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Abstract

Parallelization of a ronstraint logic programming (CLES
language can be considered at two major levels: the ex-
ecution of an inference engine and a solver in parallel,
and the execution of a solver m parallel. GDOC s a
parallel CLP languags that satisfies this two level paral-
lelism. It is implemented in kL1 and s carrently rmnning
on the Multi PSL a boosely coupled distributed memory
parallei machine. GLUC has multiple solvers and a Mok
mechapism: thal euabiles meta-operation o a constraint
get. Currently there are three salvers: an algebraic solver
for nonlinear algehraic cquations using the Buchberger
alporithm, a boolean solver for boolean eguations using
the Boolean Buchberger algorithm. and a linear integer
solver for muxed integer programming. 'he Buchberger
algorithm 1= a basic techuology for svmbolic ajgebra. and
seyveral alletnpls al L ]H’l.l'djlt‘lizﬂ.ti.l.}ll hawve .rlp'pcarrd m
the recent literature, with some good results for shared
memary machines. The algorithm we present is designed
for the distributed memory machine. but nevertheless
shows consistent]v good performance and spesdups for
a number of standard benchmarks from the terature.

1 Introduction

Constraint logic programming (CLI) is an extension of
logic programming that introduces a [acilily o write and
solve constraints in a certain domain. where constraints
are relations among objects.  The OLP paradigm was
propused by Colmeraure|Colnerauer 87], and Jaftar and
Laseez|Jaffar and Lassez 87]. A similar paradigm (or lan-
guages) was proposed by the ECRC group [Dinchas ef al.
B8, A sequential CLP language CAL [Contramic avec
Logigue) was abso developed at ICOT{Aiba ef af. 88).
The CLP paradigm = a powerful programmong
methodology that allows users to specifv what {declar-
ative knowledge] without specifving how (procedural
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Luowledge1, This abstraction allows programs to be more
concise and more expressive. Unfortunately. the general-
iy of constraint programs brings with it a higher eompu-
rational cost. Parallelization is au effective way of mak-
ing UL svstems efficient. There are two major levels of
paralletizing CLP svstems. One is the exerution of an
nference engine aml constraint solvers in paraliel. The
other is the execution of a constraint solver m parallel

Several works have been published on extending this
work from the sequential to the concurrent frame. Among
them are a proposal of ALPS[Maher 87] that introduces
runstraints into committed-choice language, a repart on
some preliminary experiments m mbegrating constraints
inte the PEPSvs parallel logic svstem|Hentenrvek 89],
and a framework for & concarrent constraint (ccl lan-
guage Lo mirgrate constraint programming with concur-
rent logic programming Ia.ngun;es[ﬂara.swat Hu]

GDOC[Hawley 91h). Guarded Definite Clauses with
Constraints, that satishes two level parallelism. 1= a
parallel CLP language that introduces the framework
of cc into & committed choice language K11 [Ueda and
Chikavama 9. and is currently running on the Multi-
P51, a looselv coupled distributed memory parallel logic
machine. GDCC has multiple sobvers Lo enable a user
o easilv specify a proper solver for a domeain: they are
an algebraic solver, a buoican solver and a linear integer
solver. The inceemental evaluation facility is very im-
portant 1o CLP language solvers. That is. a solver must
consider cases where constraints are dyonamically added
to it during execution. not only those cases where all are
given statically prior to execolion.

The algebraic solver is used to solve non-linear alge
braic equations. and can be applied to fields such as com-
putational geometries and handling robot design prob-
lems|S. Sato and Aiba 90]. The solver uses the Buch-
berger algorithm [Buchberger 83, Buchberger 85 that
is a method of solving multi-variate polynomial equa-
tions. This algorithm is widely used i computer alge-
bra. and also fits reasonably well into the CLP scheme
since it is ineremental and (almost ) satisfaction-complete
as shown in |Aiba efal 88. Sakal and Aiba ¥9]. Re-



cently, there have Leen several attempts made lo par-
allelize the Buchberger algorithm, with generally dis-
appointing results/Ponder 90. Senechaud 90, except for
shared-memory machines|Vidal 90. Clarke et al. YU]. An
interesting parallel logic programming approach imple-
mented in Strand®%' on Transputers was reported by
Siegl|Siegl 90}, with good speedups on 1 he small exampics
shown. but absolute performance was only fair, We paral-
lelize the Duchberger algorithm. emphasizing on absolute
performance and incrementability rather than deceptive
paralle] speedups.

The boolean salver i used 10 solve boolean eyualions
and can be applied to a wide range of applications such
as logic circuit design. It uses the Boolean Buchberger
algorithm [Y. Sato and Sakai 8], It is different {rom Lhe
original Buchberger algorithm in load-balance of the in-
ternal processes. although theyv are basically sinular. We
implemented the parallel version of this algorithm, based
on behavior analvses, using some example problems.

The targel pmbilf"tx for ik Tinear ':nT.EEET solver are
combinatorial optimization prablems such as scheduling
problems, thal obtain the minmum (or maximuam) value
with respect to an objective function in a diserete value
domain under a certain constraint set, There are many
kinde of formalization to solve the optimization problem.
among them anp integer programiming Lhat can be widely
used for various problems. lnteger programming still of-
fers many methods of increasing search spesd depend-
ing on the structures of problems. even if we focus on
solving stricily oplimized solutions ooy, The Branch
and-Bound method can apply to wide extent of problems
independently to problem structures. We developed a
parallel Branch-and-Bound algorithm. aiming to imple-
ment a high-spesd constraint solver for large problems.
and o periorm experiments for describing parallel search
problem in KL1.

The rest of this paper is organized as follows, We first
mention the GDOC language and its svstem. and describe
its paraliel constraint soivers. Then, program examples
in GDNCC are ghown using simple problems.

2 Parallel CLP Language

We will present a brief summary of the basic con-
cepls of ec[Saraswal 89]. The cc programming language
paradigm models computation as the interaction of mul-
tiple cooperating agems through the exchange of infor-
mation via querying and asserting the information into
a |consistent) global database of constraints called the
siore. Constraints occurring in program text are class.
fied by whether they are querving or asserting informa.
tion. into the Askand Tell constraints as shown in Figure
1,

1Strandf® is simular w KLL, although somewhat bess powerful
in thai il does wot support full upification.

]

Figure 1. The cc language schema

This paradigm i= embedded in a guarded {conditional)
reduction svsiem. where guards contain the Askand Tell
Control is achieved by requiring that the Ask constramts
in & guard are true {entailed}. and that the Tell con-
straints are consistent (satisfiable), with respeet to the
current state of the slore. Thus this paradigm has a
kigh affinity with KL1.

2.1 GDCC Language

GDOC is a member of the cc language family, although
it does uot support Telf in & guard part. The GDOC fan-
guage includes most of kL] as a subset: KLi builtin pred-
icates and unifivation can be regarded as the constraints
of distinguished domain HERBRAND|Saraswat 29,

Now we define the logical semantics of GDOC as fol-
lows. 5 is a finite set of sorts, including the distinguished
sort HERBRAND. F a set of funcfion symbels, O a set of
constraind symbols. P a set of predicate symbols. and V
a set of variables. A sort is assigned Lo each variable
and function svmbol, A finite sequence of sorts, called
a signature. is assigned to each function. predicate and
constraint symbaol. We define the ful]uw'lng notations,

e We write ¢ s if variable v has sort s,

e f ¢ spa3...8, — s if funcrter [ has signature
Syog ... 5, and sort s, and

® p:sysy.. .5, f predicate or constraint symbols p has
SIENALUTE 5187 .., fiq.

We require that terms be well-sorted, according to the
standard mductive defimlions. An afomic constraimf s
a well-sorted term of the form eft; £y, ... o) where ¢ is
a constraint svmbol. and a constrainf is a set of atomic
constraints, Let ¥ be the many-sorted vocabulary £ U
U P A constrami system is a tuple (£, 2, V. O where
£ois oa class of © structures.  We define the following
meta-variables: © ranges over constraints and gh range
over atoms. We can now define the four relations entails,
accepls. regects, and suspends. Let z, be the variables in
constraints ¢ and o,



Definition 2.1.1 ¢ entails f ¥ A | (¥x,)ic = a)
Definition 2.1.2 r accepts o N = (e ne)

Definitien 2.1.3 ¢ rejects o ¥ak ivr e = oy

Mote thal the property entails is strictly stronger than
accepts, and that accepts and rejects are complementary.

