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ABSTRACT

This paper proposes and evaluates the hardware
implementation required for dynamic load balancing in
the prototype FIM/c of the Parallel inference Machine
(FIM}. In fine grain multiprucessing, dynamic load
balancing is suffering from the high overhead due 1o the
frequent access to load information. Proposed hardware
can reduce the overhead by speeding up the access o
the load information. In order to utilize the high locality
of logic programs, PIM/c is configured along a
hierarchical siructure of network-connected clusters
each of which is a bus-connected multiprocessor,
Therefore two kinds of hardware suitable for each
hierarchy are implemented for dynamic load balancing,

First, in the clusters, we propose a register with
broadcast write feature, The evaluation determines the
reduction of overhead duc to memory polling which
detects a load request, The proposed hardware reduces
the execution time of logic programs by 159

Second, in the network, we propose the vse of g
shortcut path to reguest the value of the total load within
a cluster. The evaluation shows that the overhead duc o
the request of that value is redoced as a resulr of
introducing the shortcut path. The proposed hardware
reduces the execution time by 50%.

The results obtained confirm that the use of hardware
can reduce the high overhead of dynamic load
balancing.

1. INTRODUCTION

Japan's Fifth Generation Computer project 1] has
been centered around ICOT (the Institute for new
generation COmputer Technology). 1COT has
developed the parallel logic programming language
KLI (Kernel Language-1) [2] 1o describe knowledge

and information processing systems. ICOT has also
produced software in KL1, including the PIM operating
system [3].

We are currently developing the PIM/c [4] as a KL1-
based machine. A hierarchical structure of network-
connected clusters each of which is a bus-connected
multiprocessor is introduced to utilize high access
locality of KL1 programs in PIM [5]. Use of locality
could restrict the interactions to clusters of several
processors and thus reduce the communications among
¢lusters, Therefore, a double hierarchical organization
is used in PIM/c.,

Dwynamic load balancing is one of the main research
arcas for PIM. As a resnlt of the fact that logical
relations are present in a KL1 program and they never
defing their process of execution with determinacy,
dynamic load balancing must be used. For dynamic
load balancing it is necessary to require load
information, for example, the information about the
existenve of idle processors or the value of a toral load
within a cluster. The load informarion is updared and
referenced by distributed processors. In other words
the lead information 15 global, thersfore it has no
locality.

A problem exists in that hardware for normal process
execution in PIM/c is opiimized to the access with
locality. With this type of hardware the latency in
accessing global information is large. In fine grain
multiprocessing in KL1 programs, high frequency and
large Jatency in accessing lpad information produces
high overhead. Therefore, extensions in hardware are
introduced in order to reduce the latency of load
information in PIM/c.

In shared bus multiprocessors, snooping caches are
known to reduce the memory latency observed by the
processors [0.¥]. There are two types of cache
coherency protocols for rewriting shared data with



copies distributed in plural caches; invalidarion-type
protocols and broadcast-type protocols. The choice
depends on whether it 15 preferable to invalidate old
copies for rewriting by the same processor, or o
broadcast the new data for rewriting by other
Processors,

Eggers [7] defined “per processor locality” as the
average number of repeated write references o the same
address by the same processor. For normal process
execution in the KL1 system, an incremental garbage
collection makes the same processor reuse the same
address repeatedly for different dara references [4).
Thus invalidation protocols are more suitable due to
high "per processor locality™.

For dynamic load balancing, broadcast protocols are
preferable in order to access load information
efficiently, Although protocols using both invalidation
and broadcast features are known as "competitive
snooping protocols [8]", the cache is insufficient to
reduce the latency in accessing load information within
the cluster of bus-connected multiprocessors, Thus the
snooping cache in PIM/c utilizes an invalidation
protocol and the implementation of broadcast feature is
alsp considered, not for cache, but for registers o
reduce the laency more efficiently.

In network-based multiprocessors, for normal
process execution, it is more important to increase the
throughput than to reduce the latency because the "non-
busy-waiting” feature could overcome the large laency
[4]. The PIM/c network unil has message queucs 1o
increase the throughput, although they produce an
increase in latency. For dynamic load balancing, vse of
the old information may cause wasteful load
dispatching. Therefore, a shoreut path w the message
queues is introduced to reduce the latency in accessing
Ioad information through the network of PLM/C.

