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Abstract

An equation which i= valid in the nitial model of an eiuational theory
is called an inductive theorem. In this paper. we present an inductive theo
rem proving wethod that is an extension of the so called indnetive completion
procedures.  Compared with these procedures, our method can handle un-
orientable axiomws and theorems and. therefore. does not fail. The method
has Been implemeuted on Medis, an experinental systein for term rewriting
technigues,

1 Introduction

Musser and Goguen showed that the correctness of an inductive theorem 1 in
an equational theory L s equivalent 1o the consistency of an extended axion svstern
E" oblained by adding T to an axiom set of F as a new axiom[3. 10]. Moreover,
they suggested that the Knuth-Bendix cotupletion procedurel)] can be used to prove
consistency of the new svstem LY Thelr method has only one kind of consislency,
Les trne—false. Huet and Hollit proposed a miethod that finds inconsistencies more
easily by decomposing function symbols into constructors and defined svnibaols[#].
Dershowitz poited out that an equation 7' is valid in the initial model defined by
R if and only if no equality between two distinet irreducible ground terms lollows
from R and T[3]. Fribourg presented a limnear proof method which restricts the
numbe of critical pairs to he penerated{4]. These proof methods are called inductive
CCH [Jl.l“'tiUIl p rﬂl'[‘(!“ res.

I spite of the fact that the inductive completion procedure works efficiently,
it sometimes fails if an equation that cannot be oriented in the given oridering is
generaled. Furthermore. it sometimes lovps, generating an infinite number of crit
ical pairs. o this paper. we address both probiems by presenting a new inductive
completion procedure which is based on Fribourg’s lincar method[4]. As for the first
problem, we employ orientation-free rewrite rules. With these rewrite rules. the
method can obtain a ground convergent rewriting system which corresponds to the
given equational theory whenever it terminates. Since inductive completion needs
confluence only on the set of ground terms, the extended method is still refuta-
tionally complete. It is well known that the termination problem of Knuth:Bendix
procedure is undecidable. Then, for the second problem, we introduce a criterion,
called the recursive pair, to detect cases where the procedure fails to terminate.



This eriterion is based on Hermann's crossed par which exaniines the structure of
critical pairs to find infinite loops in the Knuth-Bendix completion|6],

The method is refutatioually complete; that is, it refutes any equation which
is not an inductive theorem. We have implemented it on Metis, an experimental
system for term rewriting techniques. Several experiments with Mets illustrate how
the method works.

2  Preliminaries

In this section. we introduce the tenninology and notation used in this paper.
We assume that the reader is familiar with the concepts of term rewriting systems
(sec[TH.

We deal with finite sequences of the following two kinds of symbols (and paren-
theses and commas for ease of reading): a finite set J of funclion symbols. and a
denumerable set V of variables. We will denote the set of all terms constructed from
F oand V hv T(F.V). and the set of all the ground terms constructed fromn F by
T(F}. A term that is constructed from F is called a ground term. We assume that
F contains at least one constant. therefore the set of geound terms s not empty.

The notation f/p represents a subterm of £ at position p. #s] represents a term
¢ containing s as its subterm. o this context. [s] represents a certain oceurrence of
sin Halo Thos '] denotes the term obtained by replacing the oconrrence of = in
f[a] with <"

H denotes the result of applving & substitution # to o term foand s ealled an
prisdasiee ol 08 s called a growad destance of 08 1= gronnd.

Let = be a binary relation on terms, We say that ~ s monotonic with respect
to the termn structure if ¢~ w implies ¢f] ~ cfu]. for all terms 4, 0. and contexis
ol ]. ~ is monotonic with respect to instantiation if # ~ v implies #8 ~ wfl, for all
terts £, and substitutions 8. A relation that satishes both properties s called
manatonic. An endering is an irrefexive and transitive binary relation. An ordering
wa s eellfounded iF there is no infinite sequence £, ~a f, ~a . Ordering ~» on
terms is called reduction ordering if it is well-founded and monotonic. Sanplification
ardrring i+ reduction ordering that satisfies the subterm propertv: olf] ~ # for all
cottexts of | and terms £ A strong simplificalion ordering is a simplification ordering
that is total on ground terms.

