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Abstract

This paper focuses on a parallel and distributed imple-
mentation method for a eoncurrent logic programming
language, KL1, on a parallel inference machine, PIM.
The KL1 language processor is systematically designed
and implemented. First, the language specification of
KL1 is deliberately analyzed and properly decomposed,
As a result, the language functions are categorized inlo
unification, inter-cluster processing, memory manage-
ment, Eua.] :ﬁ.‘in:duling: meta contrel facilities, and an
intermediate instruction set. Next, the algorithms and
program modules for realizing the decomposed require-
ments are deveioped by considering the features of PTM
architecture on which the algorithms work. The fea-
tures of PIM architecture include a locsely-coupled net-
work with messages possibly overtaken, and a cluster
structure, 1.2, a shared-memory multiprocessor portion.
Lastly, the program modules are combined to construct
the language processor. For each implementation issue,
the design and implementation methods are discussed,
with proper assumptions given.

This paper concentrates on several implementation is-
sues that have been the subjects of intense ICOT re
search since 1988,

1 Introduction

In the Fifth Generation Computer Systems Project,
1ICOT has been, simultaneousiy, developing a large-scale
parailel machine PIM [Goto ef al. 1988] [lmai el al.
1981], designing a copcurrent logic programming lan-
guage KL1 [Ueda and Chikayama 1990], and investigat-
ing the efficient paraliel implementation of KL1 on PIM
[ICOT 1st Res. Lab. 1991]. These subjects are closely
related and have been evolving together.
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The KL1 language has several good features: a declar-
ative description, simple representation of synchroniza-
tion and communication, symbol manipulation, paral-
lelism control, and portability, Similarly, PIM architee-
ture, also, has & number of good features: high scalablit ¥y
general purpose applicability, and efficient symbolic com-
puting.

When implementing KL1 on PIM, various difficulties
appear. However, the parallel and distributed imple
mentation of KL1 must bridge the semantic gap be
tween PIM and KL1 so that programmers can emjoy the
KL1 language as en interface for general-purpose con-
current /parallel processing [Taki 1992].

ICOT has implemented KL1 on Multi-PSI (a
distributed-memory MIMD machine) and has been accu-
mulating experience in KL1 implementation [Nakajima
et al. 1989]. The implementation of KL1 on Multi-P5I
was a preliminary experiment for our implementation.

This paper primarily focuses on a parallel and dis-
tributed implementation method for the concurrent logic
programming language KL1 on a parallel inference ma-
chine PIM, Section 2 gives readers some brief background
knowledge on PIM and KL1. Section J systematically
investigates the complex connections of what part of
the lanpuage specification is supported by what com-
ponent{s) of the KL] language processor. Among these
components, Section 4 focuses on and discusses several
key implementation issues: efficient parallel implementa-
tion within a shared-memory portion, inter-cluster pro-
cessing, a parallel copying garbage collector, meta com-
trol facilities, and a KL1 compiler. Section 5 concludes
this paper.
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Figure 1: PIM Architecture

2 Overviews of PIM and KL1

2.1 PIM

Figure 1 shows the PIM azchitecture [Goto ef al. 1938]
[Tmai et al. 1991], PIM architecture assumptions and
features are described below,

One of the features of PIM architecture is its hierar-
chy. Up to about ten processing elements (PEs) are in-
terconnected by a single bue to form a structure called a
“cluster™ in which mein memory is shared. Here, the
bus can be regarded as a local network. Many clus
ters can be interconnected by a global network, Within
a cluster, mnter-PE communication can bhe realized by
short-delay high-throughput data transfer via the bus
and the shared memory. Thus, PEs within a cluster share
their address spaces, and each PE has its own spooping
cache, The mstruction set of a PE includes lockkraad,
writebunleck, and unleck as basic memory cperations.

Inter-cluster communication, though, may pass mes-
sages through some relay nodes and aver long distances.
Thus, imter-cluster communication increases the time de-
lay and decreases the throughput. The address spaces of
distinct clusters are scparated, of course. The network
delivers message packets to destinations while resding
their header and tailer information.

PIM architecture assumes the fellowing property for
the inter-cluster |onaﬂyacnupind network. If PEs send
and for other PEs receive message packets, the order of
packets does not obey the FIFO rule. Even in one-PE-
to-one-PE communication, the FIFD rule is not obeyed.
This assumption comes from the following hardware
characteristics of PIM architecture. The reasons for this
assumption are as follows, One isthat there may be more
than one path between two clusters '. The other is that
when more than ene PE within a cluster simultaneously
sends message packets, it iz not determined that which
packet will be launched first into the network. In this
sense, in the loosely-coupled network of PIM, messages

YHowever, the routing of the PIM neiwork is not ndaptive,
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Figure 2: KLl Execution Image
are possibly overfaken in the network.

2.2 KL1

KLl is a kernel language for the PIM based on the GHC
(Guarded Horn Clauses) language [Ueda and Chikayama
1990]. Figure 2 shows our KL1 execution image. A
clause of a KL1 program can be viewed as a rewrite rule,
which rewrites to the body goals a goal that succeeds
the guard unificatico and satisfies the condition (guard),
and has a form as follows:

E E=gy ey Gom | Gus eees G

puard pard body pari

Where p, g,, and g; stand for predicates. This rewriting of
a goal is also called reduction. The execution mode| has
2 goal pool which holds the goals to be rewritten. Goals
are regarded as lightweight processes. Basically, guard
goals g1, ...,9m and body goals are reduced concurrently,
thus yielding parallelism.

Goal (process) commuinication s realized as follows.
Suppose that more than one goal shares a wariable,
When a goal binds a value to the shared variable, a clause
for rewriting the other goal that shares the variable may
be determined. The value which is instantiated to the
shared vanable controls the clause selection; this is the
communication between KL1 goals.

Synchronization is realized as follows. When a goal is
going to determine which clause can be used for rewrit-
ing, and the variables included in the goal are uninstan-
tiated, the upification and the guard execution may be
deferred since there is not enough mformation for the
clause selection. The uninstantiated variables are sup-
posed to be shared and the other goal is expected to bind



a value to the variable afterwards. Consequently, the sus-
pen ded E”“l reduction waits for variable bil].ding for the
clause selection. That 13, varable instantiation realizes
data-flow synchropization. Actually, the KLL language
processor must deal efficiently with frequent suspension
and resumption.

Ewven if more than one clause can be used for rewniting,
just one clause is selected indeterminately. A vertical bar
between the guard part and the body part ‘', called a
commit operator, designates indeterminacy. Since it is
suffieient to hold a single environment for each variable,
efficient implementation is expected.

Une of features of the KL] language is the provision
of simple yet powerful meta control facilities as follows:
goal execution control, computation resource manage
ment, and exception handling. These are essential for
designing efficient parallel algorithms and enabling flex-
ible parallel programming. Usually, operating systems
perform meta-control on a process basis, However, the
KLl language aims at finegrain parallelism, and the KLI
language processor reduces a large number of goals in
parailel. Therefore, it is inefficient and impossible for a
programmer or the runtime system ? to control the ex-
ecution of each goal. Consequently, KLI introduces the
voncept of a shoen ¥ [Chikayama ef al. 1988]. A shoen
is regarded as a goal group or a task with meta-control
facilities. An initial goal 15 given as an argument to the
built-in predicate sheen; descendant goals belonging to
the sheen are controlled as a whole. Descendant goals
inherit the shoen of the parent goal. Shoens are possibly
nested as well; the structure connecting shoens is & tree,

Moreover, to realize soplisticated mapping of paral-
lel computation, prierity and location specificalion are
introduced; that i5, they can be used for progremming
speculative computation and load balancing, If a pro-
grammer attaches an annotation 1o a body goal eg.
plprierity (N}, this tells the runtime system Lo execute
goal p at priority N. Moreover, & goal can have a loca.
tion specification e.p. p@cluster(M); this designates the
runtime system to execute the goal p in the M th cluster.
These two specifications are called prugmas. These prag-
mas never change the correctness of a program although
Lhey change the pE:L'furmu.u:.‘-: dra.s:i(‘.a]l]'.

3 Systematic Design of KIL1

Language Processor

When implementing KL1 on PIM, various kinds of dif-
ficulties appear. Firstly, although the PIM architecture

*The software modules of the KL language processor executed
al fun time are called a puntime syatem as a whele. Faor instance,
the runtime system may include an interpreter, firmware o mi-
crocode, and libraries. On the contrary, compilers, assemblers and
optimizers are not includsd in & runtime system.

I5hoen & pronouned, ‘show' "N,

adopts a hierarchical configuration, the KLl implemen-
tation has to provide a uniform view of the machine
to programmers. Secondly, it is difficult to determine
te what extent a runtime system should support the
functions of KL1 and which functions it should sup-
port within the specification of KL1. For instance, since
the KL1 language does not specify the goal-scheduling
strategy, a runtime system can employ any schedul-
ing algorithm. However, both the general-purpose and
the efficient algorithm are generally difficult to develop.
Thirdly, for efficient implementation, it is important to
employ algonthmes which include fewer bottlenecks in
terms of parallel execution. Lastly, the KL1 langnage
processor 18 complex and of a large scale,

Therefore, it is a promising idea to be able to overcome
these difficulties by systematically designing a language
processor as follows. Firstly, the given language speci-
fication must be deliberately analyzed and properiyv de-
composed. Then, the algorithms and the program mod-
ules for realizing the decomposed requirements must be
developed by considering the machine architecture on
which the algorithms work. Lastly, the designer must
construct the language processor by combining the pro-
gram modules. A good combination of these modules will
vield an efficient implementation. We designed the KL1
language processor on a locsely-coupled shared-memory
multiprocessor system {PIM) by following these guide-

Ij]:l.ﬂ.

3.1 Requirements

At first, we summarize the required functions of the KL1
language processor into the four items in the leftmost
column of Table 1. These items are the result of analy-
sis and decomposition of the KLI language specification.
The KL1 language processor may look like the kernel of
an operating system.

Next, mechanisms which satis{y these requirements are
divided into those supported by a compiler and those
supported by a runtime system. Furthermore, mecha-
nisms by the runtime system are divided into two levels
according to the machine configuration of PIM: shared-
memory level and distributed-memoery level (the topmost
row of Table 1).

Some of the technologies used for KL1 implementation
on single-processor systems may be expanded to shared-
memory multiprocessor systems. That i3 because bath
systerns suppose a linear memory address space. Heow-
ever, it may not be straightforward to expand the single-
processor technologies to distributed-memory multipro-
cessor sysiems in general. Of cource, that is mainly be
cause distributed-memory systems provide a non-linear
memory address space. Thus, the techniques used for
distributed-memory sysiems are possibly quite different
from those for a single-processor system.

The contents of Table 1 show our solutions; that is,



Table 1: Implementation Issues of this Paper

Compiler Runtime System
1 Shared-memory Level Distributed-memory Level
Unification ¥ Decomposition || Suspension and Resumption Message Protocol
Memory Management Reuse mst. Locat GC Export and Import Tables
Weighted Export Count
Goal Scheduling TRO Automatic Load Balancing
Meta-control
Execution Lontrol Termination Detection Foster- parent
Resource Management Hesource Caching Weighted Throw Count
Exception Handling Message Protocol

what technigues are used for parallel and distributed
KLl implementation. Each item in the leftmost column
of the table is mentioned below.