Hardware extensions in PIM/c require only a small
amount of hardware because the addressable space for
broadcasting is limited in the shared bus, and because
the increase in the number of interconnections among
clusters is less than that of a systemn with a special
purpose network [10].

2. PIM/c HARDWARE FEATURES

PIM/c has the following hardware features:

A. Hierarchical structure of shared bus
multiprocessor and network based multiprocessor.

Figure 1 shows the configuration of PIM/c. It is
organized along a hierarchical structure of network-
connected clusters to utilize the localities of KL1
programs. Thus, the shared bus hicrarchy consists of
processors combined in a cluster. Each processor has
its own cache, and they share a common bus, Software
simulation has proved that the common bus might be a
bottle-neck. We concluded that the number of
processors within a cluster should be limited to arpund
eight, and that a two-way-interleaved common bus [11]
should be possible in PIM/c.

We consider that utilizing the access locality makes it
possible to reduce the amount of network hardware
because uof reducing the number of messages
transferred among clusters. As a consequence, in PIM/e
the network is connected only to cluster controllers
(CC) instead of all processors in the cluster.
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Fig. 1. The configuration of PIM/c. Each
cache has a capacity of 80 Kbytes and consists of 20
byte blocks,




B. Broadease registers in the shared bus hierarchy.

In order to reduce the access latency of load
informartion in the shared bus hierarchy, registers with
broadcast feature are introduced in PIM (Fig. 2) [12].

We denote these registers as EFR's (Event Flag

Kegister). They have the following feares:

» one-bit wide to indicate an event, and a fast
detection featurs for control jumps which checks the
existence of events,

e feature of broadcast write; therefore, registers
indicating the same request event to a0y processor
can be written simultaneously,

The reference and jump can be done within a cycle.

When using registers, there is no overhead due to cache
misses. Each PIM/c processor has 16 EFRs,
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Fig. 2. Broadcast registers in the cluster, Bold
lines show the propagation path of a request event 10
broadeast registers and the hroken lines show the
memuory poelling path without hardware support. The
thin lincs show the reser action of that event,

C. Shortcut path in the network hierarchy.

In order to reduce the access latency of load
information in the network hierarchy, two kinds of
features are intreduced; a shoreut path for the specific
messages (Fig. 3) {13] and the registers that hold the
load information are called CIR's (Cluster Information
Register). The hardware has the following features:

» a shortcut path o message quenes,
» eight-bit wide registers to indicate load information
in a corresponding cluster.
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The register should be written with the load
information by its corresponding cluster controller,

As the load information is required withour waiting ar
message queues and without waiting for the cluster
controllers to receive. specified registers can always be

read in 11 eycles,
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Fig. 3. Shortcut path in the network. The
shortcut paths and the registers exist in the router board
of the packet switching network. Broken lines show the
normal path through the message queves o increase the
network throughpuor and the bold lines show the
sharteut path 10 bypass the queues.

J. EVALUATION STRATEGY

We defined the following two stratcgics to evaluate
the effectivencss of the proposed load balancing

hardware.

3.1 Evaluation on the Real Hardware
Real hardware was used for evaluation as the
software simulation s almost impossible for the
following reasons:
o Tl presence of the cache and the network inboduce
morne pur&n'l-ﬂlcr.\;.
There are many hardware parameters related 1o the
internal stutes of the cache and the network. The
commaon bus arbiiration time, and the message
packet switching time are examples, The overhead

of cache misses and the network latency 15 important



in this evaluation. Thus, simulating the cache and
network effects concurrently with processor
activiti=s would have taken a great deal of ume in
software simulation.

3,2 Evaluation using an Artificial Load
Model
with an aim toward further improvement, we
evaluated an artificial load mode] for the following
TEAS0NS:
» to separate the effect of hardware alone.
An evalvation independent of the specific
application is necessary in order to isolate the
speedup produced by the proposed hardware
mechanisms.
e to separate the effect of load balancing.
The real KL1 execution environment involves many
new control sequences in addition to load
balancing. For example, handling the priority of
loads needs wnosther polling action wsing EFR
registers. The toral performance depends on the
usage of the proposed hardware in other control
SEquences.

4. EVALUATION RESULTS

We carried out the evaluation of the proposed
hardware in both shared bus and network-based
hierarchies.