An rquation is a pair of terms [ = r. (Given a set of equations £, the symmetric
and monotonic closure of £ 15 denoted by . That 15, 1 +p w if and only 2 ff #s
c[f] and w is c[rf] for some context ¢ |, substitution #. and equation ! = rin £
(I = r denotes [ = v or = 1}, The reflexive transitive closure of <5 is denoted by
g, Note that < ¢ is a congruence relation on terms.

Let B be a set of equations,  T(F)/ vp is called an initial model of E. An
equation g = d on T (F. V) is called an inductive thearem of Eif g = o holds in the
imitial model of E. An equation g = d i= an inductive theorem of £ if and only if
gf <5 df for all ground instances gf = df of g = d.

3 Orientation-free rewrite rules

First. we introduce orientation-free rewrite rules and extend the concept of
reduction. Usually, a rewrite rule is an oriented pair of terms. In this paper, however,
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we define a rewrite rule (or an orientation-free rewrite rule} as an unoriented pair
of terms. written | < r. A set of such rewrite rules is called an wnorienfed term
rewrdhing system (I'TRS). Let 8 be a UTRS, and = be an ordering on terms. A
term s said to be reduced to another term u by B and =, written f — g w. if there
exists a rewrite rule I < r and a substitution 8 such that ¢ is e[I8]. u is ¢[r#], and
tm o {l & rdenotes [ & rorr <2 ), The reflexive and transitive closure of —+ e
15 denoted by S and the symmetric closure of = pe is denoted hy <. It is a
routine to verify that <+ g is a congruence relation.

We say that TTRS is terminating with respect to = if = is well-founded. We
say that UTRS R is ground confluent with respect to = if, for all ground terms
fouyoug such that wy —pge # S e wy. there exists a ground term o such that Uy
i ety Wesay that a ter £is redueible with respect to If and = if there exisis a
term e such that £ —vge uo A term £ s said to be ireducible if { s not reducible. An
irreducible term s such that ¢ Spe s is called an cveducible form of ¢ with respect to
ft and ~. written t,. A U'TRS which is terminating and ground confluent is said to
be ground convergent. If B is a ground convergent UTRS. then every ground term
! has a unique irceducible form (], called the normal form of 1. From now on. we
restrict = to strong simplification ordering, Thus, any UURS is always Lerminating.

In the following discussions, we assume that all variables appearing in given
lerms. equations, and rewrite rides are nniversally guantified. Thos, Lhey do not
have communon variables. For notational simplicity, = mav be omitted if it is clear
from the context.

4 Inference rules for ground completion

Oy method mainly consists of two procedures, One i a gronnd cotpletion Lo
obtain a gronnd convergent UTRS B which corresporids to a given equational theory
E. The other is a method of inductive theorem provin g to check the consistency of
T which is a set of equations we want to prove with respect to B First, we discuss
a ground completion procedure.

Together with the extension of reductions by UTHS. let us extend the definition
of critical pairs[9] as well. Let ;, & r, and 1y & r; be rewrite rules and = be a non-
variable subternn of 1, at position p unifiable with L 1608 A rf and 1,6 £ .
then a pair ¢[r )¢ = ry# is called a erifical pairof I ¢ vy on i, < ry at position p
{with respect to = . where [, is ela] and 8 is the most general unifier of 1, and s.

A ground completion procedure consists of the following inference rules. where
E s a set of equations and B is a U'TRS.

. (K, )
E-generation: il = is a critical pair of i
(Euft = u} R

(Eu{t=u}. k)

. it g F
(Eo{t'=u}l.R)

E-simplification:

(Lu{t=t} R)

E-deletion:
(E.R



(EU{t=u).R)
(K R & u})

H-generation:

(BRIl =)
R-simplification: . ifl>randr g
(E.RU{l < ¢'})

(E.RU{l = r})

_.[_E' Ll {]U:-z r}. R
T S I by a rule g danda substitution #, | t= g, and ¢f = df

R-deletion:

Where t> is a specialization ordering. i.e. [ = g f and only if some subterm of
[ s an instance of g. but not vice versa.