3.1.1 Unification

Goals are distributed all over a system for load balancing
and may share data {variables and ground data) for com-
rmmunication. Logical variables remain resident at iheir
original location. Consequently, not only intra-cluster
but also imter-cluster data-references appear. During
unification, goals have to read and write the shared data
consistently and independently from the timings and lo-
cations of goals and data, Thus, mechanisms for preserv-
ing date consistency are needed.

As described above, goals are rewritten in paralle]
and, thus, variable instantiations occur independently
from each other. Suspension and resumption mecha-
nisrms based on variable bindings contrel goal exeeution
and realize data-flow synchronization.

Henee, our KL1 implementation must realize the
mechanisms for data consistency, synchronization, and
unification in a pacallel and distributed environment.
Mareover, since a major portion of the CPU time is spent
for unification, the algorithm should be concerned with

efficiency.

3.1.2 Memory Management

Logical variables inherently have the single-assignment
property. The single asvignment property is very useful
to programmers, but gives rise to heavy memory con-
sumplion. Since the KLl language does not backtrack,
KLl cannot perform memeory reclamation during execu-
tion as Prolog does. Thus, an efficient memory manage-
ment mechanism is indispensable for the KL1 language
processor. The issues associated with memory manage-
ment are allocation, reclamation, working-set size, and
garbage collection. To achieve high efficiency, not only
must the algorithms and the data structure of the run-
time sysiem be improved, but also a compiler has to gen-
erate effective codes by predicting the dynamic behavior

of & user program as much as possible.

3.1.3 Goal Scheduling

The KL1 language defines goal execution as concurrent.
Thus, the system is responsible for the exploitation of
actual parallelism. One implementation issue associated
with goal scheduling is determining which goal schedul-
ing strategies have high data locality, yet keep the num-
ber of idle PEs to a minimum.

Further, the KL1 language provides the concept of goal
pricrity; each KL1 goal has its own priority as explicitly
designated by a programmer. Then, goals with higher
priorities are likely to be reduced first. Goal pricritiza-
tion in KL1 is weak in some respect. Under the goal
priority restriction, it is crucial to achieve load balanc-
]'I:IE.

3.1.4 Meta Control Facilities

The goals of & shoen may actually be distributed over any
clusters, and, thus, goals may be reduced on any PE in
the system. Since the system operates in parallel, shoens
are loosely managed; it is simply guaranteed that each
operation will finish eventually. That is, it is impossible
to execute a command simultanecusly to all the goals of
a shoen.

A shoen has two streams as arguments of the shoen
built-in predicate; one iz for controlling shoen execu-
tion, and the other is for reporting the information
inside the shoen. A shoen communicates with out-
side KL1 processes through these two streams. Mes-
sages, such as start, stop, and add_rescurca, emter
the control stream from the outside. Messages, such as
terminated, rasource low, and exception return to
the report stream from the inside.

1t is very difficult to evaluate the CPU time and mem-
ory space speat for computation when goals are dis-
tributed and executed in parallel. Therefore, the current
system regards the number of reductions as a measure
of the computing resources consumed within the shoen.



The exceptions reported from a shoen include illegal in-
put data, upification failure!, and perpetual suspension.
Same examples of shoen functions are shawn below,

Stop message:  When a stop message is issued in
the control stream of a shoen, the system hes to check
whether or not the goals Lo be reduced belong to the
shoen, and, if they do, the shoen changes its status to
stop as soon as possible. The stop message is propa-
gated to the nested descendant shoens.

Resource Observation:  The system always watches
the consumption of computation resources, that is, the
totel number of fimes goals belonging to each shoen
are reduced over the entire system. [f the amount
of consumption within a shoen is going to exceed the
initial amount of supplied resources, the system stops
the reduction of shoen goals and, then, issues the
resource low message on the report stream, viz. & sup-
ply request for a new resource.

Exception Handling: When & programmer or the
system creates an exception during the reduction of a
goal in & shoen, the shoen responsible recognizes the
exceplion and converts the exception information to a
report stream message *. The exception of the KLI lan-
guage is concerned with illegal arguments, arithmetic,
failure, perpetual suspension and debugging. An ex-
ception message on Lhe reporl stream ndicates which
goal caused what exception and where. Additicnally, the
exception message includes variables for a conlinuation
given from the outside; the other process can designate o
substitute goal to be executed, instead of the goal caus-
ing the exception.

3.2 Overview of Implementation Tech-
nigues

ICOT developed the Multi-P5T system in 1988 [Naka-
jima et al. 1989]. The KL1 system is running on the
Multi-PS1. The architecture of PIM is very different from
that of Multi-PS1 in the following two points. Oneis that
PIM has a looscly-coupled network with messages possi-
biy overtaken. The other is that PIM has cluster struc-
tures that are shared-memory multiprocessors. Due to
these features, PIM attains high performance, and, at
the same time, the complexity of the KL1 language pro-
CEeSS0T INCreases,

This section describes many of the implementation
techoiques we have been developing for such an archi-

*Notize that the onification failure of a KL1 goal doss not in-
fluence the cutside of a shoen. In this sense, the reduction of a
KL goal never fails, unhke GHC.

¥The mechanism for creating and recognizing sxceptions is sim-
dar o cateli-and-throw w LISP,

tecture. Among these techniques, the issues which this
paper {ocuses on are listed in Table L.

3.2.1 Unification

The synchronization and communication of KL1 are re-
alized by read/write operations to variables and sus-
pension/ resumption of goal reduction during unification.
These operations are described below.

Passive Unification and Suspension: Passive uni-
fication is unification issued in the guard part of KL1 pro-
grams. The KL1 language does not allow instantiation of
variables in its guard part. The guard part unification is
nonatomic. Simce KL1 is a single-assignment language,
once a variable is instantiated, the value never changes.
This means that passive unification is simply the reading
and comparing of two values. From the implementational
paint of view, basically only read operations to variables
are performed. Thus, no mutual exclusion is needed in
the guard part.

If goal reduction during the guard part is suspended,
the goal is hooked to variables. Here, we have an assump-
tion that almost all goals wait for & single variable to be
instantiated afterwards, Therefore, an optimization may
be taken into account; the operation for the goal sus-
pension is just Lo link the goal to the original variable.
If multiple uninstantiated variables suspend goal reduc-
tion, however, the goal is linked to the variables through
a special structure for multiple suspension. During pas-
sive unification, only these suspension operations modify
variables; the operations are realized by the compare &
swap primitive.

Active Unification and Resumption:  Active uni-
fication 1s unification issued in the body part of KL1 pro-
grams, The KL1 variables are allowed to be instantiated
only in the body part. When an instantiation of a shared
variable occurs, if goals are already hooked to the vari-
able, these goals have to be resumed as well as the value
assignment. When instantiating a variable, since other
PEs might be instantiating the variable simultanecusly,
mutual exclusion is required. We also adopt compare &
swap as the mutual exclumon primitive.

When unifying two variables, one vaniable has to be
linked to another to make the two variables identical. At
this time, other PEs might be unifying the same two vari-
ables. Therefore, imprudent unification operation might
turn out to generate a loop structure and for dangling ref-
erences. To avoid these, the following linking rule should
be obeyed: the variable with the lowest address is linked
to the one with the higheat.

Section 4.1 describes the implementation of unification

in detail.



3.2.2 Inter-cluster Processing

In a KL1 multi=-cluster system, more than one PE in each
cluster reduces goals in parallel. If a goal reduction sue-
ceeds, there are two kinds of new goal destination: the
cluster that the parent goal belongs to and the other clus-
ter. If the other cluster is designated for load balancing,
the runtime system throws the new goals to the clusters.
If the arguments of & goal to be thrown are references
to variables and structures, the references across clusters
consequently appear, these are called esternal references.
Here, suppose that a new goal with reference to data in
cluster A4 is thrown to cluster £, Then, onginal cluster A
exports the reference to the data to eluster B, and foreign
cluster B imports the reference to the data from cluster
A. Exportation apd importation are also implemented
by message sending, Multiple reference across clusters
inevitably oecurs,

An external reference is straightforwardly represented
by using the pair <el, addr> where el is the cluster num-
ber in which the exported data resides, and addr is the
memory address of the exported data. This representa-
tion of an external reference provides programmers with
& linear memory space,

However, this implementation causes a crucial prob-
lem; efficient local garbage collection is impossible. Here,
local means that garbage collection is performed locally
within a cluster. See Section 4.3 for more details on
garbage collection.  Since our local garbage collector
adopts & stop and copy algorithm (Section 4.3), the lo-
cations of data move after garbege collection. At that
time, all of the new addresses of moved data should be
announced to all other clusters. Thus, straightferward
representation would make cluster-local garbage collec-
tion very inefficient.

Section 4.2 shows our solution to this problem and
discusses more detailed inter-cluster processing subjects.

3.2.3 Memeory Management

As deseribed in Seetion 3.1.2, the implementation of
memory management should pay close attention to al-
location, reclamation, working set size, and garbage col-
lection.

Alloeation and Heclamation: A cluster has a set
of free lists for pages and supports any number of con-
tiguous pages ®. These are called global free lists. The
size of pages is uniform; supposedly the integral power
of two 7. A PE has a set of free lists for data objects,
the sizes of which are less than the page size. These are
called private free lists. Actual object size is rounded up
to the closest integral power of iwo; the private free lists

®Currently, thers are 15 kinds of free lists for supported pages:
1 = 15— and — more.
"The size of o page is currently 258 wards.

just support the quantum sizes of 2°. Moreover, objects
contained in & page are uniform in size.

A PE allocates an object as follows. When a PE re-
quires an object which is smaller than a page, the PE
first tries to take an object from an appropriate private
free list. If & PE runs out of a private free list and fails to
take an object, then the PE tries to take a new page from
the global free lists. If it succeeds, the PE partitions the
page area into objects of the size the PE requires, re-
covers the starved free list and, then, uses an ohject.
Otherwise, if a PE cannot take a proper page area from
a global free list, the PE tries to exiend the heap to alio-
cate a new page area on demand. When a PE requires an
obiect which is larger than a page, the PE tries to take
new contiguous pages from global free lists. Otherwise,
the PE tries to extend a heap to allocate new contiguous
pagt's as a.i:rl.'.nrﬂ.

When a PE reclaims a large or small object, it is linked
to the proper free list.

The features of this scheme are as follows:

¢ Since a PE has its own private free lists for small
objects, the access contention to global free lists and
the heap is alleviated.

# A PE usually just inks garbage objects to and takes
new objects from appropriate free lists; it leads the
small runtime overhead for allocation and reclama-
tion ¥,

+ Since every IE handles its private free lists using
push and pop operations (obeying the LIFQ rule],
the working set size can be kept small.

s Since the size of small abjects is rounded up to the
nearest 2®, the number of private free lists to be
managed decreases, and the deviation of private free
list lengthe can be alleviated to some extent. Ad-
ditionally, the fragmentation within a page is pre
vented, though some objects might contain unused
areas,

# Since this scheme does not join two contiguous ob-
jects, unlike the buddy system, its runtime overhead
of reclamation is kept small.

