ICOT Technical Report: TR-0749

TR-0749

Logic Program Synthesis from First Order

Logic Specifications

by

T. Kawarmmura

March, 1902

1992, 1COT

Mila Kokusai Bldg. 21F (03)3456-3191 -5

ICDT 4-28 Mita 1-Chome Telex ICOT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Logic Program Synthesis
from First Order Logic Specifications

Tadashi KAWAMURA
Institute for New Generation Computer lTechnology
1-4-28 Mita. Minato-ku. Tokvo 108. Japan
thawamurdicot.or.jp

Abstract
In this paper, a logic program synthesis method from first order logic specifications is

described. The specifications are described by Horu clauses extended by universally
quantified implicational formulae. Those formulae arc transformed into definite clause
programs by meaning-preserving unfold/fold transformation. We show some classes of
first, order formulae which can be suceessfully transformed into definite clanses aunto-
matically by unfold/fold transformation.

1 Introduction

Logic program synthesis based on unfold/fold transformation [1] is a standard method
and has been investigated by many rescarchers [2.3,3.6. 11,12, 19]. As for the correct-
ness of unfold ffold rules in logic programming, Tamaki and Sate proposed meaning
preserving unfold/fold rules for definite clause programs [20]. Then. Kanamori and
Horiuchi propased unfold/fold rules for a class of first order formulae {7}, Recently.
Sato proposed unfold/fold rules for full first order formulae [18].

In the studies of program synthesis. unfold/fold rules are used to eliminate quanti-
fiers by folding to obtain definite clause programs from first order formulae. However,
in most of those studies, unfold/fold rules were applied nondeterministically and gen-
eral methods to derive definite clauses were not known. Recently, Dayantis [3] showed
a deterministic method to derive logic programs [rom a class of first order formulae.
Sato and Tamaki [19] also showed a deterministic method by incorporating the concept
of continuation.

This paper shows another characterization of classes of first order formulae from
which definite clause programs can be derived automatically. Those formulae are de-
scribed by Horn clauses extended by universally quantified implicational formulae. As
for transformation rules, Kanamori and Horiuchi’s unfold/fold rules are adopted. A
synthesis procedure based on unfold/fold rules is given, and with some syntactic re-
strictions, those formulae are successfully transformed into equivalent definite clause
programs. This study is also an extension of those by Pettorossi and Proiett] (14, 15, 16]
on logic program transformations.

The rest of this paper is organized as follows. Section 2 describes unfold/fold rules
and formalizes the synthesis process. Section 3 describes a program synthesis procedure
and proves that definite clause programs can be successfully derived from some classes
of first order formulae using this procedure. Section 4 discusses the relations to other
works and Section 5 gives a conclusion.

In the following. familiarity with the basic terminologies of logic programming is
assumed[13]. As syntactical variables. X.}.Z.U. 1" are used for variables. A.B. H
for atoms and F.(for formulae. possibly with primes and subscripts. In addition, ¢
' used for a substitution. F# for the formula obtained from fermula F' by applving
substitution #. X for a vector of variables and F5(('] for replacement of an occurrence
of subformula (& of formula F' with formula "

2 Unfold/Fold Transformation for Logic Program
Synthesis

I this section. preliminary notions of our logic program svnthesis are shown.

2.1 Preliminaries

Preliminary notions are described first.
A formula is called an implicational goal when it 1s of the form F, — F,. where Fj
and F, are conjunctions of atoms.

Definition 2.1 Definite Formula
Formula ¢ is called a definite formula when " is of the form
A Gy Ay A A Gl 2 0).,
where €/, is a {possibly universally quantificd) conjunction of implicational goals for
i = 1.2 _.m. Ais called the head of (", Gy A Gy A A G, is called the body of O
and each (7, is called a goal in the bodv of (",

Note that the notion of a definite formnla is a restricted form of that in [7].

A set of definite formulae is called a definite formula program, while a set of definite
clauses is called a definite clause program We may simply say programs instead of
definite formula {or clause) programs when it is obvious to which we are referring.