At the beginning of the procedure. F iz a set of equations that corresponds to a
set of axioms for a given equational theory and K iz an empty set. When one of the
inference rules is applied. a tuple (E.K) is transformed to another tuple (E°, B'),
denoted by (E. FiF (E' B Let

(Eg. Bo) F{E RO F (B Hy) b -

be a sequence of applications of the inference rules. We denote UL, N2 £, by
Eoand UZ, M2 B by B oo Ninlerence sequence is called fair, iF it satishies the
following conditions.

(1) Any critical pair of B, s contained i 72, B,

{(2) E. s emply,

We claim that any [air inference sequence can generate a ground convergent
LI'TRS as H...
Theorem 4.1 Let Ey be a set of equations. By be an emply set, = be o strong
simplification ordering, and ( £y Hy) = CE Ry B oo be a fair inference sequence.
Then, R, is ground convergent with tespect to =~ where the congruence relations
& g, and A R are the same.

5 Inference rules for inductive theorem proving

A term ¢ is said to be induclively reducidhle (with respect to R and = ) if and only
if [or every ground instance (6. 18 s reducible (with respect to i and =). A rewrite
[ < ris sail to be inductively reducible if and only it [ 4 r and { i inductively
reducible. A set of rewrite rules 5 is said to be provably inconsistent (with respect to
£ and =)f it contains a rewrite rule that is nol induclively reducible (with respect
to £ and =). A set 5 is inconsistent if 5 is provably inconsistent.

A set of equations T is called a covering set for a set of rewrite rules 5 with
respect to > if and only il, for all ground instances [# = r8 of all inductively reducible
rewrite rules { = r in 5, there exists a ground instance g’ = df' of an equation g = d
in T such that (0 = rfl T gf' = o8’

A subterm position pin term ¢ is said to be complete (with respect to K and =)
if t/p is not a variable and. for all ground instances (t/p)é, (f/p)f is reducible (hy
R and =) either at the variable position of t/p or at the position p. A critical pair



of Iy < 1y on by < g at position p (with respect to i and =) is said o be complete
if pis complete (with respect to K and =,

Let  be a ground convergent rewrite system with respect to =. An inductive
theorem proving procedure consists of the following inference rules, where T is a set
of equations (called ronjectures) and 5 is a set of rewrite rules.

(5]

(TU{g=d}.5)
if g = d iz a complete critical pair of K on S

1" generation:

(Tufy =dls)
(11U {g" =d}. S

T-simplification: iFg —pus i

(U ly = g}h )
T-cleletion: ———
(.5

(g =d}b &)

S-generation: —_—— - —
(T 50U g = d})

A the heginning of the procedure, T is a set of equations that corresponds Lo
a st of theorems 1o be proved, and S i an empty set. When one of the inference
erles s applied. o tuple (7287 is transformed to anot her tuple {77, 8], denoted hy

(TSR 87 L
(- Sul E LRSIV RTS8k -

he a sequence of applications of the inference rules. We denote UZoNyz 1) by T,
and UL, S by S0 Ancinference sequence is called fair, il it satisfies the tollowing

conel B ions,

FH Any complete eritical pair of B on S, is contained in lUZs .. In other words,
Lo £ 0 a cover set for S

(2} T 15 empty.

We claim that any fair inference sequence transforms inconsistent sets of row cite
rules to provably inconsistent sets.
Theorem 5.0 let T, be a set of cguations. Sg be an empty set, = be a strong
sinplification ordering, and (5. 5,0 F (1,.8,) F - bhe a fair inference SOUEnCe,
Then. 5. is provablv inconsistent with respect Lo = if and only if T, is inconsistent
with respect to K and =,

6 Detecting infinite execution

Qur procedure. which is the same as the other inductive completions, sotne-
times loops to generate an infinite number of critical pairs. To solve this problem,
we introduce a criterion, called recursive pair. to detect some of the cases where pro-
cedures fail to terminate. The criterion is based on Hermann's crossed pair which



examines the structure of critical pairs to find infinite loops in the Knuth-Bendix
completion{f),

Let &y + vy and [ & vy be rewrite rules and = be a non-variable subterm of
{; unifiable with {;. If there exists 2 non-variable subterm f of ry such that ## is
unifiable with [}, c[d[f]1# # rof, L0 4 r8, and L £ rof), then a pair e[d[t]]8 = r,#
15 called a recursive parrof [} <& vy on [ & ro {with respect to =). Where ry 15 d[t],
l; is e[s], @ is the most general unifier of {; and s. and " is a vanant of I, i.e. all
variables are consistently renamed.