On the other hand, when the free list of some size run
out, our KL] language processor does not partition a
large object into smaller ones, but allocates a new page.
This is mainly because, due to too much partitioning, it
is likely that garbage collection will be invoked even if
only slightly large object is required. The other reasons
are as follows. In general, it is inefficient to incremen-
tally partition a small object into even smaller objects.
The overhead for searching an object to be partitioned
is needed. Also, in our KLI language processor, a local
stop-and-copy garbage collector (described just below,
{2)) collects garbages and rearranges the heap area effi-
cently.

¥4 module of PIM, PIM/p, hea dedicated machine instructions
for handling free lists, push and pog.




Furthermore, a KL1 compiler optimizes memory man-
agement by generating codes not only for allocation and
reclamation but also to reuse data structures utilizing
the MRB scheme [Chikayama and Kimura 1987] {Sec-
tion 4.6.4).

Garbage Collection:  Our KLl language processor
performs three kinds of garbage collections

{1) local real-time garbage collection using the MERB
scheme

{2} local stop-and-copy garbage collector

{3) real-time garbage collection of distributed data
structures across clusters,

Sinee (1) can reclaim almost any garbage object, (2) is
needed, eventually. {1) has a very small overhead and
can defer the invocation of (2), Moreover, in a shared-
memory multiprocessor, it is important that (1) does not
dr:,.t.my data on anuu-ping caches and kaeps the working
set size of an application program small [Nishida el al.
1990}, unlike (2). Section 4.1 discusses the parallel copy-
ing garbage collector (2} in detail. Section 4.2.2 discusses
our method for reclaiming data structures referred to by
external reference (3} in detail.

3.2.4 Goal Scheduling

The aim of goal scheduling is to finish the execution of
application programs earhier. It 15 impossible for & pro-
grammer to schedule all goals strictly during execution.
In particular, in the knowledge processing field, there are
many programs in which the dynamic behavior is diffi-
cult to predict, The optimum goal scheduling depends
on applications, and, thus, there are no general-purpose
goal scheduling algorithms. Hence, a programmer can-
not aveid |eaving part of the goal seheduling to a run-
time system. Then, PEs within a cluster share their
address spaces, and the communication belween them is
realized with a relatively low overhead. Optimistically
thinking, the performance will pay for the overhead of
the automated goal-scheduling within a cluster as the
nurnber of PEs intreases. However, when the automated
goal-scheduling for inter-cluster does not work well, the
penalty is even greater. Copsequently, the KL language
processor adopts automated goal-scheduling performed
within a cluster and manual goal-scheduling among clus-
ters.

Furthermore, the runtime system should scheduls
goals fairly by managing priorities. Section 4.4 discusses
the implementation of goal scheduling,

3.2.5 Meta Control Facilities

The meta control facilities of KL1 are provided by a
shoen. The implementation model for a shoen on a dis-
tributed environment introduces a foster-parent to pre-
vent bottienecks and to realize less communication. A

shoen

' 2oL
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|

shoen

o>

/o\

@@

cluster 2
G: goal

>

@®

cluster 1

cluster 0

shoen : shoen record
fp : foster-parent record

Figure 3: Relationship of Shoen and Foster-parents

foster-parent is a kind of proxy shoen or a branch of a
shoen; the foster-parents of a shoen are located on clus-
ters where the goals of the shoen are reduced.

A shoen and a foster-parent are realized by record
structures which store their details, such as status, re-
sources, and number of goals. Figure 3 shows the rela-
tionship between shoens, foster-parents and goals,

As in Figure 3, a shoen controls its goals and the de-
scendant shoens resident in a cluster through a foster-
parent of the cluster. A shoen directly manages its foster-
parents only. Then, a foster-parent manages the deacen-
dant shoens and goals.

A shoen is created by the invocation of the shoen pred-
icate. At that time, a shoen record is allocated in the
cluster to which the PE executing the shoan predicate
belongs, Next, when a goal arrives at a cluster but the
foster-parent of ils shoen does not yet exist, a foster-
parent is created for the goal execution automatically.
During execution, new goals and new descendant shoens
are repeatedly created and terminated. When all goals
and descendant shoens belonging to a foster-parent are
terminated, the foster-parent is terminated, too. Fur-
ther, when all foster-parents belonging to a shoen are
termunated, the shoen is terminated.

On comparing a shoen record and a foster-parent
record of our implementation with those of the Multi-
PSI system, ours must hold more information because
of the PTM network with messages possibly overtaken,
That is, in our KL system, the automatons to control a
shoen and a foster-parent require more transition states,

Consequently, in terms of implementing a shoen and
a foster-parent, we have to pay special attention to e
ficient protocols between a shoen and its foster-parents



which work on the loosely-coupled network of PIM (mes-
sages are possibly overtaken in the PIM). Another point
requiring attention is that, since parallel accessing might
hecome a bottleneck, the system should be designed so
that such data do not appear, Le. less access contention.
Section 4.5 describes the parallel implementation of &
shoen and a foster-parent in more detail.

3.2.8 Intermediate Instruction Set

As described so far, the KL1 language processor is too
large and complex to be implemented directly in hard-
ware or firmware. To overcome this problem, we adopted
a method suggested by Prolog’s Warren Abstract Ma-
chine (WAM) [Warren 1983] where the functions of the
KL1 language processor are performed via an interme-
diate language, KL1-B. The advantages of introduction
of an intermediate language melude: code optimization,
ease of system design and medification, and high porta-
bilty.

The optimization achieved at the WAM level brings
about more benefits than the peep-hole optimization
since the intermediate instruction sequence reflects the
meanings of the source Prolog program. Similarly, the
optimization at the KLI-B level EAIns Imore than the
peep-hole optimization. Details on the optimization are
deseribed in Sections 4.6.4 and 4.6.5.

I the specification of the KL1I-B instruction set is
fixed, it is possible to independently develop a compiler
for compiling KL] into KL1-B and a runtime system ex-
ecuting the KL1-B instructions, If a runtime system can
be designed so that it absorbs the differences in hard-
ware architecture, the machine-dependent parts of the
KLl language processor are made clear, and portability
is improved,

3.2.7 Built-in Predicates

Thiz section mentions the optimization techniques on
the implementation of the built-in predicates merge and
set.vector.element. These techniques were originally
invented for the Multi-PSI system. Cur KL1I lmgua.ge
processor basically inherits the techniques,

merge: The merger predicate merges more than one
stream into another. [t is useful for representing inde-
terminacy; actually, the marge predicate iz invoked fre-
quently in practical KL1 programs, such as the PIMOS
operating system [Chikayama et al. 1988]. Although a
program for a stream merger can be written in KLL, the
delay is large. Thus, it is profitable to implement the
merger function with a constant delay by intreducing
the marge built-in predicate.
Let us consider a part of a KL1 program:

<oy p(xY, q(Y), merge(X,Y,Z), ..

When predicate p is to unify X and its output value, a
system merger is invoked automatically within the unifier
of %. The same thing happens as ¥ of . See [Inamura et
al. 1988] for a more detailed discussion.

set_vector_element: To write efficient algorithms
without disturbing the single-assignment property of log-
ical variables, the primitive can be used as follows in the
KL1 janguage:

sat_vector.element(Vect, Index, Elea,
HawElam, NewVect)

When an array Vect, its index value Indax, and a new
element value NewElem are given, this predicate binds
Elem to the value at the position of Index and NewVect
to a new array which is the same as Vact except that
the element at Index is substituted for NewElem. Using
the MRB scheme, our KLI language processor detects
& situation that NewVect is obtained in comstant time.
That is, the situation is that the reference to Vect is
single, and, thus, destructive updating of the array is
allowed, See [[na.mura. et al 1953} for a more detailed
discussion.

4 Implementation Issues

This section focuses on several impeortant implementa-
tion issues which [COT has been working on intensively
for the past four years.

Cur implementation mainly takes the following into
account:

= Smaller and shorter mutual exclusion within a clus-
fer
Tf the lecking cperation is effective over a wide area
or for a long time, system performance is seriously
degraded due to senalization. To avoid this, scat-
tered and distributed data structures are designed,
and only the compare & swap operation is adopted
as a low-level primitive for light mutual exciusion °.

- Less communicalion; i.c., fewer messages
Since inter-cluster communication costs more than
inner-cluster communication, mechaniam for elimi-
nating redundant messages are effactive.

- Main path optimized while enduring low efficiency
in rgre coses
Since the efficiency of rare cases does not affect total
performance, the implementation for handling the
rare cases is simplified and low efficiency is endured.
This is important for reducing code size.

Important hardware restrictions to be taken into account
are:

*Higher-level software locks contam this primitive,



Snooping caches within a cluster; data locality has o
greal effect
It is important to keep the working set of each PE
size amall. This leads to a reduction in the shared
bus traffic and increase in the hit ratio of the snoop-
ing caches.

= Messages are possibly overtaken in the loosely-
coupled nelwork of PIM
The number of shoen states and foster-parent states
to be maintained increases. The message protocal
between clusters should be carefully designed.

4.1 Unification

The unification of variables shared by goals realizes syn-
chronization and communication among goals. Since
more than one PE within a cluster performs unification
in parallel, mutual exciusion is required when writing a
value to a variable,

Since unification 15 a basic operation of the KLI sys-
tern, efficiency greatly affects total performance. At first,
this section shows simple and efficient implementation
methods of unification, MNext, since problems associated
with the loosely-coupled network of PIM occur, a dis-
tributed unification algorithm which works consistently
and efficiently on the network 15 prescoted.

4.1.1 Simplification Methods

There are two ways to simplify the unification algorithm
as follows.

Structure Decomposition: A KLI compiler decom-
poses the unification of a clause head. For example, (a)
of the following program is decomposed to (b) at compile
time,

p(L£(X}IL]) :- true | q(x), plL). (a)
p(a) = A = [¥IL), ¥ = £(X) | q(X), p(L). (b)

Thus, the compiler can generate more efficient KL1-B
code corresponding to (b).

Substitution for System Goals: In rare cases, a
runtime system antomatically substitutes part of the uni-
fication process with special KL1 goals. This can allevi-
ate the complexity of a unification algorithm; implemen-
tors need not pay attention to mutual exclusion of the
part. Far example, let us consider the following twe rare
cases.

s A compare & swap failure (another PE has modified
the value); If this happens, then the following KL1
goal is automatically created and scheduled as if it
were defined by a user:

unify_retry(X,¥) :- trua | X = ¥.

The above X and ¥ are unified to variables one at
least of which has failed compare & swap during
unification.

* Active unification of two structures 1s invoked; All
elements of the two structures should be unified,
howewer, the operation is rather complex (the or-
dinal implementation uses stacks like Prolog). To
simplify the operation for rare cases, a special KL1
goal is ordinarily created and scheduled. For ex-
ample, if two active unification arguments are both
lists, the following goal is created.

list_unifier{[x1%2], [v11¥2]) :- true |

Xl = Y1, X2 = YZ.

4.1.2 Distributed Implementation Based on
Message Passing

The principle of the protocal for distributed unification
is as follows. A read/write operation to an external refer-
ence cell (Section 4.2.1) basically causes a corresponding
reguest message to be lavnched to the network, However,
redundant messages are eliminated as much as possible.

