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APPLYING INTER-CLUSTER SHARED MEMORY ARCHITECTURE
TO A PARALLEL INFERENCE MACHINE
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Information Systems Laboratory, Toshiba Research and Development Center
1 Komukai Toshiba-cho, Saiwai-ku Kawasaki-shi, Kanagawa 210, Japan

This paper discusses the feasibility of a parallel inference machine with the inter-cluster shared memory
architecture in stead of the message passing mechanism. The discussion includes two possible memory
architectures which fit to the memory access features, and the system software under the proposed
memory acrchitecture. Althongh the main objective is the smaller latency of the remote memory access,

additional advantages are also discussed.

1 Introduction

Paralle! processing is one of the most important keys for
faster execution in the knowledge engineering domain and
there are a lot of research activities on paralle] processing
models, parallel programming languages, and machines with
paraltel architecture,

Under Japan's Fifth Generation Computer Project, Par-
allel Inference Marchines (PIMs) are being developed [1).
They employ 3 common parallel legie programming language
KL1 which was derived from Flat GHC [5).

The machine architectures have abouot 1,000 processor
elements [PEs). Muost of the machines consist of clusters,
each of which has several FEs and a shared memory, The
PEs of a cluster can read from and write Inte the shared
memory by load and store instructions. However, between
clusters no memory is shared. Therefore, when a PE requircs
& new goal from a different cluster and /or refers to an object
stored in a different cluster, the PE has to send a request
message. We will call it the inter-cluster message passing
architecture,

This paper discusses the feasihility of another inter-cluster
connection where a PE can refer toa different cluster’s mem-
ory (a remote memory ) by load and store instructions. We
call it the inter-cluster shared memory architecture, The rest
of this paper cansists of the following discussions. First the
overview of KLI1, its paralie]l execution model, and its mem.
ory access features are described. Secondly the current FIM
architecture and its KLI system are reviewed. Then two
possible ways of the proposed memory architectures, that is
the hierarchical cache memory and the momory access based
inter-cluster network, are discussed. Finally the KL1 system
adjusted to the proposed memory architecture is considered.

This research was conducted under the Japan's Filth
Ceneration Compuler Project and the reselts will be ap-
plied to the PIM/k being developed by the aulhors.

2 HKLI and ite Parallel Execution

2.1 Owerview of KL1

A KL1 program consists of clauses as shown in figure 1.
A clause consists of a head, an "is-implied-by™ operator,
a guard, a commit operator, and a body., The guard and

is-implied-by operator commit bar
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Figure 1 KL propram

the body may contain several subgoals separated by ecom.-
mas which mean AND aperators. Subgoals are built-in {e.g.
arithmetic operators) or defined in the program. A guard
must consist of built-in subgeals only, while the body may
contain subgoals of the both types.

During the program execution, goals are evaluated by
head unification with the various clause heads in the sys-
tem. If unification can take place without the instantiation
of goal variables and the clanse puard succeeds, the clause
iz selecled. There are three possible outcomes,

s If an appropriate ¢lavse iz selected, the bady of the
clause is processed.

+ If no appropriate clauses are found but some clauses
chance to become appropriate hy instantiating vari.
ables in them, then the evaluation of the goal is sus-
pended until relevant instantiation takes place.

« (Mherwise the whole program results in failure, be-
cause all the goals are connected by the AND opera-
tors.

As for the execution of the body, all its subgoals can be
evaluated in parallel. A subgoal defined in the program will
create a new goal. A built-in subgoal will be evaluated im-
mediately if the aperands are instantiated enough, otherwise
its evaluation will be suspended.

2.2 Paralle] Execotion Model

The granule of the parallel processing is a geal. Given
enough PEs, all the goals can be evaluated simultanrously.



A goal is represented as a goal record which includes appro-
priate arguments. If an argument is a number or an atom
which occupies one word, it is stored in the goal record. If
it is a variable, a pointer to the variable iz stored because a
variable may be shared among goal records and be changed
by their evaluation. If an argument is a vector which con-
tains several arguments, a pointer to it is stored for the sake
of efficiency.

