mem-
ary. Access speed for shared memory is slower than that
for local memory or TIM, but the storage is so large that
we can implement complicated libraries in this memory.

We implement most of the body buill-in predicates,
the network contrel routines and the shoen {meta-function)
control routines for these libraries [Hirata et al. 1992]

Table 3: Speedups tor Pentomine
Number of PEs 1 2 4 g8 |

| Memory shared system 1.00 | 1.96 | 3.86 | 7.50
Network conpected system 1.93 | 3.80 | 7.28

6 Ewvaluation

We used Pentomino as a benchmark program and exe-
cuted it on two system configurations — multi-PEx1CL
and 1PExmulti-CL. The multi-PEx1CL configuration
represents the memory shared multi-PE system, and the
1PE x multi-CL configuration represents the network con-
nected multi-PE system.

Pentomino is a program to find out all sclutions of 2
5 x 8 packing piece puzzle; packing a 5 % 8 rectangular
box by ten various shaped pieces, each is made up of four
unit squares. The program does an exhaustive search of
an OR-tree of possible pieces elements.

The benchmark program for the petwork connected
multi-PE system contains the multi-level load balancing
[Furuichi et al. 1990] code which requires the optimiza-
tion for the petwork configuration. However, the pro-
gram for the memory shared multi-PE system does not
containg load balancing code.

On the memory shared multi-PE system, the load
balancing in a cluster is executed automatically with a
KLl goal as a unit. Each PE has two goal pools, one is
local for the PE, the other is public; it is accessible from
other PEs. H a PE has many goals in its local pool, it
moves some goals into its public pool. The goals in the
public pool might be executed by any PEs in the cluster,

Table 3 shows that the speedup ratio according to the
number of PEs is nearly equal to the number of PEs for
two system configurations. The automatic load balanc-
ing mechaniem of the memory shared multi-PE system
works as efficiently as the optimized load balancing code
for the network connected multi-PE system.

7 Conclusion

PIM/p has up to 512 PEs using two level hardware struc-
tures. Two level hierarchical structure allows parallel
programming with common memory and facilitates sys-
tem expansion with the hypercube network. On the two
level hierarchical structure system, programmers do not
think about load balancing inner cluster and write only
the load balancing code for clusters.

The special cache control instructions and the macro-
call mechanism reduce the common bus traffic, which
may become the performance bottle-neck for shared mem-
ory multi-PE systems. The evaluation result shows that
the spesdup 15 linear upto 8 PEs in a cluster. The com-

]{;,

mon bus traffic, therefore, does not become the perfor-
mance bottle-neck.

The macro-call mechanism reduces the costs of type
ehecking and the overhead of passing parameters. Using
this mechanism, it becomes easier to implement the KL1
language processing system.

Acknowledgment

We wish to thank all of the PIM research members both
at ICOT, at Fujitsu Social Science Laboratory Ltd. and
at Fujitsu Limited, Especially we thank [COT researchers,
Dy, I, Hirata and Mr. A. Imai for their useful com-
ments. We also wish to thank Mr. A. Shinagawa and Mr.
H. Miyake of Fujitsu Limited for their helpful support in
developing softwares. Finally, we would like to thank the
director of 1COT research center, Dr. K. Fuchi, the man-
ager of research department, Dr. 5. Uchida, the chief of
first research laboratory, Dr. K. Taki, the general man-
ager of processar division in Fujitsu Laboratories Ltd,
Mt. J. Tanahashi, and the general manager of advanced
information svstems division in Fujitsu Laboratories Ltd,
Mr. H. Hayashi, for their valuable suggestions and guid-

ancc,

References

[Asato et al. 1991] A Asate, M.Kimura, T.Shinogi,
A.Hattori. A& Pipeline Control Method of PIM/p. In
Proceedings of {8rd Anual convention [P5 Japan, 1991
(In Japanese).

[Chikayama and Kimura 1987) T.Chikayama and Y Ki-
mura. Multiple Reference Management in Flat GHC.
In P'r'rln‘.r:rﬁ:iﬂ.‘- r.rf the Fourth International {:DﬂfﬂNHCE
on Logic Programming, pp.276-293, 1987,

[Chikayama et al. 1988] T.Chikayama, H.Sato and
T . Mivazaki. Overview of the Paraliel Inference Ma.
chine Operating Svstem (PIMOS). In Proceedings
of the Internations! Conference on Fifth Generntion
{:.'ampuf.cr' SH;?H!'H"I:S.‘ pp?ﬂ-n-?ﬁl, 1985,

[Furuichi et al. 1990] M Furuichi, X Taki and N.Ichiyo-
shi. A Multi-Level Load Balancing Scheme for OR-
Farallel Exhaustive Search Programs on the Multi-
P51 Iz Proceedings of 8nd ACM SIGFLAN Sympe-
siym on Frincipies and Preclice of Parellel Program-
ming, 1990,

iGalo et al, 1988] A.Goto, M.Sato, K. Nakajima, K.Taki
and A.Matsumoto. Overview of the Parallel Inference
Machine Architecture (PIM). In Proceedings of the In-
ternational Conference on Fifth Generation Computer
Systems, pp 204-229, 1088,

[Goto et al. 1930] A.Goto, T Shinogi, T.Chikayama,
K.Kumon and A.Hattori. Processor Element Architec-
{ure for a Parallel Inference Machine, PIM/p. In Jour-
nal af Information Processing, pp-174-182, Vol.13,
MNa.2, 1990.

[Hirata et al. 1092] K. Hirata, R.Yamamoto, A.lmai,
H.Kawai, K.Hirano, T Takagi, K.Taki, A Nakase and
K.Rokusawa. Paraliel and Distributed Implementa-
tion of Concurrent Logic Programming Language
KL1. ln Proceedings of the International Conference
on Fifth Generation Computer Systems, 1992.

[Kimura and Chikayama 1987] ¥.Kimura and T.Chika-
vama. An Abstract KL1 Machine and its Instruction
Set. In Proceedings of the 1987 Symposium on Logic
Programming, pp.468-477, 1987,

[Shinogi et al. 1988] T.Shinogi, K.Kumon, A.Hattori,
A.Goto, Y.Kimura and T.Chikayama. Macro-Call In-
struction for the Efficient KL1 Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computer Syetems, 1088,

{Taki 1992] K.Taki, Parallel Inference Machine PIM. In
Proceedings of the Inlernational Conference an Fifth
Generation Computer Systems, 1992,

[Ueda and Chikayama 1990] K.Ueda and T.Chikayama.
Design of the Kernal Language for the Parallel In-
ference Machine. The Computer Journal, (33)6, 1990,
pp.494=-500. i

[Warren 1983] D.H.D . Warren. An Abstract Prolog In-
struction Set. Technmical Note 309, Artificial Intelli-
gence Center, SHI, 1983,