4.1 Evaluation of broadcast registers in the
shared-bus hierarchy

We carried out this evaluation by focusing on the
reduction of the latency to access the information about
the exisrence of the idle processors,

A. The load balancing scheme.

The lnad balancing scheme is explained below:

» Distributed load pool
Each processor has its own load pool in order to
avoid implicit data transfers between caches due to
updating a serjal link in case of the generator
processor of the load differs from its consumer
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processor using common load pool [14].
Consequently, an explicit load balancing
communication for the distributed load pools is
requircd.
» Receiver-initiated load balancing.
The explicit load balancing communication for the
distributed load pools should be initiated by fully
idle processors in order to avoid wasteful
dispatching. Thus the communication is request
based.
s Commumication with arbitrary responder.

in order 1o reduce the response time without
interrupting busy processors, a new type of
communication, the AR (Arbitrary Responder)
communication is introduced in PIM/c {12]. The
request is sent to any processor which has more
than ong load in its load pool. In order to avoid the
high overhead of context switching, every
processor polls the request at intervals where the
context switch overhead is low. Thus any
processor which detects the request first responds
to it. As the timing to detect requests differs in
each PTM/c processor, this communication method
is expected to reduce the response time
proportionally to the number of processors in 4

cluster.

8. The load model,
This medel reficcts the following characteristics of
KL program execution:

e Unit load.
We denote the unit as the reduction. The unit is
assumed to be 200 cycles in PIM/c (Fig. 4).

» Indeterminacy in the granularity of loads.
In order to simulate "Tail Recursion Optimizarion”™
[17], we define the goal as consisting of an
arbitrary number of reductions (1 1o 16).

« Indeterminacy in the number of goals.
Inn order to simulate the indeterminacy, we assume
that each processor generates an arbitrary number of
gouls (1 to 4096)

s A high write ratio and a high share ratio.
Accesses performed within the reductions have the



following parameters: write ratio is 0.5, share ratio
is (1.5, where write ratio is defined as the ratio of
write references to total memory references, and
share ratio is defined as the ratio of references to
shared data area to total memory reflerences.

= A high access locality,

We define the locality as the number of successive
accesses o the same address. The value is set to 4
in order to simulate free-list manipulation, which
consists of allocating, instantiating, referring and
deallocating a memory cell.
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Fig. 4. A Load model with varying

granularity,

C. Results of the evaluation in a cluster.

We control the initial load amount in cach processor
to vary load balancing conditions. According to the
deviation of the initial load amounts within processors,
14 cases are simulated with an 8-processor cluster. The
resulting data are the total clapsed time (T), the total idle
time (1), the total wait time after requesting for Joad (i},
the total dispatching time (1), the total reduction count
(R) und the load request count (r). The total idle time
includes the time spent waiting for load dispatching
since requesting a load by updating a bit-map word
until receiving a load by reading a non-zero value from
its communication area, and the time 1o wait for
termination of the whole program. The bit-map word is
a data array in which each bit corresponds to a
processor requesting load. The total disparching time
ncludes the time to select an idle prucessor by encoding
the bit-map word to the address of its communication
area, and the time to dispatch a load to each idle

=
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processor by updating their communication areas. The
evaluation measures are i and t, and the reduction cost
is defined as follows:

Feducnon cost=(T-T-t ) /R

Figure 5 shows the performance increase in reduction
using registers. The total reduction cost and the load
request counl are varied in 14 simulation cases. In this
figure, request ratio is introduced, which is defined as
the ratio of the load request count r to the total reducrion
count R. The reduction cost is almost independent of
the request ratio. This fact indicates that the memory-
polling overhead caused by checking request
occurrences is larger than the overhead due to cache
misses using invalidation protocol. The speedup
obrained is 15% due to the use of EFRs.
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Fig, 5. The increase in speed using regis-
ters. The reduction cost is defined as the number of
execution cycles per unit load. The result involves extra
cycles for probing. The request ratio is defined as the
number of request per reduction. Using memory
polling the reduction cost is high due to the serial
execution of a memary access and a branch. Using
EFR, both the access and the branch can be done within
a cycle. The polling is done for three kinds of events;
load request, load dispaiching and tenmination of the
whole program,




Figure 6 shows the wait time 1 and the dispatching
time t as a function of request count. It is confirmed that
the use of EFR with broadcast feature reduces both the
wait time and dispatching time. The use of EFR reduces
the dispatching time by 20%, and reduces the wail ume
by 15%.
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Fig. 6. The increase in speed using hroad.
casting, The dispatching time and the wait time
increase due to the cache misses using an invalidation-
tvpe snooping cache. The use of broadcast featurs
eliminares the overhead due 1o the cache misses,

4.2, Evaluation of shortcut paths in the
network-based hierarchy

We carried out this evaluation by focusing on the
reduction of the lalency in accessing the value of the

total load in a cluster.