A PIM runs several programs simulianeously and some
part of a program can be evaluated with higher priority than
the rest of the program, hence in the machine, several goal
pools are maintained. The machine has another set of pools
for suspended goals. However, for the sake of simplicity the
parallel execution model described here has only ene goal
pool and one suspension pool. During the program eval
uation, each PE carries out the procedure shown in figure
2.

Since the procedure requires no message passing mech-
anism explicitly and a goal reduction might refers any KL1
object, the best memory architecture for a K1 system would
be a large memory shared by 2 number of PEs with short
access time. However It seems impossible from the hardware
point of view, we have to settle for a possible one,

2.3 Memory Access Features

For the memory accese features, K11 is different from Pro-
log, the sequential logic programming language. Prolog em-
ploys back tracking in its execotion model, The control
structures and most of the variables can be allocated in a
stack, hence a heap space, the memory pool kept for dynamic
memory allocation is used only 1o store the data which may
outlive the control structure which creates them. As a rule,
using a stack is more efficient than using a heap space be-
cause the higher memory access locality near the stack top
increases the cache hil ratio and decreases the garbage col-
lection (GC) frequency.

On the other hand, KL1 program execotion canses heavy
bus traffic, which can be estimated under the following as-
sumption.

s The performance of a single PE is N reductions per
second.

& The number of PEs in a cluster is P.

# The syslem performance increases in proportion to P
¢ One reduction consumes the heap space by W words.
s The cache block size is C words.

+ A cache miss takes place only when an oliject is stored
into the heap space, which takes two bus transactions.
That is, the contents of the relevant cache line must
be stored into the shared memory before the contents
of the heap space is loaded.

¢ Fach PE has ils own heap space so that a PE deesn't
interfere other PEs’ cache memories.

This too optimistic evaluation concludes that the mem-
ory bus traffic is 2Z2¥2P2W yrapeactions per second. Under

2]

A PE tries to get a goal record from the goal pool.
If the PE gets a goal record,
then /* goal reduction starns */
The PE checks the head and the guard of altemative
clauses one at a time to find out an appropriate one.
If an appropriate clause is found
then /* body part evaluation starts. */
For each subgoal of the body part do
1f the subgoal is defined by the program
then
The PE creats a new goal record with appropriate
argumenis and put it into the goal pool.
else /* a built-in subgoal */
if the subgoal can be evaluated immediately
then
The PE evaluates it.able.
If the evaluation causes any suspended goals
1o turn evaluable
then The PE puts them into the goal pool.
fi
else
if the subgoal is not evaluable because some of
its variables have not been instantiated yet
then
the PE creates a new poal record called D-code
and puts it into the suspend pool.
else /*the evaluation fails */
The PE repons the whole program has failed.
fi
fi
fl
endfor
clse
If there is a chance that one of the clauses may tum
appropriate by instantiating some variables
then The PE put the poal record into the suspend pool.
else /*the evaluation fails */
The PE reports the whole program has failed.
fi
fi
else
if there are some busy processors in the system.
then The PE waits shorily and go to the first statement.
else
if the suspend pool holds some goal records
then The PE repons a dead lock has taken place.
else The PE reponts the whole program has terminated
successfully.
fi
fi
fi

Figure 2 Goal Reduction Procedure of the KL1 system

the set of values (N = 500,000, =8, W=1, C = 4) which
seems typlical to the current PIMs, the memory bus traffic
will be 4,000,000 transactions per second. Therefore, from
the memory architectural point of view, it seems the most
important Lo resolve the memory bus bottle-neck caused by
the heap consumption.



3 Typical Parallel Inference Machines

The current PIMs with the inter-cluster message passing ar-
chitecture are based on the following design considerations.

¢ Reducing the bus traffie within a cluster by optimiz-
ing the coherent cache protocal and employing high
bandwidth memory bus.