Distributed Passive Unification:  Passive unifica-
tion has two phases: reading and comparing. First, to
execute the read operation on an external reference cell
is to send a read message to the foreign exported data. If
the exported data has become a ground term (an instan-
tiated variable), an answer.value message returns. If
the exported data is still a variable, the request message
is hooked to the variable. If the data is an external ref-
erence cell, the read message 18 forwarded to the cluster
te which the cell refers.

Next, the answer_value message arrives at the origi-
nal cluster. Then, the returned value is assigned to the
external reference cell, and the goal waiting for the reply
message is resumed. Eventually, the goal reduction is
going to compare the two values. Moreover, the import
table entry for the cell can be released.

The efficient implementation of inter-cluster message
passing iteelf is presented in Section 4.2.

Safe and Unsafe Attributes: I an argument of
active unification is an external reference cell, the ac-
tive unification has te realize the assignment in a remote
cluster. Sending a unify message to the exported data
assigns a value to the original exported data. However,
in general, the unification of two variables from distinct
clusters may generate a reference loop across clusters. In
order to aveid creating such reference loop, we introduce
the concept of safe/unsafe external references [Ichiyoshi
et al. 1988). When there is active unification between
& variable and an external reference cell, and the exter-

nal reference cell ie safe, it is possible that the variable



is bound to the external reference cell. If the external
reference cell is unsafe, a unify message is sent to the
exported data.

4.2 Inter-cluster processing

4.2.1 Export and Import Tables

Expaoart Table: Az deseribed in Section 3.2.2 |
straightforward implementation of an external reference
makes cluster-local garbage collection very ineffcient.

In order to overcome this problem, each cluster in-
troduces an ezport teble to register all locations of data
which are referenced from other clusters (Figure 4). That
i3, exported data should be accessed indirectly via the
export table. Thus, the external reference is represented
by the pair <el, ent», called the exiernal reference ID,
where eni is the entry number of the export table. As
the export table is Jocated in the area which iz not mowved
by local garbage collection, the external reference [D is
not affected by local garbage collection. Changes in the
location of exporied data modify only the contents of
export table entries,

Sinece exported data is identified by its external ref-
erence [0, distinct external reference IDs are regarded
as distinct data even if they are identical. To eliminate
redundant inter-cluster messages, exported data should
not have more than one external reference 1D, Thus, ev-
ery time a systern exports an external reference ID), the
system has to check whether or not the external reference
ID iz already regictered on the export table.

Import Table: In order to decrease inter-cluster traf-
fic, the same exporied data should be accessed as few
times as possible. Hence, each cluster maintains an im-
pori table to register all imported external reference [Ds.
The same external references in a cluster are gathered
into the same internal references of an external reference
cell (EX in Figure 4),

Then, exported data is accessed indirectly via the ex-
ternal reference cell, the import table, and the export
table.

The external reference cell is introduced so that it can
be regarded equally as a variable. Operations to a vari-
able are substituted for the operations to the external
reference cell.

Every time the system imports an external reference
ID, the sysiem has to check whether or not the external
reference ID is already registered in the import table.
Thus, the import table entty and the external reference
cell point to each other.

4.2.2 Reclamation of Table Entries

As described above, the expart table is located in the
area which is not moved by local garbage collection.
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Figure 4: Export and Import Tables

During local garbage collection, data referred to by
an export table entry should be regarded as active data,
because it is difficult to know whether or not the export
table entry is referred to by other clusters immediately,
Therefore, without an efficient garbage collection scheme
for the export table, many copies of non-active data
would survive, these reducing the effective heap space
and decreasing garbage collection performance.

One way of managing table entries efficiently is for
table entries to be reclaimed incrementally. Below, we
describe a method for reclaming table entries in detail.

Let us consider utilizing local garbage collection. Ex-
ecution of local garbage collection might release the ex-
ternal reference cells. This leads to the release of import
table entries and the issue of release messages to the
corresponding export table entries. When the export
table entry is no longer accessed, the entry is released.
However, Lhe reference count scheme cannot be used to
manage the export table entries, This is because the
increase and decrease messages for the reference coun-
ters of the export table entries are transferred through
a network. Then, the amval order of the two messages
issued by the two distinet clusters is not determined in
the PIM global network. This destrovs the consistency
of reference counters, Additionally, in the PIM network,
messages are possibly overtaken. Although the reference
count scheme has been improved and now requires the
acknowledgment of each increase and decrease message,
this will increase the network traffie.

A more efficient scheme, the weighted export count-
ing (WEC) scheme has been invented [Ichiyoshi ef al.
1988]. This is an extension of the weighted reference
counting scheme [Watson and Watson 1987] [Bevan 1989]
in the sense that the messages being transmitted in the
loosely-coupled petwork also have weights, With the
WEC scheme, every export table entry E holds the fol-
lowing invariant relation (Figure 5):

Weight of E = Y

& E references io E

Weight of =

A weight is an integer. When a new export table entry is
allocated, the same weight is assigned to both the export
table entry and the external reference. When an import
table entry is released, its weight is returned to the cor-
responding export table entry by the relense message
The weight of the export table entry is decreased by the
returned weight. The export table entry is detected as



1o longer being accessed when the weight of the entry
becomes zero. Then, the entry is released rom the ex-
port table. See [Ichiyoshi et al. 1988] for more details on
the operation of the WEC scheme.

Cluster A
WEC = 50
Cluster C
Mcsﬁage\
WEC = 20 WEC = 100
Cluster B
WEC = 30

Figure 5: WEC Invasiant Relation

It is important that the WEC scheme is not affected by
the order in which messages arrive, and there is no nesd
to give acknowledgment. Furthermore, the WEC scheme
alleviates the cost of splitting external references.

4.2.3 Supply of Weighted Export Count

In terms of the WEC acheme, the problem of how to
manage WEC when the weight of the import table entry
cannot be split (when the weight reaches 1) remains.

In order to overcome this problem, we developed a
WEC supply mechanism which is an application of the
bind hook technique. The bind hook technique suspends
and resumes the KL1 language {Section 2.2) [Goto et al,
1984],

The WEC supply mechanism works as shown in Figure
6 and 7. The current situation is that the weight of an
import table entry in Cluster B reaches 1, and a goal
in Cluster B iseues an access command to the data im
Cluster A. In this case, the message related to the access
command cannot be sent, because the weight to be put
on the message command cannot be got from the import
table entry.

In the WEC supply mechanism, the left WEC (the
weight s 1), first, is taken from the import table entry,
and the import table entry is reclaimed. After thal, in
Cluster B, an export table entry for the external refer-
ence cell is allocated. This new externel reference ID is
supposed to be the return address for the reply to the
foliowing WEC supply request. At that time, the goal is
hooked to the external reference cell. Eventually, Clus-
ter B sends the RequestWEC message to request a new
weight to Cluster A. Of course, the weight taken from
the import table entry described above is returned to
the corresponding export table entry by this message.
Figure 6 shows the situation at that time.

When Cluster A receives the RequestWEC message,
Cluster A adds a weight, say W, to the corresponding
export table entry and returns the SupplyWEC message
to Cluster B. The SupplyWEC message tells Cluster B to
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add the weight Wto & new import table entry. In Cluster
B, the suspended goal is resumed when the new import
table entry is allocated. Then, the export table entry
for the return address is reclaimed. Figure 7 shows the
situation at that time.

Export Table Impart Table
t & RequestWEC | ____ m
exported | | | }f=---
dats @
suspended
gonls
Export Table
Cluster & Cluster B
Figure fi: WEC Request Phase
Export Table Import Table
-
1 Ao —E |
exported 1
data \ !
rﬂumm.;d H
SupplyWEL \E:prﬂ‘r‘t Table 1:
""" B
Cluster A Cluater B

Figure 7: WEC Supply Phase

This mechanism allows the originated goal to be
hooked and resumed inexpensively without additional
data structures.

The KL1 language processor on Multi-PSI copes with
this situation using indirect exportation and zero WEC
message [Ichiyoshi et al. 1988]. However, the zero WEC
message is. & technique which is applicable to & FIFO
network. As described earlier, the PIM network does not
obey the FIFO rule, so the zero WEC message cannot he
used in PIM. Therefore, PIM uses indirect exportation
and WEC supply mechanism.

4.2.4 Mutual Exclusion of Table Entries

In order to check whether or not an external reference
is already registered on the export table, a hash table
is used. When an export table entry is allocated, it is
registered in the hash table. When a cluster receives



a releass message, 2 PE in the cluster decreases the
weight of the corresponding export table entry. [If the
weight reaches zero, the export table entry 18 removed
from the hash table. Figure 8 shows the data structure
of the export table and its bash table. Its hash key is
the address of exported datum.,

Since up to about ten PEs within a cluster share these
struciures and access them in parallel, efficient muiual
exclusion should be realized.

Hash Table
D
Export Table
Ih entry
] t entry

exported
data

Figure 8: Data Structures of Export Table

Here, let us consider how to realize efficient mutual
exclusion in the lollowing two cases, which are typical
cases of release message processing.

Case 11 A PE decrenses the weight of an export table
entry and the weight does not reach zero. In this
case, only an export table entry is directly accessed.
The export table entry should be locked, when ma-
nipulating its weight. The corresponding hash table
entry does not need to be locked, because the hash
chain does not change.

Case 2: A PE decreases the weight of export table en-
try and the weight reaches zero. In thie case, the
export table entry is released from hash table entry.
Therefore, the export table entry should be locked
for the same reason as in Case 1. The hash table
entry should also be locked, when the export tahle
entry is released from the hash chain, because other
PEs may access the same hash chain simultanecusly.

The problem is how to lock these structures efficiently.
Here, we implemented the following three methods and
evaluated their efficiency.

Method 1:
table
Whenever a PE accesses the export table, the ex-
port table and the hash table are entirely locked. In

Locking entire hash table and export
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Figure §, location (D is locked.

Since the implementation of this method is sim-
ple, the total execution time is short. However,
this method occupies a large locking region for a
long time. Thus, access contention ccocurs very fre-
quently.

Method 2: Locking one hash table entry

When a PE decreases the weight of an export table
entry, the corresponding hash table entry (@ in Fig-
ure 8} is locked.

In this method, the data structure to be locked is
obviously smaller than in Method 1. However, this
method has an overhead for computing the hash
value of exported data even when the hash chain
is not modified.

Method 3: Locking ene hash table entry and one
export table entry
When a PE decreases the weight of an export ta-
ble entry, the export table entry (D in Figure &)
is locked. If the weight becomes zero, the corre
sponding hash table entry (@ in Figure 8) is locked.
Then, the export table entry is released from the
hash chain.
In this method, the locking of data stroctures is at
& minimum and the frequency of access contention
is low. However, implementation of this method is
complicated.