Definition 2.2 Definition Formula

Lel P be a definite formnla program. A definite formula D is called a definition
forrmula for P when all the predicates appearing in D’s body are defined by definite
clauses in F and the predicate of D's head does not appear in P. The predicate of
D' head is called a new predicate, while those defined by definite clauses in P are old
predicates. A set of formulae D is called a definition formula set for P when every
element D of T is a definition formula for P and the predicate of D’s head appears
only once in I

Atoms with new predicates are called new atoms. while those with old predicates
are ralled old atoms.

2.2 Unfold/Fold Transformation

Iu this subsection. unfold/fold transformation rules are shown following [7]. Below.
we assume that the logical constant true implicitly appears in the body of every unit
clause. Further, we assume that a goal is always deleted from the hody of a definite
fortmula when it is the logical constant true, and a definite formnla is always deleted
when some goal in its body is the logical constant false.

Further. we introduce the reduction of implicational goals with logical constant frue
and false, such as ~true = false,true A F = F, and so on. {See [7] for details.} Let
(¢ be an implicational goal. The reduced form of (. denoted by (& |. is the normal
form in the above reduction system.

Variables not guantified in formula F are called global variables of F. Atoms
appearing positively (negatively) in formula F are called positive (negative) atoms of

F.

Definition 2.3 Positive Unfolding

Let £, be a program. (' be a definite formula in P, (7 be a goal in the body of (" and
A be a positive old atom of G containing no universally quantified variable. Then. let
(+p be (741 false] | and () be the definite formula obtained from (" by replacing (v with
(/y. Further, let (', Ca.y be all the definite clauses in P, whose heads are unifiable
with A. say by mgu's 8;.6,..... ;. Let (7, be the reduced form of GO, after replacing
AB, in GG#; with the body of (';6;, and ("} be the definite formula obtained from (',
by replacing (8, in the body with (7;. (New variables introduced from (', are global
variables of (7,.) Then, Py, = (P, = {CHU{C, (L Oy G Co OOy C
are called the results of positive unfalding ' at A {or ().

Example 2.1 Let F be a definite clause program as follows -

'y list{f])-

(' = hist{[X|L]} « list(L).

(0 < suc(Y).

s sneiX) < suelY) — X < Y.L

(s = member{ U [U[L]).

i : mernberl[l.;.["v'|L]} +— member(1],L].

Let (7= be a definition formula for P as follows :

(= - less-than-all{ X.L) « lst(L) A ¥ Y{member{Y L) — X<Y}.
Suppose that Py = P U {(;}. Then, by unfolding C’; at list(L), program F=PuU
{Ca. (s} 1s obtained, where

(% : less-than-all{ X,[]} — ¥ Y(member(Y,[]) — X<Y).

(' : less-than-all{ X [Z]L]) « hst(L) A ¥ Y(member(Y [Z]|L]) — X<Y).

Before showing the negative unfolding rule, we introduce the notion of terminating
atoms. Intuitively, atom A is terminating when every derivation path of A is finite.
See [7] for the precise definition.

Definition 2.4 Negative Unfolding
Let P, be a program, (' be a definite formula in F;, G be a goal in the body of C' and
A be a negative old atom of (7 such that every atom obtained from A by instantiating

3

all global variables in A to ground is terminating. Let (1, Oy, ..., Cy be all the definite
clanses in P; whose heads are unifiable with A, say by mgu’s #;.8;. ..., f.. where 8,
instantiates no global variable in . Let Gg be G 4[false] | and G} be the reduced form
of (38, after replacing A#, in (78, with the body of C;6;. (New variables introduced
from €, are universally quantified variables in G,.) Let ("' be the definite formula
obtained from C by replacing G in the body of (' with Go A Gy A ... A Gi. Then,
Py = (P —{CHU{C'}. (" is called the results of negative unfolding " at A {or (v).