# Enhancing the inter-cluster data transfer bandwidth
by increasing the number of channels among clusters

» Curbing the inter-cluster communication frequency by
designing the KL1 system software to draw distinc-
tions between inner and inter-cluster operations

3.1 Memory Architecture within a Cluster

For a coherent cache protocol, [2] proposed and evaluated
the PIM eache. They adopted a copyback protocol be
canse KL1 benchmarks indicate that data write frequency is
36%, which is higher than in conventional languages. To re-
duce the heavy bus traffic caused by the cache swap in/fout,
the PIM cache introduced the direct write command which
avoids a fetch-on-wrile stralegy. This command can be used
te create new data structures on the top of the heap area
and the bus commands would reduce half in number on that

operation.

32 Inter-cluster Message Passing Architecture

In spite of employing the PIM cache, the bus traffic would
be the bottle-neck in cases that more than ten PEs share a
memory throngh a single bus, yet the final goal is to realize
a PIM with 1,000 PEs, Typical PIMs solve this problem by
employing inter-cluster network. For exampie, FIM/p has &
I'Es in each cluster and G4 clusters are connected hy a hyper-
cube network. The KL1 system requires that the network
should support one to one and one to all communications
between clusters.

3.3 KLl System on a Typical PIM
1.3.1 External Data Reference

The KLI system handles internal pointers and external ones
as different data types. They are given different tags, REF
and EXILEF. A REF pointer holds only a memory address,
The KL1 object pointed by a REF pointer can be simply
referred by a load instruction.

However, the external reference mechanism is rather com-
plicated as illustrated in figure 3. It is called to export data
for a cluster to give another cluster a reference to its KLI1
object and it is called to import data for & cluster to get the
information. The export table halds the memory address of
all exported data, and the import table holds the pairs of
the cluster number and the export table entry number of
imported data. An EXREF pointer holds the entry num-
ber of the import table, A cluster can move a KL1 object
without suspending other clusters' goal reduction in favor of
these tables. Now we will explain a basic aperation on an
external reference.

export tables
~7

cluster A e l‘I cluster B

S

\

import tables

Figure 3 External Data Reference Mechanism
of the Current KL1 system

When a PE encounters an EXREF pointer in a derefer-
ence operation, it tries to get the KL1 object referred by the
pointer. This read operation consists of the following steps.
Here we assume that PE1 of cluster A tries to read the KTL1
object within cluster B.

# PEl locks up the proper entry in its import table and
sends a read request to cluster B,

s A FE2? of cluster B receives the read request, locks up
the proper entry in its export table, gets the memory
address of the required object, and sends back a reply
message which holds the object.

+ PE1 receives the reply message and resumes the derel-
erence operation.

If PE? finds the KL1 object is & vector which contains
pointers, a more complicated procedure takes place. Here we
will explain the case that a vector contains a REF pointer.
PE2 searches its export table for the entry which holds the
same address as that pointer. If it is found, PE? sends the
entry number as part of the reply message as well as the
vector itsell. Otherwise the cluster has to get a new entry
and set the object address in it hefore sending back the reply
message. Then PEL receiving the reply message, searches
its import table for the entry which holds the same cluster-
id and the same entry number. IT it resulls in success, the
cluster A replaces that part of the vector with the proper
EXREF pointer. Otherwise the cluster A has to get a new
entry and set the cluster-id and the entry address,

The actual latency of an external reference was reported
in cage of the Multi-PSI system [6]. In this evaluation, & pas-
sive unification across clusters which includes one read mes-
sage and reply message exchange, takes 23 append logical
instruction time, while the same operation within a cluster
costs less than one append lagical instruction time.

e



332 Garbage Collection

The KL1 system employs both a real-time GC and a stop-
and-copy GC. For the real-time GC, the KL1 system em-
ploys 2 multiple reference bit (MRB) which identifies single
and multiple references [4]. The mechanism reflects the ob-
servation that most of the abjects are single referenced. An
object with a single reference can be reclaimed when it turns
unreferenced by reclaiming the pointer to it. It is said that
if no real-time GC is employed, a typical goal reduction con-
sumes five words of the heap space and the MRB-based GC
reduces it to two words. The MRB mechanism also ensures
the constant time updating operation of a vector with a sin.
gle reference. Without any mechanisms which identifies a
single reference, the vector would have to be copied al the
expense of time proportional teo its size because KL1 avoids
destructive operalions.