Obviously, if a pair is recursive then it is critical. When a recursive pair exists
and there s no rewrite rule which reduces the recursive pair, an infinite number of
critical pairs may be generated in the following form.

cld[tlily = rath
c[dld]!]]}6u8, = ribb,

- dit] o0 = vy,

Where 8, 15 the wost general unilier of #8,_, and {,.

7  Implementation

I our procedure, which is similar to the other procedures. the notion of indue
tive reducibility plays an important role. 1t is known that the inductive reducibility
is decidable for Rnite rewriting svstetns[ L], bul often takes exponential time. In
Metes, we adopt a votion of (free) constructors sinee the mductive reducibility can
be checked quite easily using theories with constructors, From now on, we assume
that function svinbols are decomposed into two sets: a set of constructors, denoted
bv O and a set of defined symbols (or non-constructors). denoted by 7. We also
assuwine that O contains at least two symbols. Then, a term # 15 inductively reducible
if and ondy if 1 contains a defined svmbol[7].

i the following, we show an implementation of inference rules for inductive
theorem proving with constructors. Some of the cases where the procedure does not
termuinate ave detected by the detector of recursive pairs. A way Lo avoid infinite
lerops cansed by such recursive pairs is to introduce new lenunas which can reduce
the general form of these recursive pairs.  So far, on Metes, this 1s done by nsers.

procedure tnductrve _theorem_proveng{!l’, K. 5)
while 7 # ¢ do
select g = din T
if g =d or g = d is subsumed by U 5 then
1':=T-{g=d}
elseif g = gy, ... gnld = eldy, . ... dy)e € " then
''=(I'-{g=dl)U{g=d |1l <i<n}
else
fg=cilg,. o gmld = cldy, . dyboey eg € Oy # c2 or
g=clgr....ga)c € C,deVor
geVid=eld,,....d,),c€ Cor
g.deV or
g~dand gisin T(C.V) or



g =dand disin T(C.V) or
g dg#Adand g =4dis i T(C.V) then
stop with answer “disproved”
end_if .
= (T — {g = d}) U {complete critical pairs of K on g < d}
Hi=5U {g = d'}
if there are recursive pairs hetween H and & then
1 =T U flemma by user}
end _if
reduce ' by RU S
end_if
end_while
stop with answer “proved”
end_procedure

8 Experiments

8.1 Addition and multiplication of natural numbers

When we express natural numbers with suecessor function s and 0, addition +
15 defined by equations as {X +0 = Xo X 4 5(Y) = s(X + V) We show that
this operation satishes two conjectures: associativity and commutativity, that is.
FANA VY I+ 7 = XY + Z)and VXV, X 4V %y + X Uisnad v,
stich propertics are proved by rewriting modulo congruence obtained by rxtending
unifications. Owr wethod, however, can prove these without any extension, Let {+1}
Le a set of defined syinbols, {+.0} be a set of constructors.

[METIS]=> pr i

<< inductive theoram proving >
Theorem> A+B=B+d.

Theorem>» {A+B)+C=A+(B+().

We start the proving procedure with these conjectures. Since the equation is
unorientable. an orientation-free rule £3 1= obtained.

Few r3: A48 <-> B+d {e3)
divergent critical pairs...
e5: & = O#p (ri1/r3)
ef: s(A+B) = s(B)+A (r2/ri)
WA (. s(AtB)..)" = a("..8(B)..")+k 1= a recursive pair 1LY
New rd: 044 -> & (eB)
New rh: A+B+C => A+(B+C) (e4)

Il we have an order which orients ef right to left. then the procedure successfully
terminates.  [nfortunately, we do not have such an order. { Actually, recursive
path ordering with multiset status can do this, but this is not streng simplification
ordering.} Then, an orientation-free rewrite rule r6 is obtained.