Definitien 2.1.4 ¢ suspenids o
i . accepts o A = f ¢ entadds o |

A GDUC program 1s comprised of clanses that are de-
fined as Luplt':s {he=ard, ask. tell. bodv}), where “head” 15 a
term having unigue vanables as arguments, “hody™ is a
get of torms. “ask” s said 1o be Ask consfreimd, and “rell”
is said 1o be Tell constraini. T'he "head” s the head par
of the kL1 clause. “ask” corresponds to the guard part®.
and “tell” and ~body” are the body part.

A clause [h.a. e b} is & candedate for goal g in the pres-
ence of stere 2 if s g =k entails a. A goal g commiisto
candidate clause (b . c.b). by addimg ¢ U e to the stors
s and replacing g with b A poal fails if the all candidate
clavses are rejected. The determination of enfarlmend tor
multiple clauses and commefment for multiple goals can
be done in parallel.

Below is & program of peny_and_man writlen i GO,

pony_and_man{Heads,lLegs,Ponies Man] :- troe |
alg# Heads= Ponies + Men,

alg# Lega= 4+Fonies + Z*Men.

Where. pony_and_man{Heads,Legs ,Ponies, Men) is
the head of the clawse, =7 5 the commit operator. true
is an Ask constraint. equations that begin with alg# are
Fell constraimnls. alg® mdicates that the constraints are
solved by the algebraic sobver. In a body part. not only
Tell constraints. but normal KL1 methods can also be
written. In a guard part. we can only write read-only
constraints that never change the content of the sfure, in
the same way as the KLI Eua.rd whers active unification
that binds a new value/strueture to an undefined variable
1a inkeibied .

But. bi-directionality in the svaluation of constrainis.
the important characteristic of CLP, is not spoiled by this
limitation, For example, the gquery

?- pony_and_man(5,14, Ponies Man)

will return Ponies=2, Manw3 Thus, we can evaluate a
ennstraint bi-directionally as Tell constraints have no lim-
itations like Ask.

2.2 GDCC System

The GDOC system supports multiple plug-in constraimt
solvers with a standard stream-based interface. so that
users can add new domains and solvers.

Query
.
CDCT | poimy
% Humly consirs
bject | Body consumens Constraint
Coule Churd cosslramns golve
: Cache rubr:
F Serlve gUAPd Co@sININLE
Caompiler
GIMCC souree

Figure  System Construction

The svstem is shown in Figure 2. The compouents are
coerarrent Ffﬂf‘fﬁﬁfﬁ-.

Specficallv. & GDUC program and the constraint
solvers may execuis in parallel, “synchrenizing” only and
to the extent necessary. at the program's guard con-
straints

The GDOC svstem consists of:

{1t Comypiler
Translates a GDOT spurce program into KLL code.

fii) Shell

Translates gueries and provides rudimentary debugging
facilities. The debugging faciiities comprise the stan-
dard KL1 trace and spy functions. together with solver-
level event iogging. The shell also provides limited sup-
port for ncremental querving. in the form of inter-query
varighie and consiraint persistence.

(11 Interface

Interacts with a GDOC program (object code]. sends
bodv constraints to a solver and checks guard con-
straints using the results from a solver.

{1v] Constraint Solvers
Interact with the inerface module and evaluate body
CONStraims.

The decision of entaillment using a constraint solver is
deseribed in each solver's section, as it differs from each
algorithm adopted by a solver,

2.3 Block

A handling robot design support system [5. Sate and
Aiba 90] has been used as an experimental application
of our CLP svstems for a few vears. In applving GDCC
to thizs problem. two problems arose. These were the
bandling of multiple contexts and the synchronization be-
tween an inference engine and solvers.

Y~gak” contains constraints in the Hersranp domain. that s
it includes the normal guards in KL1.



To clarify the backgrounds to these problems. we ex-
plain the handling of multiple contexts in sequential CLP
language CAL. CAL has a function to compute approxi-
mated real roots in univariate non-linear equations. For
instance, it can obtain values ¥ = +yZ from X? = 2.
Lising this facility, the handiing robot design support svs-
tem can solve & given problem in detaill  In this ex-
ample, there are two constraint sets. one that includes
X = /2 and another that includes X = — 7 . CAL
selectz one constrainl sel from these twe and solves i,
Then the other iz computed by backtracking (ie. the
svslenn forces a fatlure]. In other words, CAL handles
these two contexts one-byv-one, not simultanecuslv. In
committed-choice language GDCC, however, we cannot
nse ban:lct.ra.d:ing to handle muhiple contexts. T here are
same problems in implementing hierarchical CLP lar.
guagefK. Sateh and Aiba 90, K. Satoh 90b] i GDCC.

The other problem is the synchronization between an
inference engine and solvers. 1t s necessary to describe Lo
the timing and the target constraints to execute a func
tion to find approximated real roots. Tn a sequential CLP.
it 15 possible to contral where this description is written
i a program. While in GDOC. we need another kind of
mechanism to specify a svochronization point. as a clause
SEQUERCE 0 A prograin does not relate to the execution
sequence. A similar situation occurs when a meta oper.
alion Lo constraint sets is required. such as computing a
maximum value with respect to & given objective fune-
tion.

Constraint sets m GIWCU are basically treated as
global.  lotroducing local constraint sets. however, in-
dependence of the global ones. can eliminate these prob.
lems. Multiple contexts are realized by considering each
hacal constramnt as one context. An inference engine and
solvers can be svnchronized at the end point of the sval-
wation of a local constraint set,

Therefore. we imtroduced a mechanism, calied block. to
describe the scope of o constraint set, We can solve a
certain goal sequence with respect to a local cunstrain
get. The block is represented 1o a program by a builtin
predicate call, as follows.

call{ Geals ) using Selver-Puckage for Domain
initial fnput Con giving Oulpui-Clan

Constraints in goal sequence (eals are computed in
a local consiraint sel. “using Selver-Fackage for Uo-
matn” denotes the use of Selver-Package for Domain in
this block. "initial mpul-Con” specities the initial con-
straint set. “giving Chulput-Con” indicates that the re-
sult of computing in the block is Output-Con.

Both local variables and global variables can be used
in & block where the local variables are only valic within
ihe block and the global ones are valid even outside the
block. Local variables are specified by the builtin predi-
cate allocs/2 that assigns variables to a block. Variables
that are not allocated i a block are assumel 1o e global

Top level block Child block

|
| Solver | | Solver
Doman] |

GOCC shell| -

KLIFMOS 7 |
Lustener

Crealr process  ———b
Ao slreamy ——dn
Cmirmmis sely oo E

Figure 3: lmpiemeniation of bleck m GDOC

A block 15 execured i:r}' r\-'a.iuntin! {roals with respect 1o
Irpui-Con. The result of Cutput-Con is a local coustraint
set. that is. it is never merged with the glabal ones unless
specified explicitly by a vaer.

Let us consider the next program.

test:- true |
alloc(200,A,
alg#a=-1,
call( alg#i=1 } 1initial nil givang CO,
call( alg#A=0 )} imatial nil giving C1.

This program returns the constraint se1 {4 = 1} as CO
and the constraint set {4 = U} as CL.

The block wechansm s anplemented by the Ulres
modules shown i Figure 3: an inference engineiblock).
a block handler and constraint solvers. To ECASU-
late failure in a biock. the shoen mechanism of PI-
MOS5|Chikavama of al. B8] 15 used. The block handler
creates a block process. sends constraints from a block to
a constraint solver. and goals wo other processors. Fach
GDOC gosl has & stream connecting to the block handler
to which the E-Da] beluugﬁ.