Since the real-time GC does not reclaim all the reusable
area, a stop-and-copy GC is invoked when the entire heap
space of a cluster has been exhausted. The external reference
mechanism of the import and the export tables ensures that
a cluster can do a stop-and-copy GC without suspending
other clusters. However, il a cluster fails to reclaim any area,
then all the clusters participate in a global GC which may
reclaim some more area by reclaiming external references,

4  Possible Inter-cluster Shared Memory Architectures

This section discusses two possible inter-cluster shared mem-
ory architectures for a parallel inference machine. One is a
hierarchical coherent cache memory [10] as illustrated in fig-
ure 4, and the other is a memory access based inter-cluster
network as shown in figare 5.

4.1 Hierarchical coherent cache memory

In this approach, the first cache memories of a cluster share
a second cache memory through a cache bus and the second
cache memaries ghare a memory through a memory bus.
Although figure 4 illustrates a two-level cache memory, it is
possible to extend it to n-devel.

The most important property of it is the multi-level in-
clusion which avoids unnecessary bus transactions. This
property requires that a second cache memory holds all the
cache-line data each of which is contained in one of its rel-
evant first cache memories. In figure 4, if PE11 and PE22
have the data of memory address A, then the second cache
memoryl and 2 must have the entry. Now we assume that
FPE11 tries to store a value at memory address A.

The first cache memoryll {the cne owned by I'ELl1}
refers its tag memory, finds that there may be valid copies in

clusterl cluster2 clusterd
first cache | [~ 3 [ ] [___Ji !
memery i ml ii | i
i l H .
cache Ilﬁlls second cache i second cache : second cache
! memory! i memory2 ' memory3 :
i i I s { S = { - - 1
memary bus
shared memory
Figure 4 Heimmchical Coberent Cache Memory
| inter-cluster neut;u_rl_:
cache
memory: [
local mcmorj.-: bus
: local shared memeory local shared memory | local shared memaory
clusterl T eluster2 ' Cclusterd

Figure 5 Memory Access Based Inter-cluster Network
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other cache memories, and then broadcasts an invalidation
command through the cache busl. The second cache mem-
oryl receives the invalidation command, refers its tag mem-
ory, finds there may be valid copies in other second cache
memaories, and then broadcasts an invalidation command
through the memory bus. The second cache memoryd finds
no entries and sends back acknowledgements immediately,
while the tecond cache memory? finds an entry and broad-
casts an invalidation command through the cache bus2, In
this example, the multi-level inclusion property prevents the
cache bus3 from being used by the store aperation.

As is discussed in the previous seetion, it is extremely
important to reduce the bus traffic caused by the heap con-
sumption. It would be realized if a second cache memory
is large enough so that the heap space of a cluster could
be stored in it. Then a store operation to the heap space
wotld canse no memory bus commands because the second
eache memory knows that there are no valid entries outside
the cluster. The memory bus would be used only when an
external memory reference lakes place.

4.2 Memory Access Dased Inter-cluster Network

In this approach, PEs of a cluster share a local shared mem-
ory through a local memory bus. Each loeal shared memory
must have unique address across the clusters and an inter-
cluster network transfers remote memory aceess requests be-
tween clusters. In figure 5, an interface port (IFP) with a
coherent cache memory is attached to each cluster and is
connected to the inter-cluster network,

When the PEL] tries to refer to its local shared memory,
the cache memories works as usual.