Example 2.2 Let P and P, be programs in Example 2.1. By unfolding (s at mem-
ber(X,[]), P; = P U {(5. (g} is obtained, where
(o lessthan-all{ X.[]) « ¥ Y {false = X < Y) |
that is,
("yo ¢ less-than-all(X.[]).
Further. by unfolding €'y at member(X,[2|L]). Py = P U {(g, C11} is obtained, where
("), ¢ less-than-all(X.JZ|L)) — hist(L) A ¥ Y[false — X<Y)L A
W Y(true — X<Z}] A ¥ Y (member{Y L} — X<Y)|.
that is,
("yq ¢ less-than-all{ X,[Z|L]) « list{L) A X < Z AV Y (member(Y,L}) — X < Y.

Definition 2.5 Folding

Let P. be a definite formula program, (° be a defimte formula in F, of the form
A — K AL and D be a definite formula of the form B «— K', where K. R’ and L are
conjunclions of goals. Suppose that there exists a substitution # such that K'6 = A
holds. Let (" be a clause of the form 4 «— B#. L. Then Py, = (F, - {C}u {("}.

Note that when applying folding, some conditions have to be satisfied to preserve
the meanings of programs. See [7] for details.

Example 2.3 Let P and F; be programs in Example 2.2. By folding ("1, by (7.
Fy = PuU {4, ("3} 15 obtained, where
(42 less-than-all{ X,[Y|L]} — X < Y A less-than-all{X,L)

2.3 Pregram Synthesis by Unfold/Fold Transformation

In this subsection, our program synthesis problem is formalized, Firstly, several notions
are defined to formalize the program synthesis processes,

Definition 2.6 Descendant and Ancestor Formula

Let P be a definite formula program, ¢’ be a definite formula in P and P’ be a
definite formula program obtained from P by successively applying positive or negative
unfolding to P. A definite formula ¢ in P’ is called a descendant formula of (" when
{a) ' is identical to C', or
(b) C"is the result of positive or negative unfolding of a descendant formula of C'.
Conversely, C is called an ancestor formula of .

Example 2.4 In Examples 2.1 - 2.3, definite formulae C7,Cs, ...,y are descendant
formulae of (5.

Definition 2.7 U-selection Rule

A rule that determines what transformation should be apphed to a definite formula
prograimn is called a selection rule. Let P be a definite formula program and (" be a
definite formula in F. A selection rule R is called a {7selection rule for P rooted on
when R always selects positive or negative unfolding applied to a descendant formula
of (. 7 is called the rooi formula for B {or of the transformation.) A definite formula
program obtained from F by successively applying transformation rules according to
£ s called & definite formula program obtained from F via R.

Definition 2.8 Closed Program

Let P be a definite clause program, (7 be a definition formula for . T be a definition
formula set for P and K be a U-selection rule for # U {C'} rooted on (", Let ' he a
definite formula program obtained from P U {C"'} via R. P’ 1s said to he closed with
respect to triple < P,C,D > when every descendant formula (7' of (" in P’ satisfies
one of the following:
{al (" is a definite clause.
{b) There exists a goal (G consisting of positive atoms only in the body of (' such

that an old atom in & is not unifiable with the head of any definite clause in .

ic) By successively folding (" by clauses in {{"} U D, a definite clause can be obtained.
P} s said to be closed with respect to T when there exists a closed program with
respect to < P.C.D = and for every definition formula I in T there exists a closed
program with respect to < P.D. D U{C} =

Example 2.5 Let F and P be programs in Example 2.2, Then. Py iz closed w.r.t.

< P.("7.0 >. Further, P U {(";} is closed w.r.t. @.

I'he above framework is an extension of the one shown in [8]. and also a modification
of the one Petlorossi and Proietti proposed |[14. 15, 16] in their studies of program
transformation.

Now. our problem can be formalized as follows: lor given definite clause program F
and definition formula C' for P, find a hoite definition forimula set D for P such that
F U4} is closed wilth respect o D,

3 Some Classes of First Order Formulae from Which
Logic Programs Can Be Derived

In this section, we specify some classes of first order formulae from which definite clause
programs can be derived by unfold/fold transformation.