3 Parallel Constraint Solvers

3.1 Algebraic Solver
3.1.1 Domain of Conatraint

A& rconstraiot svstem that is the target domain of the al
gebraic solver is generaliv called a nonlinear algebraic
polynormal cquaiion. According o the definitions in Sec-
tion 2.1. this can be formalized as the coustraint system
(iD= FuUuCuFP LA V., where:

F o= [«:AA < A +:AA — A} U [fraction :— A}



{=]
[string starting with a lowercase letter]

¢
F
1" = Istring starting with an uppercase letier}
i

= axioms of complex numbers

with the structure

DiA} = setof all algebraic numbers
D=1 = multiplication
IH+ addition

L fraction) rational oumber it depotes

3.1.2 Grobner Rasis and Buchberger Algorithm

Below 15 a briel mwimduction o some potation and def
mitions peeded to explain Groboer bases and the Buch
berger algorithrn. Then, the sequential version of the
Buchberger algorithn, on which the parallel version is

based, 15 presented.

Deefinition 3.1.1 [Power product, monomial)
FPower product 5 g product comprised of nenzerp and fi-
nite number of variables, that 15,

ryry .. xy  (n =0, each r; are variable ).
Monomea! 15 o jwndurf af a ﬂm‘ﬂiﬁruf feralwmal surmbes
and a power product,

4 power product that contains no variable is written
s 17

Definition 3.1.2 (Admissible order) An ordering =
17 admissible when if salesfies the next properties. For all
power products p, g, 7.

Al 1 =< poand
(i) p=q=pr=qr

Fxamples of admissilie ul'ﬂr:ri.u[:_-, Lhat are oflen wsed m
the Bl.l.c]:lbtr‘g!l‘ aigurithm are lodal dr.grr.r Ir:fmsrlupﬁir
ordermg and total degree reverse lericogruphic ordering.
Let us represent the power product o'z} --- 72 by the
veetor (ap. gy, ...y}, where the variables are arranped
in lexicographic order. We define the total degres lerico-
graphic order =g as follows,

fog.org, o) =g (dy. Jg. s

&Y a3 3 or

=] i=1
"

&% a =34 Ha<d.oa=5{;<i.
=l =1
That is, the order <y determines a greater monomial
by comparing Lthe vector elements in lexicographic order.
when the total degree is the same between Lthe two mono-
rials. On the other hand, the total degree reverse ferico-
graphic erder =4, 15 defined by

{ﬂhﬂ:,---.ﬂu} =idrl {E‘I":‘? """ -‘:‘n:l

o ia,- < id’,. of.
1=1 =1

th-l:tﬂ..—ﬂ,, ..... —ag) < (S F—de =33}
-l =1

When the total degree of two monomials is egual. ths
arder compares the subtolal dq;n*r: by rﬂll:ltilrg Phie last
elements from hoth vectors.

Let Lt(f) denote the maximal monomial of a poly-
nomial [ wilth respect Lo a certain admissible ordermg,.
and fest)f) mean the remainng monomiels of f. Let
the power product and coefficient of L) e Lpl [} and
f.rl,fr T{T‘EPHI:II‘-'I']}'.

For each polynomial § (= Lol fILp(f1+ Hest{ f1), we

define a rewriling rule = uver pulyuu:uiﬂ]s as Tollows,

Definition 3.1.3 (Rewriting) ¢ =, £. {f @« monomual
af a palynoreal poas o multiple of Lp{ F} then the mono-
mital 15 replaced with %‘TH and the resulf of calewlaiion
by the replace ment s b ?ﬂ-r a finate sel of polynonials 0
g=ah f3feGandg = h.

Definition 3.1.4 (Irreducible) The oveducible  forw
af o polynowual g word. =g 15 the polynomal wheoh
cannal b rewritten by =5 any more after applying the
rewriting rule sef (7 finctely many for zern] femees, The
irreducible farm of g 15 demnoted by g e

Let e ... o] be a polynomial ring in » variable of
leeres P over the rational number field. and f..... fa
be elements of . A polvnomial ideal T generated by
Fiooons o ie a polvnomial set defined by the following,

Definition 8.1.5 (Polynomial ideal)
fit IT# e, f.gel= f—gel properrty of modules|
jii) feET=h feT forany h € Rlxy... .. Tl

With no loss of generality, we can assume that all poly-
nomial equations are in the form f=1. Let £ =0 hea
svitem of polvnomial equations {f=10..... fo=0}. The
lollowing close relation between the solutions of £ =10
and the elements of T{E} of the weal gl.-l:lfra.tlfd by E s

well known.

Theorem 3.1.1 {Hilbert zero point theorem)

Let [ b o polynomeal. Every solution of E =0 5 also
o selutten of [ =0, ff there emsts o natural number =
such that f* = T{E).

Corollary 3.1.1 £ has no seluteon ff | & I{E).

Thus. the problem of solving given polvnomial egua-
tions is reduced 1o that of deciding whether a polynomial
belongs to the ideal. Buchberger introduced the noton
of Grobner bases, and devised an algerithn 1o determine
the membership relations of & polynomial and o the ideal
[Buchberger 83. Buchberger 5],

Let there be an admissible ordering among monomials
and et a system of polynomial equations E=0 be given.



A rough sketch of the algorithm is as follows. In the
svstern of E. each equation can be conswdersd as bemg a
rewriting rule as defined in Definition 3.1.3. When the left
hand sides Lpify) and Lplf;) of two rewnite rules f; and
fz are not muunally prime. the least common multiple of
their left hand sides can be rewritten i two different wavs
according to these two rules. The pair resulting from this
rewriting is called a critical pair. I further rewriting does
not succeed In converging a critical pair. the pair is said
to be divergent. To pet & confluent rewriting svstem.
equations made from such critical pairs. 5 polynomials.
are added to the svsiem of equations. By repeating this
procedure, we can eventually obtain a confluent rewrin
ing rule set. This confluent rewriting nile set is called a
Gribner basis of E,

Definition 3.1.6 (Grobner basis [Buchberger 83])
The Grobuer basts G{EY is ¢ finite set that safisfics the
Jollowtng properties,

i} IIE)=TIG(E

(i) Forall fg, f=geTIEV flu=gls.
especially, e T(EViff fle=10. and

1‘;';:',? (7 is reduced of every element of the bases is irre-
ductble w.r.f. all the others.

From Theorem 3.1.1, the reduced (L) can be re-
garded as being the canonical form of the solution of
E =10, because the reduced (robner basis with respect
Lo & given admissible ordenog s onogue. Moreover. when
E =0 does not have a solution. {1} & /(L") i= deduced
from Corollary 3.1.1

Definition 3.1.7 {Critical pair, S-polynomial)

If two rewrifing rules fy, f; are not mufually provee. fhat
is Lplfy) and Lplfp) have e greafes! comomon dimsor
ather than 1, the pazr fy, [5 &5 called the critical pan. and
the polynomial made from thes critical pao m the follow-
g way:

lemify fa) teml 1. J2)

Lpif) Lpl f2)

15 called S-polvnomial and deneoted by Spolyl fi. f2).
where, lom| fi, f2) 18 the least common mulliple of Lpi fy]
and Lp| f3).