In the above Lwo cases, the static execution steps of the
three methods are measured, using a parallel KL1 =me-
lator on a Sequent Symmeiry. Tables 2 and 3 show the
results. In the tables, Total represents the total execu-
tion steps spent oo receiving a release message. Lock-
ing region represents locking intervals, that is, how long
each structure js locked,

Table 2: Locking Intervals{static steps) Case 1

Total | Locking region
D @
Method 1 | 30 [28|—| —
Method 2| 37 |— 23| —
Method 3| 32 |—] 0 26

Table 3: Locking Intervals(static steps) Case 2

Total | Lockin 100

SO &

Method 1| 61 |8d]|—]| —
Method 2| 61 |— |47 | —
Method 3| 73 |—|32| 27

Before evaluation, we thought that Method 1 took
fewer steps than the other methods. However, there is



actually, no great difference in the total number of exe-
cution steps. This is because the essential part of access-
ing the export table is complicated, and dominates the
steps. In Method 1, as the ratio of the locking region to
the total is relatively high, access contention to the hash
table is supposed by frequent. Hence, we do not adopt
Metheod 1.

[Takagi and Nakase 1991} tells us that WEC is effec-
tively divided in actual programs. From this result, we
assume that there are many release messages which
just decrease the weight of WEC. That is, Case | occurs
much mere frequently than Case 2. Thus, we mostly
deal with Case 1. The total execution steps of Methods
2 and 3 (37 steps and 32 steps) are almost the same,
The locking intervals of Methods 2 and 3 (23 steps and
96 steps) are almost the same. [t is preferable that the
data structure to be locked is small. According to this
discussion, we adopt Method 3 as the mutual exclusion
method for the export table.

For the import table, a similar technique is used to
reciaim the import table entries,

4.3 Parallel Copying Garbage Collec-
tor

Efficient garbage collection (GC) methods are especially
crucial for the KLI language processor on multiprocessor
systemns. Since the KL execution dynamically consumes
data structures, GC is necessary for reclaiming storage
during mmputﬂtﬁan. Moreover, GC sghould be executed
at each cluster independently sinece it is very expensive
to synchromize all clusters.

As we described briefly in Section 3, an incremental
3C method based on the MEB scheme was already pro-
posed and implemented on Multi-PSI [Inamura ef al
1988], however since it cannot reclaim all garbage ob-
jects, it is still important to implement an efficient GC
to supplement MRB GC.

We invented a new parallel execution scheme of stop
and copy garbage collector, based on Baker's sequential
stop-and-copy algorithm[Baker 1978] for shared memory
multiprocessors. The algorithm allocates two heaps al-
though only one heap is actively used during program
execution. When one heap is exhausted, all of its active
data objects are copied to the other heap during GC.
Thue, since Baker's algorithm accesses active objects this
algorithm is simple and efficient.

Innovative ideas in our algorithm are the methods
which reduce access contention and distribute work
among PEs during cooperative GC. Algo no inter-cluster
synchronization is needed since we use the export table
deseribed in Section 4.2, A more detailed algorithm is
deseribed in [Ima: and Tick 1991},
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4.3.1 Parallel Algorithm

Parallelization: There is potential parallelism inber-
ent in the copying and scanning actions of Baker's algo-
Bthm, i.e., accessing § and B, Here pointer § represents
the seanning point and B points to the bettom of the new
heap. A naive method of exploiting this parallelism is to
allow multiple PEs to scan successive cells at 5, and copy
them into B. Such & scheme is bottlenecked by the PEs
vying to atomically read and increment S by one cell and
atomically write B by many cells. Such a contention is
unacceptable.

Private Heap:  One way to alleviate this bottleneck
is to create multiple heaps corresponding to multiple
PEs. This is the structure used in both Coneert Mul-
tilisp[Halstead 1985 and JAM Parlog[Crammond 1988]
garbage collectors. Consider a model where each PE(1) is
allocated private sections of the new heap, managed with
private 5, and B; pointers. Copying from the old space
could proceed in parallel with each PE copying into its
private new sections. As long as the mark operation m
the old space is atomic, there will be no erroneous dupli-
cation of cells. Managing private heape during copying,
bowever, presents some significant design problems:

» Allocating multiple heaps within the fixed space
causes fragmentation.

o It is difficult to distribute the work among the PEs
throughout the GC.

To efficiently allocate the heaps, each PE extends its
heap incrementally in chunks. A chunk is defined as a
unil of contiguous space, that is & constant nurnber of
HEU cells (HEU = Heap Extension Unit). We first coo-
sider a simple model, wherein each PE operates on a
single heap, managed by a single pair of 5 and B point-
ers. The Byiu pointer is a state variable pointing to the
global bettom of the new allocated space shared by all
PEs. Allocation of new chunks is always performed at
Biicai-

Global Pool for Discontiguous Areas: When a
chunk has been filled, the B pointer reaches the top of
the next chunk {possibly not its owa!). At this point &
new chunk must be allocated to allow copying to con-
tinue. There are two cases where B overflows: either
it overflows from the same chunk as S, or it overflows
from a discontigunous chunk. In both cases, a new chunk
is allocated. In the former case, nothing more needs to
be done because S points into B's previous chunk, per-
mitting its full scan. However, in the latter case, B's
previous chunk will be lost if it is separated from 5 by
extraneous chunks (of other PEs, for instance).

The problem of how to ‘Link’ the discontiguous areas,
to allow § to freely scan the heap, is solved in the fol-
lowing manner. In fact, the discontiguous areas are not
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The shaded portions of the heap are owned by a PE({} which manages § and B. Other
portions are owned by any PE(7) where 5 # ¢, The two chunks shaded as /" are refer-
enced by PE(f) via 5 and B. The other chunks belonging to PE(i), shaded as *\", are not
refarenced. To avoid losing these chunks , they are registered in the global pool.

Figure %: Chunk Management in Simple Heap Model

linked at all. When a new chunk is allocated, the H's
previous chunk is simply added to a global pool. This
pool holds chunks for joad distribution, to balance the
garbage collection among the PEs. Unscanoed chunks
in the pool are scanned by idle PEs which resume work
{see Figure 9).

Uniform Objects in Size:  We now extend the pre-
vious simple model into a more sophisticated scheme
that reduces the fragmentation caused by dividing the
heap into chunks of uniform size. Tmprudent packing of
objects which come in various sizes into chunks might
cause fragmentation, leaving useless area in the bottom
of chunks. To avoid this problem, each object is allo-
cated the closest quantum of 2* cells (for integer n <
log(HEU)) that will contain it. Larger objects are allo-
cated the smallest multiple of HEU chunks that can con-
tain them. When copying objects, smaller than HEU,
into the new heap, the following rule is observed: “All
ohjects in a chunk are always uniform in size.” If HEU
is an integral power of two, then no portion of any chunk
is wasted. When allocating heap space for objects of size
greater than one HEU, contiguous chunks are used.

In this refined model, chunks are categorized by the
size of the objects they contain. To effectively man-
age this added complexity, a PE manipulates multiple
{5, B} pairs (called {5y, B1}, {52, 81}, {54, 54}, s a0d
{5y, Bugyl) Initially, each PE allocates multiple
chunks with 5, and 5, set to the top of each chunk,

Referring back to Figure 9, recall that shaded chusnks
of the heap are owned by PE(f) and non-shaded chunks
are owned by other PEs. The chunks shaded as '/,
in the extended model, contain objects of some fixed
size k, and are managed with a pointer pair {5k, By}
Chunks shaded as *\" are either directly referenced by
other pointer pairs of PE{i) {if they hold objects of size
m # k), or are kept in the global poel.

Load Balancing: In the previous algorithm, it is a
difficult choice to select an optimal HEU. As HEU in-
creases, B4, accesses become less frequent (which is
desirable, since contention is reduced); however, the av-
erage distance between S and B (in units of chunks) de-
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creases, This means that the chance of load balancing
decreases with increasing HELL

One solution to this dilemma is to intreduce an in-
dependent, constant size unit for load balandng The
load distribution unit (LDT) is this predefined constant,
which is distinct from HEU' and enables more fre-
guent load balancing during GC. In general, the op-
timized algorithm incorporates a new rule, wherein if
{8y — 5 > LDU), then the region between the two
pointers (Le., the region to be scanned later) is pushed
onto the global pool.

4.13.2 Evaluation

The parallel GC algorithm was evaluated for a large set
of benchmark programs (from [Tick 1991] etc.) execut-
ing on a parallel K11 emulator on & Sequent Symmetry.
Statistics in the tables where measured on eight PEa with
HEU=256 words and LDU=32 words, unless specified
otherwise. A more detailed evaluation is given in [Imai
and Tick 1991].

To evaluate load balancing during GC, we define the
workioad of a PE and the speedup of a system as follows:

workload(PE) = number of cells copied +

number of cells scanned
T workloads _

maz(workload of FEs)

speedup =

The workload value approximates the GC time, which
cannot be accurately measured because it is affected by
DYNIX scheduling on Symmetry. Workioad is measured
in units of cells referenced. Spesdup i calculated with
the assumption that the PE with the maorimum work-
lcad determines the tofal GC time. Note that spesdup
only represents how well load balancing is performed and
does not take into account any extra overheads of load
balancing (which are tackled separately). We also define
the ideal speedup of a system:

ideal speedup =

, T workloads
min : L
maxz({workload for one object)

1¥We assume that HEU = kLDU, for integer & > 0.

#PEI)
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WL Bize of LDU Benchmark 32 64 128 256
Benchmark | x1000| 32w | 64w | 128w | 256w | ideal estPath 4210 | 1396 | 84.4| 458
BestPath 165] 7.15 | 7.06 { G.46 | 636 | 5.00 Boyer 208.4 | 131.3 w3l 128
Boyer 47| 587 | 523 | 4.38 | 412 | .00 Cube 609.4 | 241.6 | 96.3| 55.5
Cube 139 7.74 | T7.87 T.35 6.83 B.00 Life 145.8 66.5 295 14.8
Life W01} 7.10 | 686 | 631 | 629 | 8.00 MasterMind 39| L5 11 10
Wasterhdind 47 2.50 | 248 | 2.58 2.48 2.87 MaxFlow 211.3 5 i) 27.0 10.0
MaxFlow 95| 406 | 384 | 370 | 286 | 5.00 Pascal el 10 L0 L0
Pascal 5| 267 | 201 | 345 | 277 | 735 _ : ’ . .
Pentamino 3| 434 | 334 | 367 | 4.;1 | 8.00 Pentomino 13431 6531 2100 7.5
Puzzle 17| 263 | 284 | 258 | 261 | 2.92 Puzzle 51.6| 306 10.5) 49
SemiGroup 406! 75 | Tes | 749 | T2 | BOD SemiGroup 1,700.7 | 910.8 | 439.3 20.6
TP 17] 240 | 230 | 243 | 233 | 279 TP 4.4 198 8.8 4.6
Turthes 203| 7.79 | T4 | 720 | T.22 | B.OOD Turttes 1,427.0 | 640.0 ) 314.0] 136.0
Waltz 32) 438 | 292 | 231 | 164 | BOD Waltz T6.0 | 36.0 11.5 14
Zebra 167 6.27 | 5.04 | 642 | 628 200 Zehra 212799202 | 467.7 | 2224
Table 4: Average Workload and Speedup (8 PEs, Table 5: Accesses of the Global Pool (8 PEs, HEU=256

HEU=256 words)

Ideal epeedup is meant to be an approximate measure of
the fastest that n PEs can perform GC. Given a perfect
load distribution where 1/n of the sum of the workloads
is performed on each PE, the ideal speedup is n. There
15 an obvious case when an ideal speedup of n cannot be
achieved: when & single data object is so large that its
workload ie greater than 1/n of the sum of the workloads,
In this case, GC can complete only after the workload
for this object has completed. These intuitions are for-
mulated in the above definition.