3.1 A Program Synthesis Procedure

In this subsection, we show a naive program synthesis procedure. I the following, we
borrow some notions about programs in [15, 16]. We consider definite formula (clause)
programs with predicate =, which have no explicit definition in the programs. Predicate
= is called a base predicate, while other predicates are called defined predicates. Aloms

i)

with base predicates are called base atorns, while those with defined predicates are
called defined atoms. Transformation rules can be applied to defined atoms only.

A formiila containing base atoms can be reduced by unifving arguments of =. When
a universallv quantified variable and a global variable are unified. the global variable
is substituted for the universal one. The above reduction is called the reduction with
respect to =. We assume that no formulae are reduced w.r.t. = unless this is explicitly
mentioned.

Further, we assume that the following operations are alwayvs applied implicitly to
the results of positive or negative unfolding. Goals (7 is said to be connected when
at most one universally quantified inplicational goal ¢ appears in (and each atom
in (&' has common universally quantified variables with at least one another atom in
(.'. Let " he a definite formula such that all the goals in its hody are connected. Let
(" be one of the results of positive or negative unfoiding (" at some goal. By logical
deduction, definite formulae C[, C-a. co BV {m 2 1) are obtained from ' such that all
the goals in the body of ! are connected, {Note that some goal i in the body of
is of the form Fy — F; or F} V F; and no universally quantified variables appear in
both F; and F,. ("' can be split into two formulae by replacing (' in (7 with —=F} (or
Fi)and F,.)

Before showing our program synthesis procedure, a notion s defined.

Definition 3.1 Sound Unlolding

Suppose that positive or negative unfolding is applicd to a definite formula at
atom 4, Then, the application of unfolding is said to be sound when no two distinet
universally guantified variables in A are unified when reducing the result of unfolding
with respect Lo =,

Some syntactic restrictions on programs ensure the soundness of all possible ap-
plications of unfolding. In [act, the restriclion shown in [3] ensures the soundness.
However, in the following, we assume thal every application of unfolding is sound,
without giving any syntactic restriction, for simplicity.

Now, we show our program synthesis procedure, which is similar to partial evalua-
tion procedures{cf.[9, 10]). First, a procedure to synthesize new predicales s showu.

Procedure 3.1 Synthesis of New Predicales

Suppose that definite formula program P and definite formula " in P of the form
A — (7, (G, are given. Let ! be the reduced formula obtained from (s hy
removing all base atoms and by replacing all universally quantified variables appearing
in every hase atom with distinct fresh global variables if global variables are substituted
for them when reducing G; w.r.t. =. Let D; be of the form H; « Gl fory = 1,2....0m,
where F; is an atom whose predicate does not appear in /? ov H; for 1 # j and whose
arguments are all global variables of ¢ appearing in . Then, D, Dy, ... D, are
returned.

Note that in Procedure 3.1, (C can be folded by Dy, D, ..., D, alter reducing it
w.r.t. = when (7 is the result of sound unfolding, and Lhe result of the folding is a
definite clause.

Example 3.1 Let £ he a program as follows.
(Y - all-less-than|L.M) «— list(L) A listiM) A
¥ UV {member{ UL} A member(V.M) — L' < V).
('y : member{ U [V|X]) — U = V.
("5 : member(U,JV|X]) «+ member{L'.X).
The definition of *< is given in Example 2.1, Suppaose that (7's body consists of only
onc goal. By applying positive unfolding and negative unfolding to O successively. the
following formulae are obtained. (The reduction w.r.t. = is done when no universally
guantified variable appears as an argument of =.)
Cy ¢ all-less-than([],M} — list{M}.
(75 o all-less-than([X|L].M) « {lhst{L) A hst{M}) A
(list{L) A hst(M)} A ¥ EV (U = X A member{V.M) — U < Vi A
(list(L) A list(M) A ¥ 1V (member{ U LiAmember(V.M) — U7 < V).
Then, by Procedure 3.1, the following new predicates are defined from (s,
Dy newl{X,LM) «— list(L) A bBst{M) A Y V {member{V.M) = X < V).
Dy new2(LM) « list(L) A list{ M) n
¥ UV (member(l/.L) A member(V.M) — U < V).