Lef f2] Le( [} £

Figure 4 shows the sequential version of the Buchberger
algorithm. £ denotes the input polvnomizl equation set.
and M is the output Grobner basis. Line (1) indicates the
rewriling process using A Lines (75 (8] and (9) are the
subsumption test in which the old rule set 15 updaied by
the newly generated rule. If the left hand side of an old
rule is rewritten by the new rule, the rewritien rule goes
back o equalion sel £, Line (12) s the 5 polvoomial
Eeneration,

fi

(1} input F:=E KH:i=@

{27 while F =@

E} choose [ & F

{4} Fe=F-{ft. f':=Fir

[5) if f'# 1 then

LY for rverv pe R

[T} it Legpl = 0]

{8 then t:=Fu {itip )4 Bestip)}. B:i=F-{p}
19 else B:=(R- {ph {Ltipt+ Kestip) | puge )
{10 endif

111] endfor

{121 Fi=FuSpolyl [ R). B:=Ru{f')

{13 endif

{14) endwhile

{151 output £ {0 GIE)

t: _&'pa]'!rl f'_ MY is 10 he Hl—'lll‘.ri‘t.t-'!ri h_". F;-pD{}J:ID:I‘.IJJ.H.LS et wead
polvnomial ' and all slements i role set B

Figure 4: Sequential Buchberger algurithim

3.1.4 Satisfiability, Entailment

Based on the above results. we could determine satisfia:
bilitv by using the Buchberger algarithm to incorporate
the polvnomial into the Groboer bases as per Corollary
41,0, But the method of Definition 3.1.6(i] is incom-
plete i termes of deciding entailment. since the relation
between Lhe solutions &nd the ideal described in Theo-
rem 41,1 15 ncomplete, For example, the Grobner ba-
sis of (X% = 0} s {N* — 0}, and rewniting using this
Grilimer basis cannet show that X — 0 is entailed. There
are several approaches salving the entailment proliem:

ial Lse the Gribuer basis of the radical of the gener-
alel idead, T.ne {plp™ € T}, Although it is the-
oreticallyv computable, efficient implementation is
noi possinle.

by As a negation of p = 0. add pa 1o the Grobmer
basiz and use the Huchberger algm'lll]m. wliere
a5 a4 new vanable. I 1 18 included in the new
Grobner basis. p= 10 is held in the old Gribees ba-
sis. This has the unfortunate side-effect of chang-

ing the Grobmer basis.

Find »n such that p® is rewritten to 0 by the
Grobner basis of the generated ideal Since n s
Tomnded [Cangilia #f al. B8], this is a complete de-
cision procedure. The bound. however, is very

large.

When there are a lot of resources to compute. and no
mare ¢oripnslation can be done. according 1o the metheod
described in [} we may adept the incremental solution of
repeatediy raising p from a small positive integer power
and rewriting it by the (Grébner basis. On the other hand,
the total efficiency of the svstem s greatly afected by the



computation time in deciding entailment. Therefore. we
determine the entailment by rewriting using a Grébner
hasiz from the view point of efficiency. even though this
method 15 meomplete. This decision procedure runs on
the interface module parallel with the salver execution.
as shown in Figure 2. Whenever a new rule is generated.
the solver sends the new rule to the interface module via 2
communication stream. The interface determines entail-
ment while storing (intermediate) rules 1o a self database
The inlerface apdates Lhe database by itself whenever a
new rule from the solver arrives. It can also handle con
straints such as imequalities in the guard parts. if they
can be solved by passive evaluation.

3.1.4 Parallel Algebraic Solver

There are two main sources of parallelism in the Buch-
berger algonithn, the parallel rewriting of a set of paly-
nomials, and the paralle]l testing for subsumption of a
new rule against the other rules. Since the latter is
inexpensive. we should concentrate on parallelizing the
coarse-graimmed reduction component for the distributed
metnory machine, However, since the convergence rate of
the Duchberger algorithm is very sensitive to the order
in which poivonomials are converted into rules, an inple-
mentation must be careful to select “small” polvnonnals
carly,

Thres dilferent architeciores have been implenwnied:
namelyv. a pipeline, a distributed, and a master-slave ar-
chitecture. The distriboted architecture was already re-
ported in [Hawlev 91a, Hawlev 91|, however. it has been
greatly refined sinee then. The master-slave architecture
also offers comparatively good performance. Thus, we
touch on the distributed and master-slave architectures
in the following sections.

Distributed architeecture

The key idea underlving the distributed architecture is
that of sorting a distributed set of polynomials. Each
JLLAE st t r:'i]‘[lh‘i]'ll‘ il *ZH'I:I]]:JI#"'-!" el uf H'WIIILiIIE 'I'“I'ﬁ'i Hrl“l
polvnomials, and a lead-distribution function o that log-
callv partitions the polynomials by specifving which pro-
ceasor “owns  which polvnomials, The position in the
output rule sequence of each polvnomial is calculated by
its owning processor. based on an associated kev (the
leading power product |. identical in every processor. and
which does not change during reducticn. A polvnomial
15 oulpul opce it becomes Lhe smalbest rﬂlmi'niug. The
Sapul_\rnumia.]s and suhsump!,iuns are caloulated 'mdl.-pﬁl-
dently by each processor. so that the processors’ sets of
polvoomials stay syvochronized, As a background task.
each processor rewrites the polvnomials it owns, starling
with those lowest in the sorted order. Termination of the
algorithm is detected independently by each engine. when
the input egquation stream is closed, and when there are
no polynormials remaining b be rewritten.
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Fignre 5 Architecture of distributed type solver

Figure 3 shows the architecture. The central data
structures in the implementation are two work item lists:
the glulm! list and the local list, The 5Iuba] list. that
contains all polynomials including both owned and not
owned polyuomials, is used to decide the order in which
a processor can oulpul a new rule based on the kevs of
polvnomials. On the other hand. the local list consists
of owned polvuomials only, Items in the local list are
rearranged by each processor to maintain increasing key
order. whenever an owned polynomial is rewrillen,

There will be a situation where, when a processor is
busy rewriting polynomials, another processor oulputs a
new rule. i such a case, any processor that receives
a new rule must quit the current task as soon as pos-
sible to check subsumption and to update the old rule
set. Contiouing tasks while using the old rule set with-
out interruption increases the number of useless Lasks.
To manape such intercuption and resumption of rewrit-
ing, the complete execution of one piece of work 18 bro-
ken down inte a threestage pipeline; fisst polynomials
are rewritten until the leading power products can be re-
duced no further. thev are fully reduced. and thirdly the
cocflicients are reduced by taking the greatest commeon
divisor among all cosfficients of a pelvnomial. Based on
this breakdown. we pipeline the execution of the entire
list. giving us maximum overlap between communication
and local computation,

Table | shwws the resubls of henchmark problems to
show the performance of this paralle] algorithm. the
benchmark problems are adopted from |BUEEE et al.
86. Backelin and Fréberg9l}. The monomial ordering is
degree reverse lexicographic. and low level bignum (mul-



Table 1: Timing (sec} and speedup obtained with dis-
tributed architecture

Mumber of processore

Problems 1 2 14 ¥ 14
hatsura-4 T TAR FRT] 4 5 LT
1 1.32 .S 1.05 1.66
katsura-5 TR [FEE] 4520 | 5905 4057
1 1.52 147 238 2,54
Gomon | TR BR] Dnl B B
1 1.12 1.86 1.65 1.2
Cyeferooes || L2GE G6 TE06 47 | 195655 | 417.07 | 326068

i 0909 0ALE 1,55 LA,

lipir prﬂ:]siuu i:::l.'.c-E,::] SUupport on PIMOS 15 used [or co-
efficient caleulation, The method of detecting unneces-
sary S-polynomials proposed by [Gebamer and Miller 88]
is implemented, Examples and their variable ordering are
5|'an n hﬂ]n-w .

Eatsura-d: [Ty < I < Do [Ty o0 [y
U=+ T4+ M+ 20 =0
2l = 20 Ua e Elaly 4 2040y =Ty — 1
Plighty + 2007 4 LT+ ALy —Tu=D
2Walia 4+ 20y + 20— D=1
g+ 2 + M+ M3+ My~ 1 =0
Ratsura-o: ([l < 07y = Uy o0 Uy e Iy < D)
Uf —Up+ 207+ 205 + 205+ UT 4 AR =0
Wnlly 4 Bl + Mol + aly + Wl =1 =10
Wialls + 'H'._:r-.- Willg+ Ml g+l =l =0
Elinlla = Ly + B + By — L=
Higlia & WUy 4+ ML+ UF =Ly =0
g+ 200 s+ Wi+ Uy4+Hg—1=0
Cyelic froots: (X < Xy Xa o Xy = Xy
X4 X+ A+ X+ 4, =0
XX = M+ XX+ XA+ A0 =0
W& = Ny + 0000 + 00 + 5080
AiAaha g+ AN,
N ey 4 N N NN =0
ApAasdhadgde =1
Cyelie Broots: (X < Xo < Xa < X 2 Xo < Xg)
B VIR T PR S W P
LT P S P PIE P L I W A TR R W S
XoXaXo+ Ao XaXy 4+ VaVads
F XXX+ XXXy 4 Xy Xa =10
KXo XaXy + Xy .tg.x.;.-\-; + X:X..‘ﬁ .'!.'r,
F XX XA + AN A4 NN XoXa=10
N XX X + A X X X0 + XX o s hn,
FA N X g Xy Ko e g Ay N AN VX, =0
KA XaXXe = |

Sometimes paraliel execulion s slower than sequential
execution. Moreover & serious drawback occurs in the
cagse of “cvchic 6 roows”. The reasors are; first. redon-
dant tasks increase in parallel since updating a rule set,

generating S-poliynomials and detecting unnecessary 5-
polvnomials are overlapped with every processor. second.
the selection criteria of the next new rule s only a rough
approximation as the kevs of not owned polynomials are
never updated during rewriting.