Speedup:  Table 4 summarizes the average workload
and speedup metrics for the benchmarks. The table
shows that benchmarks with larger workloads display
higher speedups. This illustrates that the algorithm is
quite practical. [L also shows that the smaller the LDT,
the higher the speedup obtained. This means there are
the more chances to distribute unscanned regions, as we
hypothesized.

In some benchmarka, such as MasterMind, Puzzle and
TF, ideal speedup is limited (2-3). Thia limitation is
due o an inability of PEs to cooperate in accessing a
single large structure. The biggest structure in each of
the benchmark programs is the program module. A pro-
gram module is actually & first-class structure and there-
fore subject to garbage collection (necessary for a self-
contained KL1 system which includes a debugger and in-
cremental compiler). In practice, application programs
consist of many modules, opposed to the benchmarks
measured here, with only a single module per program.
Thus the limitation of ideal speedup in MasterMind and
Puzzle is peculiar to these Loy programs.

In benchmarks such as Pascal and Waltz, the achieved
speedup is significantly less than the ideal speedup.
These programs create many long, flat Lists, When copy-
ing such lists, § and B are incremented at the same rate.
The proposed load distribution mechanism does not work
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well in these degenerate cases, Qur method works best
for deeper siructures, so that Bis incremented at & faster
rate than §. In this case, ample work is uncovered and
added to the global pool for distribution.

Contention at the Global Heap Bottom: We an-
alyzed the frequency with which the global heap-bottom
pointer, B0, 18 updated (for allocation of new chunks).
This action is important because Byua is shared by all
the PEs, which must lock each other out of the critical
gectione that manage the pointer. For instance, in Zebra
(given HEU = 256 words and LDU = 32 words), B yaue
is updated 3,885 times by GCs. If B,jpur were updated
whenever a single object was copied to the new heap, the
value would be updated 126,761 times. Thus, the update
frequency is reduced by over 32 times compared to this
naive update scheme. In other benchmarks, the ratios of
the other programs range from 15 to 114.

Global-Pool Access Behavior:  Table 5 shows the
average oumber of global-pool accesses made by the
benchmarks, and the average number of cells referenced
(in thousands) by the benchmarks per global-pool ac-
cess. These statistics are shown with varying LDU sizes,
The data confirms that, except for Pascal and Master-
Mind, the smaller the LDU, the more chances these are
to distribute unscanned regions, as we hypothesized. The
amount of distribution overhead is at least two orders of
magnitude below the useful GC work, and in most cases,
at least three orders of magnitude below,

As described above, to achieve efficient garbage col-
lection on & shared-memory multiprocessor system, load
distnbution and the working set size should also be care-
fully considered.



4.4 Goal Scheduling in a Cluster

An efficient goal scheduling algorithm within a cluster
must satisfy the following criteria:

no idle processing elements

high data locality

less access contention

no disturbance of bu.x:.r processing elements

o

Moreover, since the KL language has the concept of
goal priority (Section 3.1.3), goals with higher priorities
within a cluster are the targets of scheduling. Notice
that Lead is the amount of work to be performed by a
PE, cluster or system. Thus, load does not mean the
number of goals.

Neo Idle Processing Elements:  The aim of goal
scheduling 15 to finish the execution of application pro-
grams earlier. Previous software simulation told us the
following [Sato and Gote 1988]:

* Tokeep all PEs busy is the most effective way of load
balancing since the goals of the KL1 language are,
in general, fine-grained and have rich parallelism,

o Making the numbers of goals of each PE the same
during execution does not lead to good load balanc-
ing.

Here, an idle PE means one that does not have any goals
to be reduced, or one that reduces goals with lower pri-
orikies,

High Data Locality: Since a cluster is viewed as a
shared-memory multiprocessor, it is important to keep
the data locality high to achieve high performance. This
means keeping the hit ratio of snooping caches high. In
our KLI runtime system, once argument data are allo-
cated to a memory, the locations are not moved (oaly a
garbage collector can move them). Hence, it is desirable
that a goal that includes references to the argument data
is reduced by a PE in which the cache already contains
the data. Furthermore, in terms of KL1 goal reduction,
suspension and resumption during unification give rise
to expensive context switching, If context switching oc-
curs frequently, the hit ratio of snooping caches decreases
and, consequently, the total performance is seriously de-
graded.

Less Access Contention:  To schedule goals prop-
erly, each PE has to access shared resources in parallel.
For instance, there is a goal pool that stores goals to
be reduced and priority information that must be ex-
changed among PEs. Since expensive mutual exclusion
is required when PEs within a cluster access these shared
resources, access conflicts should be decreased as much
as possible.
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Mo Disturbance of Busy Processing Elements:
From the load balancing point of view, it is better to have
as many idle PEs as possible involved in work associated
with goal scheduling. Moreover, when an idle PE tries
to find a new goal, it is desirable that the idle PE should
neither interrupt nor disturb the execution of busy PEs,

Consequently, well-distributed data structures and al-
gorithms should be designed so that these criteria are
satisfied as much as possible.

4.4.1 Goal Pool

Let us consider two ways of implementing a goal pool:
centralized implementation and distributed implementa-
tion. That is, one queue in & cluster or one queue for
every PE. If centralized implementation is used, prior-
ity is strictly managed. However, every time a goal is
picked up and new goals are stored, the access contention
may occur. Thus, our KL1 implementation adopts the
distributed implementation method. It turns out that
transmission of goals between PEs for load balancing is
required and priority is loosely managed. On the con-
trary, however, distributed queue management is neces-
sarily loose for priority.

The distributed goal queues are managed using a
depth-first role to keep the data locality high. Under
depth-first {(LIFQ) management, it is presumed that the
same PE will often write and read the same data and that
the number of suspensions and resumptions nvoked will
be less. Therefore, the cache hit ratio increases,

Further, when a PE resumes goal unification, the PE
sends the goal to the queue of the PE which suspended
the Eua]. prm"lm.lsl}'. This also cantributes to kegpiq! the
data lecality high.

Az described above, since goals are accompanied with
priorities, in our KL] implementation, a PE has its own
goal quenes for each priority. Figure 10 shows the goal
gqueues with priorities.

high

2 ©O®
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o
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priority-wise stacks
low
F'lgur\e 10: Goal Qu:uc with Prionities

4.4.2 Transmission of Goals

As goon as a PE becomes or may become idle, it must
take a new goal with higher priority from the gueue of
a PE with a small overhead to avoid going into an idle
state, An idle PE triggers the transmission of a new goal.



Here, two design decisions are needed. One decision is
deciding whether the PE that transmits a new goal with
high priority is a request sender (idle PE) or a request
receiver (busy PE). Anocther decision is deciding whether
a new goal is to be picked from the top of a queune or the
end. If an idle PE has the initiative, access contention
may occur in the gueue of a busy PE. If a busy PE has
the initiative, the CPU time of the busy PE must be con-
sumed. If a new goal is picked from the top of a queue,
it may destroy the data locality of the busy PE's cache.
If a new goal is at the end, it will often happen that the
goal reduction of an idle PE is immediately suspended;
the potential load of the goal may be small under LIFOQ
management. Thus, this method may frequently trigger
transmission.

The current implementation uses dedicated PIM hard-
ware which broadcasts requests to all PEs within a clus-
ter, in order to issue a request for a new goal to the other
PEs. Each busy FE executes an event handler once a re-
duction and the event bandler may catch the request.
Then, the busy PE which catches the request first picks
up the goal with the highest priority from the top of its
goal queue. Our implementaticn should be evaluated for
comparison.

4.4.3 Priority Balancing

A PE always reduces goals which belong to its local
quene and have the highest priority. There are two prob-
lemns; cne is how to detect the priority imbalanee, and
the other is how Lo correct the imbalance by cooperating
with the other PEs. Our priority balancing scheme was
designed so that fewer shared resourees are required and
busy PEs do less work concerned with priority balane-
ing {Figure 11). Our scheme requires only one shared

priority

MAX frocsescass
o] \l
111 15 SO, S

Figure 11: Priority Balancing Scheme

variable P, to record an average priority, and the same

pumber of variables I; ~ I, as the number of PEs to
record a current integral value for each PE. A curreat
priority of each PE is represented by F.. There are two
constants, maz (> 0) and min (< 0). Every PE will
always calculate the integral I, of F; — F, along time.
When I; > maz, the PE({) adjusts F, to the current F;
and resets [; o zero. When [; < min, the PE(1) issues
a goal request, adjusts P, to the priority of a transmit-
ted goal, and resets I; to zero. The mechanism of the
goal transmission described above is used as well, since
the goal with the highest PE priority is picked up. More
details on this algorithm are described in [Nakagawa et
al. 1980],

The features of this scheme are as follows. The cal-
culation of the integral reduces the frequency of shared
resource P, updating and busy PEs do some work only
when [ = mazr.

The disadvantages are as follows. It may happen that
the priority of a transmitted goal is even lower, that Fy
decreases unreasonably, and that the frequency of the
high-priority goal transmission decreases. Our priority
balancing scheme utilizes the goal transmission mecha-
nism (Section 4.4.2), which doss net aiways transfer the
goal with the most appropriate priority. Accordingly, &
load imbalance may be sustained for a while. How well
thiz method works depends on the priotity of the goals
transmitted upon reguests, Io other words, there is a
tradeoff between loose priority management and the fre-
quency of high-pricrity goal transmission. Further, in
this scheme, & busy PE (a PE satisfying [; > maz) has
to write its current priority F; to the shared variable P..
This may cause access conflict and disturb the busy PE.

A pew scheme which we will design should overcome
these problems. However, we think that calculation of
the integral along time is essential even in new schemes.

4.5 Meta Control Facilities

When designing the implementation for a shoen, we as-
sume that the following dynamic behavior applies in the
KL system:

+ Shoen statuses change infrequently.

» Shoen operations are not executed immediately but
within a finite time,

» Messages transferred are possibly overtaken in the
inter-cluster network.

Under these assumplions, cur implementation must sat-
isfy the following requirements:

o The less inter-cluster messages the better,

« No bottleneck appears; algorithms and protocols
that do not frequently access shoen records and
foster-parent records are desirable.

» The processing associated with meta control should
not degrade the performance of reduction.



Many techniques realizing a shoen have been devel-
oped to achieve high efficiency. This section concentrates
on execution contral and resource management.

From now on, stream messages on the control and
report streams for communication to the ocutside are
represented in a typewriter typeface, such as start,
add_resource, and ask _statistics.

4.5.1 E=xecution Control

Thas section describes schemes for inplementing the
funections for execution control. Schemes (1) ~ (2) are ef-
fective in & shared-memory environment {intra-cluster).
Schemes (3) ~ (5) are effective in a distributed-memory
environment (inter-cluster),

{1) Change of Foster-parent Status: Since goal
reduction cannot be started when the status of foster-
parent which the goal belongs to is not started, impru-
dent implementation needs to check the status of a foster-
parent before every goal reduction. To avoid such fre-
quent checking, a status change of the foster-parent is
nolified by the interruption mechanism. When a cluster
receives a message that changes a foster-parent’s status
to non-executable, an interruption is issued to every PE
in the cluster. When a PE catches the interruption, the
PE checks to see if the current goal belongs to the tar-
get foster-parent. If so, then the foster-parent is to be
stopped and the PE suspends execution of the current
goal and starts to reduce the goal of the other active
foster-parent. Otherwise, the PE continues the reduc-
tion. Since the newly scheduled goal is supposed to be-
long to the other foster-parent, the context of the goal
reduction *' must be switched, too.