Few ré&: s{A+B) <-» g(B)+& (eB)
divergent critical pairs...
af: s(h) = 1+4 (ri/fre)
eB: a{a(A+B)}) = s{s(B))+4 (r2/reé)
WhA s("s{. . s(A+B)..)") = a(a(". s(B).."))+A is a recursive pair %%



Metis finds equations et and e¥ as a series of recarsive pairs 12 on rd (lor
ch). 12 ou 6 (for ed). Thus, it is suggested that new lenunas which reduce the
general form of these recursive pairs are necessary. We introduce a new equation
SN+ Y =5X =Y as such a lemma.

<< introduce a new lemma >>
Lemma> =({A)}+B=a{A+B).
New rT: s{A)+B -> s(A+B) (a8}
reduced egquations...
aT: a(d) = 1+4 {ri/rvelcv,r4])
=> s(4) = a(4) [trivial]
ad: s(s(A+B)) = s(s({B))+& (r2/velr7.r7]}
=» ala(4+8)) = a(a(B+4)) [subzumad]
HEdRENE PROVED am@asisn

CPis) : 10 found, 4 asserted.
Rule(s} : 7 generated, 7 remain.
Reduction ¢ 12 ateps.

Runtima : 672 msec

[ 13% for selection, BW for orderiang, 18% for reduction of
equations, 45} for superposition, 16% for others )

Similarly, the associativity and the commutativity of multiplication can he
proved, We add axioms for mualtiplication: {A=0 =0, A*s(B)= A+ A= B} tothe
previous axioms and prove the conjectires Y X Y. VY =Y+ X, YX V.7 (X »
Y& = X =V « ) with several anxiliary equations,

[METIS]-> pr i

< ipductive theorem proving »»

Theorem> A+B=B+h.

Theorem> (A+B)+C=A+{B+C)

Theorem> jA*B=B*j.

Theorem> (A%B)*(=ps(BsC).

Theorem> s{A}+B=3(A+B).

Thasream> ke (B+Ci=A%Be A=,

Theorem> A+Be=f=g(Bis4,

ThecTtem> A+(B+C)=B+(A+C) .

Hew rE: A+B <-> B+i

C"s(. s{A+B). )" = s(",.s(B)..")+A : recursive pair )

New 16; A%B <=> B&j

{ “A+. . &#B.." = a("_ _a(B). . ")*k : recarzive pair }

Wew 7. O+A ->» &

New r8: O=f -> O

Naw r9: A+B+C -> A+(B+()

Haw rl10: AwB=C => jAsx[B*C)

New ril: A+(B+C) <-» B+(A+C)

Wew viZ: s(A)+B -> s{A+B)

Naw ri13: s(A)*H -> B+A+B

New rid:; Ax(B+C) -> A*B+hsC
#dnaxng PROVED saaasden

CP(s) . 20 found, 4 asserted.
Rule(s) : 10 generated, 10 remain.
Reduction ¢ 32 steps.

Runt ime : 1.852 sec

{ 8% for selection, BY for orderimg, 20% for reduction of
equations, 44% for supsrpesitien, 22Y feor cothers )

Ll



8.2  Append and two reverse operations

Properties of programs detined by rewrite rules can be verified using induc-
tive theorem proving. In the next example, the procedure detects inconsistencies
cansed by incorrect axioms. We give the systewn a set of axioms {app([], A) = A,
app([AIBL. C) = [Alappt B, OV rec([]} = []. rec(|A]B]) = app(rev( B}, A)}. How-
ever. this is not correct since the last axiom should he rev([A{H]) = app(ree( B), | A]).
Through theoremn proving, the existence of such errors is known. As a conjecture,
we try to prove an equation: VX, ree(ree{ X)) = Y.

[METIS]}-> pPr t
<< inductive theoram proving >»
Thesrem* revirev(A))=4.
New r5: revirev(A}) -» 4
i revi“appl. appirev(&) B}. ., C)") = [Cl"..[BIA).."] : recursive pair }
Hew ré: reviapp(rev(d) ,B)) -> [E|A)
{ rev(app(™app(..app(zrev{a},B). ,C)*,D}) = [D,CI" .[BIA).."] : recursive pair )
New r7: revia) -» [Al
Sangasd DISPROVED s#sddds
By e5: [] = [[0] (z3/17)
#wpanda CRECK THE FOLLOWEING #zg#sus
Axiom{s}:
ri: appll].A} -» & (axiem)
r3: revi[]) -> [1 {axiom)
rd: rav{[hrB]} -» appirev(B) &) (axiom)

CPi=) 8 found, 5 asserted.
Rulais) 3 generated, 3 remain.
Reducticn . 13 steps.