Master-slave architecture

In the distributed architecture. if the kevs of other poly-
nomials are updated according to their rewriting such
that the global smallest polynomial can be found. then
much communication hetween the processors 18 required.
Une simple way of avolding such communicat ion overhead
is to have each processor output the local minimum poly-
nevmial and anct her processor decide the giolal minimm
among them. Ouwr thied trial, therefore. is the master-
slave architecture shown in Figure 6.

Mew rule
{global mansmusm

Figure G Architecture of master-slave type solver

The set of polvoomials £ s phvsically partitioned and
earch slave has a different part of them. The initial ruie
set of G F) s daplicated and assigned o all slaves, New
input polynomials are distributed to the slaves by the
master. The reduction cvele proceeds as follows.

Lach slave rewrites its own polvnomials by the G{E).
selects the local minimum polvnommial from them. and
sends its |Eﬁding power prl::ldu::t i the master. The maas-
ter processol awaits reports from all the slaves. and se-
lects Lhe plobal minimum power product. The minimum
polvnomial can be decided only after all the slaves have
reported o the master, Those that are not minimums
i Lo decided quickly, bowever, Thus, the nof-mmimum
message 1s sent to the slaves as soon as possible, and the
processors receive the nef-mmimum message reduce poly
nomial by the old rule set while waiting for a new rule,
On one hand. the slave that receives the minimum mes-
sage converts the polynomial into & new rule and sends
it to Lthe master, the master sends the new ruile 1o all the
slaves except the owner. If several candidates are equal
power producis. all candidates are converted to rules by
owner slaves and thev go to final selection by the master.

To make load balance during rewriting. each siave re-
ports the number of polvromials it owns, piggybackesd



onto leading power product mformation. The master
surts these numbers into increasing order and decides the
order in which to distribute S-polynomials.  After ap.
plying the unnecessary S-polynomial criterion. each slave
penetates the S-polynomials it should own corresponding
to the order decided by the master. Subsumplion test
and rule update are done independently by each slave.
Table 2 lists the resulls of the benchmark problems.
The monomial ordering, bignum support and variable or-
dering are same as for the distributed architecture. Both
absolute perforimance and speedup are improved com-
pared with the distributed architecture. Spesdup appears
to become saturated at 4 or & processors except for “evelic
fi-roots”. However. these problems are too small 10 ob-
tain a good speedup because il takes about half a minute
until all the processors become fullv operational as the
unnecessary S-polvoomial criteiorn works well.

Table 2: 'l'iming and speedup of the masterslave archi-
tecture

Number of processors
b 4

Problems [ B 16

Ralsura-d jsecl B0 | 700 wB8F| 633 926

- i 1.2% 1.53 1.6 0.0

Ratsura-b secl #6574 | 27&L ] 3eAR | JLES | 3s8.00
1 150 2R 272 A4l

ITEE | FL0R | 1w [ 19068 | 3E

1 1.41 143 144 L.1u
143018 | 86362 | 43373 | 33135 | 33508
1 1.6t 4.30 4.2 4.42

.E‘J- (8 .ﬁ-ruu[b |ac]

Uy b-roots (see)

3.2 Boolean Constraint Solver

An algorithm called the Boolean Buchberger algorithm
[¥. Sato and Sakai 88] has been proposed for boolean
constraints. Boolean constraints are handled differentiy
from algebraic constraints in the lollowing points,

(1} Multiplication and addition are logical-and and
exclugive-or. respectively, in boolean constraints.

(ii] Coefficients are boolean values, that s, 1 and 0.
So, a monomial is a product of variables.

(i11]) The power of a variable is equal to the variable
itself { X" = X}, So. 2 monomial is actually a product
of distinet variables.

From the property (ui}. the theorem of a boolean poly-
nomial that corresponds to Theorem 3.1.1 15 as follows,

Theorem 3.2.1 {Zero point theorem) Let f be o
bowlean polyuonial,  Every solution of £ =0 is also o
solution of f=0. iff f € TIE).

Therefore. the relation between an ideal and solution
and the relation between a solution and a Gribner basis is
complete in a boolean polvnomial. Thus. enfailment can
be decided by rewriting & goard constraint by a Grobuer
basis.

The Boclean Buchberger algonithm differs from the {al-
gebraic} Buchberger algorithm m the following points.
That is. we have to consider self-critical pairs as well as
critical pairs. where a self-critical pair polynamial [50-
polrnomial b of boolean polyvnomial s defined as N+ f
for every variable X of Lp{f).  As shown (it] above.
the coefficient calculation in the boolean salver = much
cheaper than the algebraic solver, while sclf-erificul pairs
have 1o be considered. Thus. the load-balance of 1hs al
Enriihm 15 t.‘(}l:]lpl.l‘.‘{t‘l.} different from that of the &l.g{‘bi'ﬁnjl.'
E’D]"l-'i'.l'.

3.2.1 Analysis of Sequential Algorithm and Par-

allel Architecture

The sequential Boolean Burhberger algorithm is shown
in Figure 7. Here E(Mist is a list of input boolean con-
straints and (77 is a Boolean (Grobner basis, Numbers
(1] to (6) indicate the step number of the algorithm.

From Figure 7 we can sec that the following are possible
fuar prarallel exerution:

(i} polvnomial rewntiog m step G,

(i) monemial rewriting (lower granularity of (1)),
{111 subswmplem lest e sbep 4.

tiv) SC-polvoomial generation in step 5. and

iv] S-polymomial generation in step 5.

Since there is 2 comrunication overhead in the dis-
tributed memory machine. we have to exploit the most
coarse-grained parallelism. To design a parallel execution
m.ud,c] we neasursd the sxecution time n sach !'[-E'p in
Figure 7 using two kinds of example program. One is
a logic circuit problem for a counter circuit that counts
the oumber of 1's in 2 three-bit input and outputs the
results as a binary code, The other & the n-gqueens pmb~
lem where 4 gueens have B0 equations with 16 variables. 5
queens have 165 equations with 25 variables. and 6 queens
have 296 equations with 36 variables. The time ratio for
each step is shown in Table 3.

Table 3: Time ratio of each step (%)

Step number
Problem 1 2 3 4] & 6 || Totalieee)
dgueens || 298 [ 5.2 | B4 | IV | 204 ) 1900 18
Squeens 64 | 34 ) 223 | 37145 ) 504 535
tgueens 10| L5 | 15.0 20 26777 2240.0
carcuit 1142 B2 B3| HD| 740 0.7




input EQUist, (H
EQlist := {pe EQlist | p |gu? 0}

while EQliat # @
g = min{Lpip) | p e EQlist]

{1} choose £ € {pe EQlist | Lpip) = g}
EQfls! = EQII.‘" — {r}
(2} r=¢|gn. AWt =@
for every p & (7 5
if Ly ) =e
then GH:= GH - {p}
EW st := RWhist U {f 4 Restip})
i3)4 else GB = (GF - {p}
ULpip)+ Rest(p) logog-i
endif
endfor
GR:=GRU|r)
for every p & EQHist
if Lp(p) =, p
then FQist = EQlist — {p]
Bt RWlist .= BWlist Ui {¢ + Rest(p)}
endif
endfor
(5 RWlist == RW st U SO pedyi e )T U Spodyi e, €0 H)
while #W list £ §
choose p & HW list
RFWiest == HW st — {p}-
ifp#0
(6) ¢ then if Lpipl =y ¢
then AW fist .= BW s U {p" 4 Reatip)}
elee EQ sl = FQhat U {p}
wadif
vudif
endwhile
output 5

t i SCpolyir) indicates the set of all sellcrirical pair
pulynomiads for r

Figure 7. Booelan Buchberger algonthm

We can consider another paralle] execution model by
modifving the algorithm. Although Figure 7 shows all
the reducible polvnomials lumped together and rewritien
m step 6. this reduction may be distributed 1o steps 3.
4 and 5. Moreover, reduction may be done in each step
independently. Let steps 17, 4" and 5" denote the muodified
steps 3. 4 and 5. If execution times of steps 3, 4" &nd 5
are balanced afier applying the modification to the algo-
rithm, this model is also a good paralle] execution mcdel,
However, as shown in Table 4, the times are not balanced.
S0, we can discard this possibility of parallelization.