The assumption that the status of a foster-parent is
switched infrequently implies that interruptions happen
rarely. Thus, an advantage of the scheme is that the or-
dinary reduction process rarely suffers from foster-parent
checking.

(2) Foster-parent Termination Detection: To
detect the termination of a fnﬂl.er—pa.rmt eﬁc_i.mt.]}r, a
counter called childcount is introduced. The childcount
represents the sum of both the mumber of goals and
the number of shoens which belong to the foster-parent.
When the childeount of a foster-parent reaches zero, all
goals of the foster-parent are finished.

The childcount area is allocated in a foster-parent
record, and all PEs in a cluster must access the area.
Since this counter must be updated whenever a goal
is created or terminated, frequent exclusive updating of
this counter might become a bottleneck. To reduce such
an access coutention, the cache area of the childcount
iz allocated on each PE. The operations go as follows.
At first, 2 counter is allocated on the childcount cache

H4 childeount cache and a resource cache,

of each PE, initialized with a value zero. Every time a
new goal ia spawn, the counter is incremented, and the
counter is decremented upon the end of goal reduction.
When the reduction of a new goal whose foster-parent
differs from the previous one begins, the current foster-
parent should be switched. That is, the value of the
counter on the childcount cache iz brought back to the
previous foster-parent record, and the counter is reini-
tialized. The foster-parent terminates when it detects
that the counter on the foster-parent record is zera.

This schemne is expected to work efficiently if foster-
parents are not changed often.

(3) Point-to-point Message Protocol: Basi-
cally, message protocols based on point-to-point com-
munication between a shoen and a foster-parent are not
designed on the basis of broadcasting [Rokusawa ef al.
1988]. If almost all clusters always contain foster-parents
of a shoen, protocols based on broadcast are taken into
account. However, the current implemetation does not
assumne this, although it depends on applications. There
fore, it is inefficient to broadcast messages to all clusters
in the system every time. Then, a shoen provides a table
that indicates whether or not its foster-parent exists in a
cluster corresponding to the table position, The table is
maintained by receiving foster-parent creation and ter-
mination messages from the other clusters. Accordingly,
& shoen can send messages only to the clusters where ita
foster-parents reside.

(4) Lazy Management of Foster-parent: A
shoen controls its foster-parents by exchanging messages,
such as start/stop messages. However, these messages
may overtake, and, thus, a foster-parent may go into the
incorrect states. For the stats to he correct and to mini-
mize the maintenance cost, received start/stop messages
are managed by a counter. If a starl message arrives, the
foster-parent increments the counter. If & stop message
arrives, the foster-parent decrements the counter. Then,
when the counter value crosses zera, the ;Eoutﬂhpqpu:lt
changes the execution status properly.

(5) Shoen Termination Detection: To detect
the termination of a shoen efficiently, a Weighted Throw
Count (WTC) scheme was introduced [Rokusawa ef al.
1988] [Rokusawa and Ichiyoshi 1992]. This scheme is also
an application of the weighted reference count scheme
[Watson and Watson 1987][Bevan 1989]. Logically, a
shoen is terminated when there are no foster-parents.
However, this is not correct enough to maintain the num-
ber of foster-parents, since goals thrown by a fester-
parent may be transferred in the network. Thus, a
foster-parent lets both all goals to be thrown and all
messages belween a shoen and foster-parents to have a
portion of the foster-parent’s waght. On terminating
a foster-parent, all foster-parent weights are returned to



the shoen. If the foster-parent terminated at message ar-
rival, the messages from the shoen are also sent back to
the shoen to keep its weight. Then, when all weights are
returned to the shoen, the shoen terminates itself. An
advantage of this scheme is that it is free from sending
acknowledgement messages.

Thus, since a shoen must not continue to lock shared
resources in this scheme until an acknowledgement re-
turns, the scheme can reduce not only the network traffic
but can also alleviake mutual exclusion.

4.5.2 Resource Management

Ag described above, a shoen is also used as a unit for
resource management. In the KL1 language, the reduc-
tion time is regarded as the computation resource. The
shoen conswmes the supplied resources while shifting the
resources., Moreover, since a shoen works in parallel, lazy
resource management is inevitable, like in the shoen ex-
ecution contrel {Section 4.5.1).

A shoen has a limnited amouent of resources which it
can consume. Upon exceeding the limit, goals in the
shoen cannot be reduced. When a runtime system de-
tects that the total amount of consumed resources so far
is approaching the limit, a resource low message is au-
tomatically issued on-the shoen's report stream. The
shoen stops its execution with its resources exhausted.
On the other hand, the add _resource message on the
control stream raises the limit and the shoen can utilize
the ressurce up to the new limit. Furthermore, a shoen
which accepts the ask_statistics message reports the
current resources consumed so far,

This section describes our resource management im-
plementation schemes.

{1} Distributed Management:  The scheme is
briefly described below, Figure 12 shows the resource
fiow between a shoen and its foster-parents.

A shoen has a limit value, which indicates that the
shoen can consume resources up to the limit, Initiadly,
the resource limit 13 zero. Only the add_resource mes-
sage can raise the limit. When & shoen receives the
add_ressurce message, Lhe shoen requests new resources
to the above foster-parent by & value within the limit
value designated by the add_ressurce message, Here,
we also call this foster-parent the parent foster-parent.
Notice that a shoen and its parent [oster-parent reside
in the same cluster, and, thus, the operation for the re-
source requesl 15 |I|1p]ﬁ1:1¢nt-ﬁ'| by read and write apera-
tions on a shared memory.

After a shoen has got new resources from its par-
ent foster-parent, the shoen further supplies resources
to its foster-parents which requested resources by the
supply.resource message across clusters. Moreover the
supplied resources may be supplied to the descendant
shoens and foster-parents. Then, those foster-parents

shoen shoen | ——7 add resource
limit
butter [——1 resource_low

fp : foster-parent G : Goal

Figure 12: Resource Flow Between a Shoen and its
Foster-parents

consume the supplied resources. The shoen has a buffer
for the resources; the excessive resources returned from
terminated foster-parcats are stored in the shoen buffer,
When the remaining resources of a foster-parent are go-
ing to run out, & resource request message 1z gent to the
above shoen. If the shoen cannot afford to supply the
requested resources, the shoen issues the resourcedow
message on its report stream. Otherwise, if the shoen
can afford and has sufficient resources in the buffer, the
resources are supplied to the foster-parent immediately.
If there are insufficient resources, the shoen requests new
resources within the current limit value from its parent
fostec-parent. As described here, the resource buffer of
a shoen can prevent the message from being jssued more
frequently than pecessary.

1f the resources of the foster- parent are exhausted, goal
reduction stops. Then, the scheduied goals are hooked
on to the foster-parent record, in preparation for re-
scheduling when new resources are supplied from the
shoen.

Furthermore, each PE has a resource cache area for the
foster-parent, and, hence, a counter is actually decre-
mented every time a goal is reduced. ‘This mechanism
is similar to the childeount mechanism (Section 4.5.1).
However, when the foster-parent of a goal to be reduced
alters, the caches on PEs must be brought back to the
foster- parent record.

(2) Resource Statistics:  While the system en-
joys lagy resource management, it gets harder to collect
resource information over the entire gystem. A shoen re-
ceives the ank_statistics message, which reports the
current total consumed resources,



The scheme used to collect the information is de-
scribed. A sheoen issues inquiry messages to each foster-
parent. When an ingquiry message arrives at a foster-
parent, the foster-parent informs each PE of this using
the interruption mechanism. This portion i3 mimilar to
the mechanism of Section 4.5.1 (1). The PEs which catch
the interruption check if the current geals belong to the
target foster-parent. If so, the PE puts the resource on
the cache back to the foster-parent record. When all
correspondiog PEs have been put back, the subtotal re-
source on the foster-parent appears. If not, the PEs do
nothing and reduction continues. Then, the foster-parent
reports the subtatal to the shoen and re-distributes some
resources back to the PEs. As a result, the PEs resume
goal reduction.

We assume that the ask_statistics message i issued
infrequently. This scheme works well.

{3) Point-to-point Resource Delivery: The
destination of new resources when a shoen receives re-
source request messages from its foster-parents is a de
sign decision. It must be decided whether the shoen
delivers the new resources only to the foster-parents
which have requested them, or delivers them to all fester-
parents. A protocol based on broadcast may he prefer-
able when the foster-parents in nearly all clusters always
possess the same amount of resources and consume them
at the same speed. The current method is similar to one
in Section 4.5.1 (3).

Our assumptions we based on an experience of the
Muti- P51 system. Goal scheduling within a cluster, how-
ever, differs and there is no guarantee that every cluster
has the foster-parcot of the shoen. Therefore, in the
current implementation method the shoen sends the re-
source supply message just to the clusters which have
sent resource request messages,

4.6 Intermediate Instruction Set

The KL1 compiler for PIM has two phases, The first
phase compiles a KL1 program into an intermediate in-
struction code; the instruction set i1s called KL1-B. The
second phase translates the intermediate code into a pa-
tive code. KL1-B is designed for an abstract KL! ma-
chine [Kimura and Chikayama 1987], interfacing between
the KL1 language and PIM hardware, just as in Warren
Abstract Machine [Warren 1983] of Prolog.

KL1.B for PIM is extended from KL1-B for Multi-PS]
to efficiently exploit the PIM hardware.

4.6.1 Abstract KL1 machine

The abstract L1 machine is simple virtual hardware to
describe a KL1 execution mechanism. It has a single PE
with a heap memoary and basically expresses the inside
exccution of a PE. However, every KLI1-B instruction
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implicitly supports multi-PE processing. Further, some
KLI1-B instructions are added for inter-cluster process-
ng.

A goal is represented by a goal record on a heap. The
goal record consists of arguments and an execution en-
vironment which includes the number of arguments and
the address of the predicate code. A ready goal is man-
aged in the ready goal pool which has entries for each pri-
ority. Each entry indicates a linked stack of goal records,
Suspended goals are hooked on the responsible variable,

Each data word consists of a value part, a type part
and a MRB part [Chih}'m and Kimura 1931], An
MEBB part is valid, if the value part is & pointer, and indi-
cates whether its object is singlereferenced or multiple-
referenced. It is used for incremental garbage collection
and destructive structure updating,

4.8.2 Overview of KL1-B

The intermediate instruction set KL1-B was designed ac-
cording to the following principles:

s Memory based scheme — goal arguments are basi-
cally kept on a goal record at the beginning of &
reductjon, and each of them is read onto a register
explicitly just before it is demanded. Thus, almost
all registers are used temporarily (Section 4.6.3).

* Optimization using the MRB scheme — some in-
structions to reuse structures are supported to alle-
viate execution cost (Section 4.6.4).