A. The load balancing scheme.

The load balancing scheme is described below:

» Sender-initiated load balancing.
A stady of the Mulii-FSI system disclosed &
problem of the receiver-initiated load balancing
scheme in large-scale machines, namely that a lowd
request contention may arise at busy processors
[15]. In order to avoid this contention, an improved
sender-initiated scheme, named "Smart Random
Load Dispatching™ [5] is efficient in reducing
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wasteful dispatching. In this scheme, the cluster to
which goals are dispatched is determined at random
and then this goal dispatch is aborted on the
condition that the dispatch target has more loads in
the pool than the dispatching cluster.

B. The Load model.

The load model among clusters is defined in such a
way as to reflect the changes in the amount of loads in
the load pool. The load model is as follows:

« An initial goal is denoted by L{16) (Fig. 7 shows
L{5m.

» The execution of goal L{i) produces (i-1}
subgoals, L{i-1),...., L(2), L{1). Thus, the goal
L{i) has 271 reductions.

« Each reduction takes 300 cycles to execute using
network messages.

o The message length required for the load
disparching is 27 bytes long. Thus, it takes 27
cyeles o send this message through the one-byte
wide network interface. The length of the message

requesting the load amoeunt is 2 bytes.

(:'} : Unil laad

Fig. 7. A load model with floating amount of
load.

¢, Results of the evaluation among clusters.

We control the dispatching rate, which is defined as
the ratio of all goals dispatched to other clusters to all
executed poals, by changing the interval of the
dispatching control. In erder to determine the efficiency
of load dispatching, the toral elapsed time (T, the total
idle time (1) and the disparching ratc (d} are measured.
Lifferences result from the laiency of load information,

6 —



Figure § shows the results obtained by applying the
smart random load dispatching scheme to 8 cluster
system without support hardware. The normalized
elapsed vime, which iz defined as the ratio of elapsed
vme by B cluster system to elapsed rime by single
cluster, and the utilization of processors are plotted as a
function of the dispatching rate. In order to compare the
results in the two cases, we assume that the dispatching
rate 15 controlled to be 0.2, because safe control occurs
only at the upper side of the minimum point. Without
the support hardware, the resulting increase in speed is
approximately 3.3 in an 8-cluster system ar a
disparching rate of (0.2,
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Fig. 8. Smart random dispatching
without support hardware. The dispatching raw
is defined as the rutio of all goals dispatched to other
clusters o all executed poals, The normalized elapsed
time varies considerably from 0.125 using 8 clusters
connected via a network because the overhead for
message handling is visible,

Figure 9 shows the results after applying the smar
random load dispatching scheme with hardware
support. The nomalized elapsed time and the wilization
of processors are plotted as a function of the
dispatching rate. With the support hardware active, the
processor can reduce the overhead due to requesting the
load amount. The resulting increase in speed is

=1
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approximately 5.5 in an 8-cluster system at a
dispatching rate of 0.2.

Comparing the two results, the use of the proposed
hardware halves the normalized elapsed time at 0.2
dispatching rate, where the control of disparching rame
seems to be possible,

It should be noted that the shortcut path can also be
used for other load balancing schemes, including the
minimurm load distribution scheme [16]. These schemes
will be evaluated in future work,
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Fip., 9. Smart random dispatching
with support hardware. The normalized elapsed
time varies near 0,125 using 8 clusters connected via a
network hecause the overhead for message handling is

quite low,

5. CONCLUSION

Hardware for dynamic load balancing is implementcd
in both shared-bus and network-based multiprocessors,

We propose a register with broadcast write feature in
shared-bus multiprocessors. Also, in network-based
multiprocessors, the network unit uses a shortcut path,
The evaluation was carfied out using real hardware and
an antificial load model,

The evaluation results in the shared bus hierarchy
dererming the overhead due w memory pelling which
detects & load request, The proposed hardware reduces



the execution time of logic programs by 15%.

The evaluation results in the netwerk-based hierarchy
show that the overhead due 1o requesting the load
armount is reduced as a result of introducing the shorteul
path. The proposed hardware reduces the execution
time by 50%.

It is confirmed that the proposed hardware reduces
the access latency of load information, and
subsequently the overhead produced by dynamic load
balancing.
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