From the above analysis. it becomes clear that step
6 is the largest part of the esecution. the other paris
being small. Therefore, we can determine the master-
slave parallel execution model o make the best use ol
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Tahle 4: Time ratio in modified algorithm (9

Step number

Problem 3 4 3
Joueens | P2 | 230 | 364
Jgueens | 247 [ 11.2 | 34.0
tigueens || 150 | 399 | 41.9

circuit 8.2 335 | 517

.
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L= Reduced EQs - Sz,

z.-'-'_-'i‘-\-\. —
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Figure & Parallel execution model

parallelizn in step 6, as shown in Figure 3.

The controller {master) i m charge of step | 1o step
3 in the algocitlim and the vilier reducers (slaves ) reduce
polvnomials by GH. The message from the controller to
the reducers consists of update information for 'F and
the polvnomials to be rewritten. After receiving the mes-
sage. Lhe redocer first updates its current &8 according
to the update information, rewrites the polynonuals from
the controller. and finally sends the results of the reduc-
tion Lo the controller. As the controller becames wlle afier
seiding the mesage, the controller also acts as a reducer
during the reduction process. The number of polynomi-
als sent Lo each reducer is kept as equal as possible to
balance the loads for each processor,

3.2.2 Implementation and Evaluation

Having implemented the above parallel execution model
in kLL. the following improvement was made.

Improvement 1 We can remove redundant equations
from ECMisi. produced by deleting rules in step 3.
prior to their distribution.  Although this removal
can be done in each reducer. the distributed tasks
may not be well balanced since the removal of tasks
s much less involved than reduction.

Improvement 2 We can distinguish rules of Lhe {orm
“r = A" | "A" is variable) from other rules since
these rules express assignments only and we need not
consider $C-polynomials nor 5-polynomials for these
rules. These rules are stored differently in the con-
trotler and. if & pew equation is input. we first apply
these assignments in the controller to the equation.



By this application. reducers do not have to store
such rules and the time needed to geperate an 5
polynomial and 5-polynomial can be saved.

Improvement 3 If the right hand side {RHS) of a rule
is 0, then no SC-polynomial can be produced. [f
both HHSs of two rules are . then an S-polvnomial
cannol be produced. Therefore, the RHS of a rule is
checked first. I'his techiique 15 also effective for the

sequential version.

Table 5 lists the execution times and the improvement
ratio for the 6 guesns problem.

Table 5: Timing and improvement ratic

Number of PEs 1 2 ] 3 [
Original verswn feec) I 3735 | 2400 | 1745 | 1539 | 1262
mproved version (sec) || 2489 | 706 | 1223 | 1147 | 1092
Improvement ratiol 96 ] 666 1 711 | TO1 | 742 | BEa

Let a purely sequential part in the parailel execution
el e @ and s parallel executable part be & Then.
we can approximate the execution time for n PEs as
(a+d)/n. By calculating @ and b from the deta. we obtain
a = 1130, & = 2590 for the ornginal version. and o = 930,
fr= 1340 for the improved version, This means that the
parallel executable part constitutes 70'%. to the entire ex-
ecution for the original version and 62% for the improved
version. Since we parallelized the sequential algarithm
to obtain the original version. 70% is a satisfactory ratic
for parallel execution smee this ralio 5 very near o the
upper bound value caleulated from the analvsis of the se
quential aigorithm. The difference i caused by the task
distribution overhead. In the improved version. the ra-
tio of the parallel executable part is decreased hecanse of
the inerease in the number of controller tasks. However.
this result is encouraging since the overall performance is

improved.

3.3 Integer Linear Constraint Solver

The constraint solver for the integer linear domain checks
the consistency of the given egualities and inequalities of
rational coefficients. and gives the maximum or minimum
values of the objective linear function under these con-
strainl conditions. The mieger near solver utilizes the
rational linear solver for the optimization procedure to
obtain the evaluation of relaxed linear problems created
as part of the solution. A rational linear solver s realized
by the simplex algorithm. The purpose of this constraint
solver is to provide a fast solver for the mteger optimiza-
tion domain by achieving a computation speedup by in-
corporatipng Lhe search process into a parallel program.
These solvers can determine sn.t'isﬁnl:r'lli.l_\-' and entail-
ment. Satisfiability can be easily checked by the simplex
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algorithm. Entailinent is equivalent to negation failure
witl respect Lo a constraint set,

In the following we discuss the parallel search method
emploved i this mteger linear consiraint solver. The
problem we are addressing is a mixed integer progran-
ming problem. to find a maximum or minimum value of
a given linear function under integer linear constraints,
The method we use 15 the Branch-and- Bound algorit hm.

The Branch-and- Bound algorithors procesd by dividing,
the original problem e two child problems successively,
producing a tree-structured scarch space. 1 a certain
nudle gives an actual integer solution {that is not neces-
sarily optimal). and if other search nodes are guaranteed
to have lower objective function values than that solution.
then the latter nodes need not be searched. In this way.
this method prunes sub-nodes throwgh the search space
to effectively cot down computation costs, but those costs
still become guite high for large-scale problems. since the
costs increase w0 an expopentially with the size of the
probiem.

As a parallclization of the Branch-and-Bound algo-
rithm. we distribute the search nodes created through the
branching process to different processors. and let these
processors work on their own sub-problems sequentially.
Earch sequential search process communicates with other
processes Lo prone the search nodes. Many search al-
gorithms utilize heuristics to control the schedule of the
order of the sub-nodes to be searched. thus reducing the
number of nodes needed to obtain the final result. There-
fore it 1= important. in parallel search algorithms. o bal-
ance the distributed load among processors, and to com-
mumcate information for pruning as guickiy as possible
betwesn these processors. We adopled one of the best
search heuristics used in sequential algorithms.

3.3.1 Formulation of Problems

We consider the following mixed-integer inear oplimiza-
tion problems.

Problem - ILP
Minimize the following objective function of real variables
v, and integer variables y,

e
] ™
= Zp.z, + Eq,.:n
i=k i=l

under the hnear constrammt conditions:

n
Ea,j:_,-ln

L
Zﬁijy., =e; for 15521
1=1

=1
Et.'..t‘J + Eduy: =f for 1=k
=l =1

where

e R and ;20 for 1< i<n
wed where <y <u, and Liuw,eZ for 1<1<m

. b, ¢, dioe,, f; are real constants,



In practical situations integer variables y, ofien Lake only
0. 1. bul here we consider the general case,

2.3.2 Sequential Branch-and-Bound Algorithm

As a preparation to solve the above mixed-integer lin-
ear problems FLP, we consider the contimuously-relaxed
problem LP.

Problem — LFP

Minimize the following objective function of real variables
Ty Wi

hi3 )
=Y T+ D4
=i =1
under the linear constraint conditions:

n m
Ea,ﬂ.:ﬂ, + E&,‘.y‘, e, for 1<y<1
=] =]

doer 4 Y dyy, =, for 1<) <k

i=l i
where

reR and 1,20 for 1< :5n
wER where [ Sy, <u, and Lw,eZ for 1< <m

@i, by, 6,0 di. e J, are real constants.