Runtime : BO2 msec

{ 3% for selection, 0% for ordering, 17 for reduction of
equations, 37TY for superposition, 43% for others )

Metis tells us that inconsistency [ | = [[ 1] vomes from axioms: rl. b, and
rh Then. the user can identifv the error of rl cfficicntly.  Next, we prove the
equivalence of two different reverse operations. Append and two reverse uperﬂtimlﬂ
are defined by a {app(] |, A] < A app([A|B].C) < [Alapp(B.CYl. reo([]) & (]
rec{ (A H]) & app(rev(B),[A]) new([]. A) & A new([A|B]. () = new( B, A|C]H
We start the procedure with a conjecture WX, new(X.[]) = ree{ X ), which shows
that the two reverses are equivalent. Let {reeapp.uew} be aset of defined symbols
and {[].]-]-]} be a set of constructors.

[METIS]-» pr i
“< ipductive theorem proving »»
Theorem> revi{A}=new(s, [J).
You want to oriant
[1] rew(A) -> new(A,[]}
[2] rew(A) <~ new(i,6 []1}
alaa axit
Which 7 1
[ new << rev is asserted. ]
Kew r7: Tevi(A) -> nea(d, []) (el)
divergent critical pairs...
e2: appirev(B), (A1) = new([AIB],. 00} (c4/r7(c7,r81)
=> applnew(B,[1),[A]) = new(B,[4])
You want to orient
[1] app(new(4,[]},[B]} -> new(4,[B])
[2] app(new(d,[]),[B]) <- new(h, [8])



else exit
Which 7 1
[ new << app is asserted. ]
New r8: app(new(A,[]),[B]) -> new(A,[B]} (e}
divergent critical pairs...
2 appinew(B,[Al),[C]} = rew([AIB],[C]} (ré&/rB[ré])
=> appinew(B,([&1),[C]} = newi(B,[4,C])
Yk app(new(a,[B,c1)",[0]} = new([CI". . [BIAT.."],[D]} is a recursive pair WK
New r9: appinew(a,[B]),[C]} -> new(A,[B,C]) (e3)
divergent critical pairs...
ed: appinew(B,[4,C]),[0]) - new([alIB],[C,0]) (r6/r9[r8l)
=> appinew(B,[4,C]),[0]) = new(B, [4,C,0])
Wit app(“new(&,[B,C,D1)",[E]} = mew([C|"..[BI4A).."],[D,E]} iz a recursive pair WAl

Metis wotities that e and ed are series of recursive pairs 16 on o8 (lor ¢3), rfh on
i Tor e, aoud there is no rewrite rule to reduce them. Thus, there is a possibility of
infinite execution. The generalized form of critical pairs derived from these recursive
pairs is
applmend X[V Ve Vo 2 = newl XYY Y XL 2]
and s redoced to
aminewl XV L VOAZD) = et N[V Y Y 2D
We can easilv lind new lemma which reduces the above formnla
appinew] XoV L 21 = newl Noapp( Yo [ Z]10)
then we acd 11
<< introduce a new lemma >
Lemma> app{new(A, B}, [C])=new(d,app(B,[Cl)).
New £10: appinew(A,B),[C]) -> newl(A,app(B,[C]))} (&5}
reduced equatisns. ..
ed: appinew(d,[8,C}1),[0]) = new(A,[B,C,D]) (r6/r9[r1d,r2,.r2.r1,v6])

=> new(h,[B,C,0]) = new(d,[B.C.0]) [triviall
siwpaRas PROVED Sdsbcda

CP(a) : 8 found, 3 asserted.
Rule(s) : 4 generated, 4 Temain.
Reduction : 18 =teps.

Runtime » 1.338 zec

{ 9% for selectiom, &52Y% for crdering, 6% for reduction of
aguations, 22 for superposition, 11% for cthers )
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