Next, the whole procedure for program synthesis is shown.

Procedure 3.2 4 Program Synthesis Procedure

Suppose that definite clause program F and definition formula (" for P are given. Let

D be the set {('}.

(a] If there exist no unmarked formulas in . then return £ and stop,

(b) Select an unmarked definition formula [from D. Mark I ‘selected.” Let P’ be
the set {D}.

{c) If there exist no formulae in P which do not satisfv conditions (a) and (b) in
Definition 2.8, then F:= P U P and go to (a).

{d) Select a definite formula ™ from P'. Apply positive or negative unfolding to .
Let 'y, ..., (', be the results. Remove (" from F'.

ie) Apply Procedure 3.1 to (). ... L Let Do, I}, be the outputs. Add D, to D
if 1t 1s not a definite clause and there exists no formula in D which is identical to [);
except for the predicate of the head. Fold (74, (' by the formulae in T* and add
the results to P’

(f) Go to (c).

Example 3.2 Consider the program in Example 3.1 again. We see that 1), is identical
to (7 except for the predicate of the head. (', can be falded by 1), and (7 after reduction
w.r.t. =. The result is as follows.

(s : all-less-than([X|L],M) — list(L) A list(M) A newl{X.L,M) A all-less-than({L,M}.
Similar operations are applied to [);, and finally, the following clanses are obhtained.

1)y : newl(X.L,[]} « list(L).

Dy newl(XL[YIM]) — X < Y A newl(X,LM)

Note that Procedure 3.2 does not necessarily derive a definite clause program from
a definite formula program. For example. when the lollowing program is given as input,
Procedure 3.2 does not halt.

CycoplXY) — p(XE) A pl2Y)

(30 hiX)Y)— ¥ Z(p(X.2)= p(Y.2))

3.2 Classes of First Order Formulae

In this section, we show some classes of definite formula programs which can be trans-
formed into equivalent definite clause programs by Procedure 3.2.

Throughout this subsection, we assume that unfolding is always applicable to every
definite formula at an atom when there exist definite clauses whose heads are unifiable
with the atom. Note that the ahove assumption does not always hold. This problem
will be discussed in 3.3

After giving a notion, we show a theorem which is an extension of the results shown
in [15]. A simple expression is either a term or an atom,

Definition 3.2 Depth of Symbal in Simple Fxpression

Let X be a variable or a constant and E he a simple expression in which X appears.
The depth of X in E. denoted by depth{ X,E'), 15 defined as follows.
{a) depthiX.X) = L.

(b} depth{ Y.E) = max{depth{ X .t;)|.X appears in ¢, for i = |..... n}+ 1, il E s
either f{f..... te)or plty, ...,). for any funetion symbel f or any predicate symbol
-

The deepest variable or constant in E is denoted by maxdepth(£).

Theorem 3.1 Let P be a definite clause program. Suppose that for any definition
formula (7 for P, there exists a U-selection rule R for P U {("} rooted on (" such that
R is defined for all descendant clauses of (7 in which at least one defined atom appears.
Suppose also that there exist two positive integers H and W such that every descendant
clause € of (" in every program P’ ohtained fram PU{("} via R salisfies the following
two conditions.

{a) The depth of every term appearing in every goal in the body of (" is less than .
{h) lLet (¥,.(74,....G, he connected goals in the body of (. Then. the number of

atoms appearing in (7; is less than W, for s = 1,2,..., 1.

Then, there exists a finite definition formula set. T for P such that P U {C} is closed
with respect to D.