When the PEL] tries to refer to 2 remote memory, the
cache memory 11 passes the request to the [FP1's cache mem
ory through the memory bus. Then the cache memory
passes the request to the IFP1, which in turn puts the re-
guest into the nelwork. 10 the request is a read, the resultant
data will be sent back ta the IFP1 and then will be passed to
the client PE1] without keeping the dats in the cache mem.
ories. When the IFF] receives a memaory access request from
another cluster, it issues a read or write request Lo its cache
memory as if it were its own request,

Under this architecture, clusters are supposed to use
their local shared memories as its heap space. This mech-
anism resembles the memory architeciure of DASH multi-
processor [7] except that our mechanism doesn't employ a
directory memory. The difference comes from our eslima
tion that a FIM would have little data access locality across
clusters,

The former approach seems to have two advantages, One
iz that 2 remote memaory access would take less time and the
other is that it seems more appropriate as a general-purpase
shared memory architecture. The latter approach also seems
to have two advantages. One is that the amount of required
memory would be less and the other is that the inter-cluster
network can be designed to fit the memory access traffic
between clusters,

5 KLI1 System under the Proposed Memory Architecture

5.1 Direct Aceess to the Remate Objects

To exploit the proposed memory architecture, it is impor-
tant to take the advantage of the low latency of the remote
memory access. From this point of view, the import and
export tables of the current KL1 system should be avoided
because the maintenance takes longer than the remote mem-
ory access itself.

Avoiding these tables has two more advantages, One is
that the KL1 system would be reduced half in code size,
which, in turn, would lead to higher hit ratio of the in-
struction cache memory. The part which could be removed
includes the aperations related to external data types, most
part of the goal distribution mechanism across clusters as
well as the import and export table maintenance. The other
advantage is much easier debugging of the system. Debug-
ging of a parallel inference machine with message passing
mechanism is difficult because it is necessary to care the
states of all the clusters. Since direct access mechanism im-
plies the consistent memory image across clusters, we have
coly to walch one cluster.

5.2 Garbape Collection

Now we have to consider if the avoidanee of the import and
export tables causes any drawbacks. Avoiding external data
types seerns not to lead to any difficulties. An operation to
these types is executed more efficiently and results in the
state equivalent to the case of the current KL1 system.

The real-time GC secms not affected in an adverse way.
The MRE mechanism works well to reclaim unreferenced
area whether it is inside or ouiside the cluster. The area is
put into the free list of the cluster where it exists.

The stop-and-copy CC, however, is affected significantly.
A cluster would not be able to do it independently, because
it may move objects which are still referred from other clus-
ters without adjusting the external pointers. Therelore, a
cluster which begins te de it must have all the clusters join
it cooperatively, which is likely to cause an efficiency prob-
lem. The required time for a stop-and copy GC may well
be thought proportional to the amount of live objects and
independent of the span of the GCs. Therefore its frequency
loses the overall efficiency of the syslem,

There seems three possible solutions to reduce its fre-
quency and we think their combination would solve the prob-
lem. One eolution is to substitute the ME B-based real-time
(1 for a more powerful one like an ordinary reference count
mechanism. It would reclaim almost all garbage and reduce
the GC frequeney. Another solution is just to suspend the
goal redoction of the clusters which have exhaosted their
lieap spaces. Sinee other elusters can continue the goal re-
duction, the overall efficiency would be acceptable if the
wumnber of suspended clusters remains small. A counter idea
is to allow a cluster which has exhausted its heap space to
use another cluster's heap space. But it doecsn't scem any
good because every goal reduction would canse several re.
mote memory aceesses. The other solution is to balance the
amounts of available heap spaces across clusters by moving
abjects between them during a global GC. It would balance



the time when clusters come to exhaust their heap spaces.
Related to this solution, it seems appropriate to migrate an
object which is referred by only one external pointer into
the cluster where the pointer exists.

6 Conclusion

This paper discusses the feasibility of a parallel infereace
machine with the inter-cluster shared memory architecture
instead of the message passing mechanism. For the mem-
ory architecture, a hierarchical coherent cache memory and
the memory access based inter-cluster network seems pos-
sible. Although the major advantage is the smaller latency
of the remote memory access, it would also reduce the KL1
system code size, which In turn would lead to the higher
instruction cache hit ratio and easier debugging. Although
the step-and-copy garbage collection is likely to cause an
efficiency problem, the combination of the three possible so-
lutions would zolve the prohlem.
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