LP can be solved by the simplex algorithm. If the
values of original integer variables are exact inlegers. then
it also gives the solution of FLP. Otherwise. we take a
non-integer value y, for the solution of LP. and impose
two new interval constraints §,. [, <y, <@, and [§,]|+1<
Vs & ty, where y, is an integer variable, and obtain 1wo
child problems {Figure 9). Continuing this procedure,
called branchiug. we continue to divide the search space
to produce more constrained sub-problems as we proceed
deeper into the tree siructured search space, Eventuallyv
this process leads to a sub-problem having a continuous
solution that is also an imteger solution to the problem.
Alse: we can select the best integer solution from those
found in the process.

On
/N
r O O

[+ 1<y, <uf
o= lEk

=

1%

k
Uy

e
Fy
B <y < (i)

v =[5

Figure 9: Branching of nodes
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While the above branching process can only enumer-
ate integer solutions. if we have a means of guaranteeing
that a sub-problem cannot have a better solution than
the already obtained integer solutions in terones of the op-
timum value of the objective function, then we can skip
these sub-problems and need only search for the remai-
mg nodes, For mived-integer linear problems we can use
the solutions for continuously relaxed problems as a crite-
rion for pruning. Continuously relaxed problems always
have a better optimum value for the objective function
than the onginal integer problems. Sub-problems whose
continuously relaxed problems have no hetter optimam
than the already oblained integer solution cannot give a
better optimum value, hence it becomes unnecessary to
search further (bounding procedure),

Branch-and-Bound methods repeat branching and
bounding in this way to obtain the final optimum. These
!illl:l-pl'l'll:]ll’l'l'l.‘i [}hlﬂi'l'l'l"f] 1‘.]1“1“&'! ‘I'I'P' l'l'l'ﬂ.l]l']'l i“E ]ll{]{'!ﬁﬁ l'h’—
note search nodes.

Sequential algorithm

Step 0 Initial setting
Let ILP., mean the original problem TLP. and A”
mean the set of search nodes. Set A" w0 {ILP.}.
and solve a continuously relaxed problem LP,. If an
integer solution 1= obtamed go to Stepd, Otherwise
sel Lhe ineumbent solution * to oc and go 1o Stepl.

Step 1 Selecting branching node
If A" =4, then go to Stepd.

If A" # . then select the next branching node TLP,
out of A fellowing the heuristics, and go to Step.

Step 2 Selecting branching variable and branch
Select the integer variable y, to be used for the
branching process 1o work on JLP, according to the
heuristics. and branch with respeet to it. Let the re-
sulting two nodes be FLP,., ILP..
(o to Stepd.

Step 3 Continuously relax two nodes
Solve two l;:untinuuus'l}' relaxed ].lrul}h:ms LP, and
LP,. by the simplex algorithm. Go to Stepd.

Step 4 Fathom two children nodes
If relaxed problem LP. does mot have a sclution.
or gives a solution Zp that is no better than the in-
cumbent solution. in other words 5, > Z. then stop
searching {bounding operation ).

If the point { £, ) to achieve a solution 3 has inte-
ger value ¥ and moreover gives a better solution than
the incumbent solution obtained so far. in other words
Zp i, then et 2= 3, # =% and § = §* (revision
of the incumbent ).



If i 7%, y*) 15 not an integer solution and gives a het-
ter optimum value than Lthe incumbent, then add this
node, A" := AU {TLF} (Addition of a node).

Do the same thing to TEP. and go to Stepl.

Step 5 End step
If z # ac, then let the incumbent (£, ) be the opti-

mum selution.

If 3 = oc, then preblem JLP has no solution.

3.32.3 Heuristics for Branching

The following two factors determine the schedule of the
order in which the sequential search process goes through
the nodes in the search space:

1. The priorities of sub-problems{nodes) to decide the
next node on which the branching process operates,

2, Selection of a variable out of the intcger variahles
with which the search space is divided.

It 15 preferable thal the above selections are done in such a
way that the actual nodes, searched in the process of find-
ing the optimal. form as small & part as possible within
the tolal search space. We adopted one of the hest heuris-
tics of this type from operations research as a basis of our
parallel algorithm|[Benichou ef al. T1]).

Selection of sub-problems

We use a combination of depth-first strategy and best-
first strategyiw.r.t. heoristic function). ln each branch-
mg process., whal is called the pseudo-costs gl
Paswnli | of integer variables y; are computed, These are
the increase ratios of the optimum value of the continu
mlﬁl}' relaxed problem with rl.'ga.rd to those Integer vari-
ables. In the next heuristic function i JLF.) of the node
15 waleulated:

BUTLF;) = 5+ 20, min{ el s 1= ). Puoen (1 }-
fi=u -5

Suppose the node FLP, is divided inte ILF, and
ILF;..

p-i. When at least one of these two nodes is not vet ter
minated, select the one having a betteriie.. smaller)
heuristic value &{1LFP) as the next branching node
{depth-first ).

n-ii. When both have terminatesd,

a. if no incumbent solution has vet been found.
select the latest node to which branching has
been done (depth-first),

b. if an incumbent solution has already been
found, select the node having the best heuristic
function value (best-first],

Selection of the branching variable
To sebect the branching vanable when trving o wanch
at the node TLE,

v-i. If po incumbent solution is found. select the vari-
able y* from those integer variables that do not take
exact integer values in 1.?".,!?] and which gives the
greatest difference between the two increases in the
heuristic value. namely the one to attain
max,  {pupl i1 —F,) — Pasunl 7101 Snon- integer }

o1 an imcumbent solution s found, select the variable
g* out of those integer variables that do not take
exact integer values in (7, 7*). and which gives the
maximm of Lhe manimum value of the left and rght
side hewristic values. namnely that to attam

max, '{ﬂ!iﬂ{P..pUH 1- £l ;-r,,,“.,,[j:I_Ir_,.'_,r_,nﬂ:]-illlmﬂ}

4.3.4 Parallel Branch-and-Bound Method

The parallel aigorithm derived from the above sequential
algorithm is implemented on Multi-PS1. Our parallel al-
garithm exploits the independence of many sub-processes
created through branching in the sequential algorithm.
distributing these processes to different processors. What
is necessary here is that the search space 15 divided as
evenly as possible among processors Lo achieve good load
balance. and that the pruning operation 15 performed by
all the processors simultaneously. Also. incumbent solu-
tions found in each processor need to be communicated
between processors, The details of the paralle] algorithm
15 described in the following,

Load balancing
Une parent processor works on the sequential algorithm
up to a certain depth & of the search tree. It then creates
M ehiid nodes and distributes Lhem to other processors as
shown in Figure 10, These search nodes are allocated 1o
different processors evelically. where each of the proces.
gors works on 1lwse sub-problems sequentially, Therefore.
load balancing is static in this case.

Distribution is done only at a certain depth of the
search tree. to prevent the granularity of a node from
being too small and 1o decrease the communication costs.

Heuristics for pruning

Each processor has a share of a certain number of sub-
problems assigned. and works on these nodes with the
same heuristics of branching node selection and branch-
ing variable selection as those of the sequential case. For
the node selection heuristics, we use the priority control
facility of KL, to assign priorities to the search nodes
on which the best.first strategy with the heuristic func-
tion can depend. (See [Oki et al. 89] for details of this
technigque.
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Figure 10: Generation of paralle]l processes

Tranefer af glabal data

While the search space is distributed among different pro-
cemsors, i the information bo prome nodes is nol communi
cated well A0 E therm, then the processor has Lo work on
unpecessary nodes. and the overall work becomes larger
compared with the sequential version. This causes a re-
duciion in the computation speed.

Therefore, incumbent solutions are transierres] hetween
processors Lo be shared so that each processor can update
the current incumbent solution as soon as possible [Fig
ure 11}, This ts realized by assignmg a higher priomiy o
the gﬂﬂ.] rﬁponsjble for data transier in Uhe PrugTan.