Proof. From hypothesis (&), only a finite number of distinct atoms (modulo renaming
of variables) can appear in the goals of all the descendant forinulae of (*. Then, apply
Procedure 3.2 to P and (. Note that every goal in the body of every descendant
formula of (' is connected. Then, for every goal of every descendant formula of U, the
number of atoms appearing in the goal is less than W, from hypothesis (b). Hence,
only a finite number of distinct goals can appear in all the descendant formulae of C.
Thus, we can obtain a finite definition formula set Ty for F such thal Lhere exists a
closed program P’ w.or.t. < P.C, Ty =.

The above discussion holds for all the definition formulae in Dy. since those for-
mulae are constructed from bodies of the descendant formulae of (', Evidently. only a
finite number of distinct definition formulae can be defined. Thus. there exists a finite

definition formula set D for P such that P U {C} s closed w.r.t. D. 0

Theorem 3.1 shows that Procedure 3.2 can derive a definite clause program when
(a) a term of infinite depth can not appear, or (b) an infinite number of atoms can not
appear in a connecled goal during a transformation process. In the following. we show
some syntactic restrictions on programs which satisly the above conditions.

Proietti and Pettorossi showed some classes of definite clause programs which satisfy
the conditions in Theorem 3.1 in their studies of program transformation [15]. We show
that some extensions of their results are applicable to our problem.

The following definitions are according to [13]. The set of variables occurring in
simple expression E is denoted by var(E').

Definition 3.3 Linear Term Formula and Program

A simple expression or a formula is said to be linear when no variable appears in
it more than once. A definite formula (clause) is called a linecar term formula {clause}
when every atom appearing in it is linear. A definite formula (clause) program is called
a linear term program when it consists of linear term fornmlae (clauses) only.

A linear term formula (clause) is called a strongly linear terin formula {clause) when
its body is linear. A definite formula (clause) program is called a strougly linear term
program when it consists of strongly linear term formulae (clauses) only.

Note that the following definite clanse is not a linear term clause.
member(X.[X|L]).
However, it is easy to obtain an equivalent linear term clause as follows :

member(X, [Y[L])— X=Y.

Definition 3.4 A Helation < between Linear Simple Expressions

Let Ey and E; be linear simple expressions. When depth{X.E,) Sdepth(X, £;) holds
for every variable X in var(£,) N var(E;), we write £y < E;. (Both £, < E; and
Py < Fy hold when var(Ey) Movar(E)= 0.)

Definition 3.5 Non-Ascending Formula and Program

Let (" he a linear term formula and H be the head of . is said Lo be non-
ascending when A < H holds for every defined atom A appearing in the body of .
A linear term program is said to be non-ascending when it consists of non-ascending
formulae oniy.

A definite formula (clause] is said to be strongly non-ascending when il is a strongly
linear term formnla (clause) and non-ascending. A definite formula (clause) program 1s
said to he stronglv non-ascending when it consists of strongly non-ascending lorimulae
{clauses) only.

Definition 3.6 Synchronized Descent Rule

Let P be a linear term program, A be a U-selection rule for P and ' be any
descendant formula of the root formula for K. Let A, Az, A, be all the atoms
appearing in the body of (7. Then, R is called a synchronized descent rule when

g

(a) R selects the application of positive or negative unfolding to (" at A, il and only
if A, € A, holds for j=1...., n, and
{b) R is not defined for ", otherwise,

Note that synchronized descent rules are not necessarily defined uniquely for given
programs and definition formulae.
The following theorem is an extension of the one shown in [15, 16].

Lemma 3.2 Let P be a non-ascending definite clause program, (" be a linear term
definition formula for F, and K be a synchronized descent rule rooted on (7. Let P’ be
a program obtained from F U {C'} via K. For each defined atom A appearing in the
body of every descendant clause of " in ', the following holds :

maxdepth(4} < max{maxdepth()| B is a defined atom in P U {('}}

Proof. By induction on the number of applications of unfolding. o

Now we show some classes of definite formula programs which satisty the hyvpotheses
of Theorem 3.1. In the following. for simplicity. we deal with definition formulae
with enly one universally quantified implicational goal in the body, The results are
casily extended to the definite lvnmulae with a conjunction of umiversally guantified
implicational goals,

The following results are also extensions of those shown in [13].