# Clause indexing — the compiler collects the clauses
which test the same variables, and compiles them
into an instruction module, Then, all guard parts
of a predicate are compiled as one into the code
with branch instructions forming a trec structore
{Section 4.6.5).

# Each body is compiled into a sequence of instruc-
tions which run straight ahead without branching.

The basic KL1-B instruction set is shown in Table 6,

4.8.3 Memory Based Scheme

The Multi-PSI system executes a KL] program using
the register based scheme — all arguments of the current
goal are loaded onto ergument registers before reduction
begine, just as WAM does for Prolog.

Here, let us compare the following two methods in
terms of the argument manipulation coat:

s In the memory based scheme, the arguments referred
to in the reduction are loaded and the modified ar-
guments are stored at every reduction. There is no
cost for goal switching.

# In the register based scheme, all arguments of the
swapped out goal are stored and all arguments of the
swapped in goal are loaded at every goal switching.



Table 6: Basic KL1-B Instruction Set

KL1-B Instruction

Specification

For paasive unification:

load_waft Rgp, Pos, Rx, Lsus
read wait Rsp, Pos. Rx, Lsus
is_atem/integer/list/...  Rx Lfail
test_atom/Tnteger R, Const, L fail
egual R, Ry, Lsus,Lfail
sisgpand Lpred, Arity

Read a goal argument onto e and check hinding,
Read a structure element onto Rx and check binding,
Test data type of Rx

Test data value of R

General wnification.

Suspend the curment goal

For arqument /element preparation:

load P‘p_ Pos_Kx
read Rap, Fas Hx
put_atom/intager Const.Hx
alise_variahle Rx
alloc_list fwector { Ariry, ) Rx
write Rz Rep Pos

Read a goal argument onto Rx.

Head a structure slement onto Re.

Put the atemic constant onto Rx

Allocate a new variable and put the pointer onto Rx.

Allocate a new list/vector structure and put the pointer onto Rx.
Write Rx onto a structure element.

For meremental gerbage collection:

mark Rx Mark MEB of Re.
collect_value R Collect the structure recursively unless its MEB is marked.
eoilect_list fvector [ Arity. )R Collect the list structure unless its MREB is marked.
reuse figt/vector { Arity. ) Rx cofiect_lisl /vector + atfoctist/vector.
For active unification:
unify atom/integer Const, R Unify Bx with the atomie constant.
whify_baund valve Rsp, Ry Unify Ax with the newly allocated structure.
unify Rx, Ry General unification.

For goal manipulotion and event handling:

:ml.lec!_ram' An;ty;Rﬂr

allae_gaal Arity Kgp

store Rz, Rgp, Fas

get_code CodeSpec, Reade

push geal Rgp, Reode, Arity
push_goalwith_priority  Rgp.Rcode Rorio. Arity
throwe_gon Rgp.Reods, Reis, Arity
execute Reode. Arity

proceed

Reclaim the poal record.

Allocate a new goal record.

Write Rx onto & goal argument.

Get the code addrese of the predicate onto Reode.

Push the goal to the current priority entry of ready goal pool.

Push the goal to the specified priority entry of ready goal pool
Throw the goal to the specified cluster.

Handle the event if it occurrs and execute the goal repeatedly.
Handle the event if it cecurrs and take a new goal from ready

goal peol to start the new reduction.

Some arguments may be moved between registers at
every reduction.

Therefore, the memory based scheme is better than the
regisier bosed scheme when

# Goal swilching ocours requently.
= A goal has many arguments,

» A goal does not refer to many arguments in a reduc-
tion,

Actually, these cases are expected to be seen often in
large KL programs. Thus, we bave to verify the memory
based scheme with many practical KL1 applications.
Additionally, the number of goal arguments is limited
to the number of argument registers — 32 in the case of
Multi-P51. This limitation is too tight and is pot favor-
able to KL1 programmers. The memory based scheme
can alleviate this limitation to some extent. On the
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other hand, the naive memory based scheme necessar-
ily writes back all arguments to the gool record, even if
tail recursion is employed. Since this is very wasteful, an
optimization to keep frequently referenced arguments on
registers is mandatory during tail recursion.

4.6.4 Optimization

Two optimization techniques are introduced: tail recur-
give optimization and the reuse of data structures. We
can describe these waing the following sample codes.

& SOUTCE Coge:

“PP{[HlL]:Tr:{} = true | K"’-IH[Y]s -EFP{L,T,Y],
appll) TX) - true | X=T.

s intermediate code:

app_entry:
ioad

CGF, 0, RI % Load up



foad CGP, 2, R2 % arguments
apploap:
wart R1, sus.or_fail
is_list R1, next
commit
+ read R1. car, R3 % H
read RI, cdr, R4 % L
reuse_list R1
- write R3. R1, car % H
allac_wvariable RS oY
write Ra, R1, edr
unify_bound_value BRI, R2
mowe R4 RI
moue RE R2
execute_tro apploop
next:
is.atom R1, sus.or-fail
test_atom 01, RI1
commit
foad CGP, 1, R3 %T
unify R3, R2
cuffec:qgnaf 3 CGP
proceed
sus_or_fail:
store RI, CGP O % Write back
store R2, CGP, 2 % arguments
suspend app_entry, 3

Tail Recursive Optimization: Some instructions
are added for this optimization. Wait tests if an argu-
ment on a register is instantiated. AMove prepares ar-
guments for the next reduction. Execute_tro executes a
goal while some arguments are kept on registers.

In the above source code, the first and third arpuments
of the first clause are used in tail recursion. These ar-
guments are loaded at the beginning of the reduction by
the load instructions which are placed before the tall re
cursive loop. There ia no need to write them into the
goal record during tail recursion. Howewver, they must
be written back to the goal record explicitly before, say,
switching the goal caused by the suspend instructiom,
Since the second argument is not used in tail recursion,
it is kept on the geal record until it is referred to in the
second clause,

In this example, two write instructions and two read
instruclions are replaced with twe mowve instructions.
Thus, by assuming a cache hit ratio of 100 %, this opti-
rization can save two steps on each recursion loop.

Reuse of Data Structures: KL1-B for PIM sup-
ports the reuse of data structures, The reuse_list and
reuse_wector instructions realize this. These mstructions
reuse an area in a heap on which the structure unified
in a guard part was allocated, but, only if the MEB of
the reference to the area is not marked. However, the
area for the element data of the reused structure is not
reused.

In KL1 applications, it often happens that the areas
of reclasmed structures can be reused for successive allo-

cation. This is frequent in programs for list processing
and programs written in message driven programming.
In the sample codes in Section 4.6.3, element H of the
passive-unified list [H|L] is used as element H of the new
list [H|Y], and is read and written by the instructions
marked with stars (“+7). However, if the MRE of the
passive-untfied list is not marked, element H can actu-
ally be used in the new list as is, and, therefore, read
and wnte instructions can be eliminated.

Therefore, the following new optimized instructions
are mtroduced:

reuse_list_with_elements
reuse_vector.with_elements

Reg, [Four!| Fair]
Arity,Reg.{Fo.Fy.....F. }

These instructions do nothing when the MRB of the
structure pointer on Reg is not marked. If marked, they
allocate a new atructure, copy specified elements on the
structure refereaced by Feg to the new structure, and
put the pointer to the new structure onto Reg. Thus,
reuse of data structures reduces the number of memory
operations and, aceordingly, keeps the size of the working
set srmall.
Sample code is shown as follows:

¢ optimized intermediate code:

app_loop:
wait Rl, sus_or_fail
is_list R1, next
commul
read R1, edr, R4 % L
reuse_list_with_slements R1, [1|0]
allec_varable RE
write R5, RI, cdr
unify_bound_value Ri, B2
move R4, RI
mowve RS, R2

app_loop

execule.tro

In this code, reuse fist and instructions marked with
stars {“x"} are replaced with the reuse_fist_with_slements
imstruction. The second argument [.!|ﬂ] apu:iﬁcs that
the head element has to be copied if the MEB of the list
pointer en Rl s marked. If the MRB is not marked,
it does pothing and is equal to nop. Therefore, only
the following write RS, R1,cdr instruction can allocate the
list structure [H|Y]; the instruction works like the rplacd
function in LISP. Consequently, in this example, reuse
optimization can save one read and one wirte inatructions
and ie worth approximately two machine steps.

4.6.5 Clause Indexing

The KL1 language neither defines the testing order for
the clanse selection nor has the backtracking mechanism.
Thus, to attain quick suspension detection and quick
clause selection, the compiler can arrange the testing or-
der of KL1 clauses; this is called clause indexding. At first,



the compiler collects the clauses which test the same van-
able, and compiles the clauses into shared instructions.
Most of these work as test-and-branch instructions with
branch labels occurring in the instruction codes. All
guard parts of a predicate are, then, compiled into a
tree structure of instructions.

Our KL programming experiences up to now have
told as that a clause is infrequently selected according to
the type of argument but is often selected according to
the value. Further, even if multi-way switching of KL1-B
imstructions on data types is introduced, these KL1-B in-
structions are eventually implemented by a combination
of native binary branch instructions, in general. Con-
sequently, we decided that KL1-B does not provide a
multi-way switching instruction on data types, but just
binary-branch KL1-B instructions on a data type. Ad-
ditionally, KL1-B provides a multi-way jump instruction
on the valoe of an instantiated variable.

Two instructions are added for multi-way jump on a
value:

switch.atom _Reg, [{X. L} { XL}, . {XnLa}]
switch_integer Reg, [{¥,Li}.{ X La}, - XLl

Switch_arom is used for multi-way switching on an atom
value, and switch_integeris used for multi-way switching
on an integer value. They test the value on the regis-
ter Reg, and if it is equal to the value X;, a branch to
the instruction specified by the label L; occurs, Since the
internal algorithm implementing these switching instruc-
tions is not defined in KL1-B, the translator to a native
code may choose the most suitable method for switching.

The current KLI1-B instruction set was designed under
several assumptions in terms of KL1 programs. Thus, we
have to investigate how correct our assumptions are and
how effective our KL1-B instruction set is.

5 Conclusion

This paper discussed design and implementation issues
of the KLl language processor. PIM architecture dif-
fers from Multi-PSI architecture because of its loosely-
coupled network with messages possibly overtaken, and
because of its cluster steucture (i.e. its shared-memory
multiprecessor portion). These differences greatly influ-
ence the KL1 language processor and are essential to
parallel and distributed implementation of the KL1 lan-
puage, Several of the implementation issues focused on
in this paper are more or less associated with these fea-
tures. Our implementation is a solulion to this situation.
ICOT has heen working on these implementation issues
intensively for the past four years, since 1938.

In this paper, we began by making several assump-
tions aud, then, tailored our implementation to them.
The assumptions came from our experiences based on the
Multi-PS1 system. Thus, we have to evaluate our imple
mentation, accumulate experiences on our system, and
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verify the appropriateness of the assumptions. Hence,
we will be able to reflect our results in the KL1 language
processor of the next generation. In this development
cycle, the systematic design concept is effective, and the
concept vields the high modularity of a language pro-
cessor. It turns out to be easy to improve and highly
testable,

Our KL1 language processor is presented on the PIM
systems [ PTM/p, PIM/c, PIMyi, PIM/k), which are be-
ing demonstrated at FGCS5'AL,
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