Parent node

O
ummHL'p
O

Node TLFP;
Dcw«ln}/ N‘Ju?
U
O Down () Child node

Figure 11: Heport stream between nodes

3.3.5 Experimental Hesults

We imnplemented the above parallel algorithm in kLI
and experimented with job-shop echeduling problem. Ta
ble & shows a result of computation speedups for a 4job
Amachine prublem and the total oumber of searched
nodes to get to the solution.

The situation often ocours where a Procossor visis an
unnecessery node before the processor receives pruning
information. This s because communication takes a time.
and certainly cannot be instantaneous. in a distributed
memory machine. Table fi shows a case where this artu-

ally happens.

Table 6: Speedup

_F'_]'Egg_surs 1 2 4 2
Speedup L| 159 1.4 2.4
Sumber of podes || 242 18 | 395 | 190

One of the problens i parallel search alporithms s
hew e decrease the growth of the size of the total scarch
spare comparerd with the sequential search algorithms.

4 GDCC Program Examples

Example 1 : integer programming

The following progran: is a simplified version of the in-
teger programming used Lo find the integer solution thal
gives the minimum [or maximum)} value of an objective
function under given constraints. This program shows
the basie siruciune of the Branch-and- Bound method.

t- module pasude integer programsing.
1= public integer_profld.

integer_proff,¥,Z}:- true |
call ((eimplex®#i=5,
simpl ax#X+2wYr=-3,
simplax®X+Y-Z<=E)) initial ril giving Cec,
take _min(Co).

take_min{Co):= true |

call (simplax#min(X+Y Ans)} initial Co giving Col,

{Ans={minusinfinite,_} -> errer;
othervise;
Anw={_, [X=ValX|_]} =» check(¥alX,Col).
chack{ValX,Co):- kKli!'integer{ValX) |
golve _another _variables(Co).
otherwise.
check{ValX,Col):- true |
floor(ValX,Supl,Infl),
call (simplex#X=<InfX) initial Co giving Col,
take_min{Col},
call(pimplex#k>=Supk)} initial Co giving Co2,
take_min{Co2).

The biock in the clause integer.pre solves a set of
constraints. The block in the clavse takemin finds the
minimum value of the given objective function, If the
minimum value exists {not —20). check iz called. In
clause check. if the value of X. that gives the minimum
value of the objective functon 1s not an MECEEr, TWo new
constraints are added in order to the X become integer
[for instance. if X' = 3.4 then X »>=4 and X <= 3|, and
the minimum values with respect to the new constraints
are solved again. Method k11'integer decides whether
the value X is an integer. Where. k11! indicates KLI



method calling, a KL! method iz calied frum the GDOC

program using this notation,

Synchronization between the inference engine and the
golver to get the minimum value is achieved by the blocks
in integer pro and take min. Multiple contexts are
shown by the two blocks of check

Example 2 : geometric problem

Mext. we show how to use a function to find the approx.
imated roots of uni-variate equations and how to handie
multiple contexts using an example which i also used in
[Atba et al. 85].

r= module heron.
t= public trifd, testlf4, testifq.

tri(a4,B,C,5) - true |
alloc (10,04 ,CE H),
Alg#C=CA+CB
alghChes2+HenZ=lned,
alg#CBes2+lieninban,
alg#HeC=045 .

test1(4,B,C,5) = true |
call( tri{i4 B,2,58) )} initial nil giving GB,
outputi{GE}). ¥ output to a window screan

test2(4,.B,C,8) :- true |
call( tri{4,B,C,8) ) initial nil giving GB,
Err= 1/100000000,
kEli1'find:find (GE,Err, 1,3ubGB,UniEqe ,UniSolel,
kl1'find:mscl (SubGB,UniScls Err,1,FGHE),
check (FGE, &).

check({[], .} :- true | trus.

check{ [FGEIFGBal, 3) :- true |
call{ check_ask{5,Ans} )} initial FGB giving Secl,
check_sub(ins, Sol, FGBa, 2).

choch_sub{trus, Sel, FGBa, 5) :- true |
output{Sel), ¥ output to a window screen
check(FGBa, 5).

check_sub(falsa, _.

FGBs, 5) check(FGBa, 5}.

check_ask(5, ins)
check_ask(5, Ans)

- alghs > 0 | Ane = tTruae.
c= alg#S m< 0 | Ans = false.

Figure 12 shows the meaning of the constraints set con-
tained in clause tri, where *# in equations indicates a
power operation. CA,CB.H are local variables. A, B, C
represents the three edges of a triangle. and 5 is its area.
alloc{ Pre. Varl,. .. VarX¥) is a declaration Lo give prece-
dence Pre to variables Varl.... Var¥. A mooomial in-
cluding a variable that has the highest Pre is the highest
monomial, that is the precedence of variables is stronger
thair the degree in comparison.

If the goal.
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Figure 12: A triangle and its parameters

7= alloc(0,A,B,C),allec(5,5),
herorn:testi{A B, C,8).
is given. in which all parameters are free. this program
putputs a Gribner basis consisting of seven riles. Among
them is the following rule that containsonly &, B, Cand
5.

Gaale =] 1fw und+]/GeCoxisBan+] (Belwninfney
-1/ 16wBwwd+]/BeBecdelirs?=1 1648544,

This is equivalent to Heron's formula. Of course. this
program can be executed by a goal with concrete param-
eters. For example. when the goal.

?- allec{5,5), heron:testi(3 4,5,5).
is given. the program produces S==2= 3§,

However, the Buchberger algorithm cannot extract dis:
crete values [rom this eguation, as shown in section
3.1.2, Method test2 approximates the real roots from
a Grobner basis. if the basis contains une-variste egua-
tions. If the goal

?- allec{5,5), heron:test2(3,4,5,5)

is given. first the constraint set is solved 1o oblain
Grobner basis GB using the call predicate. then uni-
variate equations are extracied from 6B using the method
find:

kll'find:find(GH,Err,1,3ubGE,UniEge ,UniSols).

Where, UniScls contains the all combinations of solu-
tions with precision Err. UniEge is a set of the uni-variate
equations extracted from Gribner basis GB. and SubGE 15
the basis remaining after removing the uni-variate equa-
tions. The next method sol obtains a new Gribner ba-
sis FGB by asserting the combinations of approximated
solutions UniSols into SubGE. It is necessarv to modify
the Buchberger algorithm to handle approximated solu-
tions. as explained in [Aiba et al. 91]. FGB contains plural
Grobner bases in list formal. and these bases are filtered
by the method check. which checks whether 5 = 0 is
satisfied at the guard of the sub-block check_ask.



5 Conclusion

GDOC s an instance of the cc lapguage and satisfies 1wo
levels of parallelism: the execution of an inference engine
and solvers in parallel, and the execution of a solver in
parallel. A characteristic of a cc language is that it is
more declarative than sequential ULV languages. since
the guard part is the only synchronization point Tetween
an inference engine and selvers, GDOCC inherits this char-
acteristic and, moresver, it has a block mechanisin o
svnchronize meta-operations with constraints.

In the latest |(master-siave) version of the parallel al-
gebraic solver, the parallel execution of "cvelic G-roors”
with 16 processors is 4.42 times faster than execution with
el SillE]L‘ PraCessor. WILIII th.' }JUI’JJL‘HIJ EiL'I'I.'ln'l'l.'. pill'il.”f.‘] exe
cution of the f queens problem with 16 processor 15 225
times {aster than with a single processor. We also show
the realization of fasl parallel search for mised integer
programming using the Hranch-and-Hound algorithm.

The following items are vet to be studied,  As shown
in the program examples. current wsers must describe ev-
ﬂr_\rth'mg §f.1|ﬂi:."|li_v to handle multiple contests, Thus,
support faculties and utilities to handle multiple contexrs
are reqquired . We will also improve the paratlel constraint
salvers to obtain beth good absolute performance and
better parallel spesdup. The algelraie solver peguires
parallel speedup. The boolean solver needs 1o mcrease
the parallel executable parts of its algonithm. The -
ear mteger solver has to improve the ratio of pruning in
parallel execution. Through these refinements and ex
periments using the handling robot design svstem. we
can realize a parallel CLP language svstem that has high
functionaiity in both s language facilities and perfor-
TILAINCE .
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