Theorem 3.3 Let P he a strongly non-ascending definite clause progra and (" be a
linear term definition formula far P of the form H — 4, A¥YX (A — As). such that
the following hold.

{a) For every clause D in P of the form Hp «— By A ... A By A By A LA B where
Bi...., B, are defined atoms and Bj...., B are base atoms, the following hold.
{a-1} Let ty be any argument of Hp. For every argument ¢; of H;. if ¢y contains a

common variable with ;. then {; is a subterm of 1 y.
(a-2) For every argument f; of B, if ¢, is a subterm of an argument {y of Hp. then
no other argument of B, is a subterm of { 4.
(b} There exist two arguments {; and s; of some A4; {{; # 5,0 = 1.2 or 3} such that
the following haold.
(b-1} There exists an argument {; of A; (+ # j) such Lhat
vars{ A,)Nvars(A)=vars(t;)Nvars(t;). and
either {; is a subterm of £;, {; is a subterm of #; or vars{{,)Nvars(B
(b-2) There exists an argument s of 4, (k # 1.7} such that the same relations as
above hold for s, and s
(b-3) A; contains no common variable with 4.
Then, there exists a definition formula set D for P such that P U {("} is closed with
respect to D,

Proof. Note that there exists an atom A in the body of € s.t. an argument ol A is
a maximal term in the body of (" w.r.t. subterm: ordering relation. Let (' bhe any

10

result of unfolding (" at A and (& be any connected goal in the body of (" of the form
Fy AWX(F; — F5). where F, is a conjunction of atoms. Then. from the hvpothesis.
it can be shown that a similar property to hypothesis (b) holds for (7. Note thal the
number of implicational goals dose not increase by applying positive unfolding and
no global variables are instantiated by applying negative unfolding. Then. again there
exists an atom in the body of (' s.t. one of its argument is a maximal term in the body
of O w.r.t. subterm ordering relation. By induction on the number of applications
of unfolding. a synchronized descent rule can be defined for every descendant formula
of C. Then, from Lemma 3.2. the depth of every term appearing in every descendant
clause of (' is bounded.

Note that the number of different subterms of a term is bounded. Then. [rom the
hvpothesis, the number of atoms appearing in every connected goal in the body of
every descendant formula of (7 is bounded. Thus. P and (" salisly the hypotheses of
Theorem 3.1. Hence, there exists a definition formula set D for P such that P U {(}
15 closed with respect to 1. |

Note that Theorem 3.3 holds for anv nondeterministic choice of synchronized de-
scent rules in the above proof. Note also that any program can bhe modified to satisfy
hvpothesis (a) of Theorem 3.3 by intraducing atoms with = in the body.

Carollary 3.4 Let P be a strongly non-ascending definite clause program and P’ be
a definite clause program such that no predicate appears in both P and P'. Let ' he
a linear term definition formula for P U of the form H — A, A "F"."l_"{ Ay = As). where
the predicates of 4, and A, are defined 1 7 and that of A4 is defined in P'. Suppose
that the following hald.
{a) Hypothesis (a) of Theorem 3.3 holds for every clause [in P.
(b) There exist arguments £; of A; and ¢; of A; such that the following hold.
(b-1) wvars(A; Nvars(Ag=vars({;)Nvars(l;).
{b-2) Either ¢, is a subterm of ¢, ¢; is a subterm of ¢, or vars(f, JNvars(iz)=8.
() No variable in As is instantiated by applving positive or negative unfolding to
successively.
Then, there exists a definition formula set D for U P such that PUPU{C} is closed
with respect to T

Proof. Suppose that unfolding is never applied at 4s. A synchronized descent rule
can be defined by neglecting A5. Since variables in A, are never instantiated. no other
atoms are derived from A4;. Thus, the corollary holds. o

In Corollary 3.4, no restrictions are required on the definition of As. This result
corresponds to that in [3]. Note that any program can be modified to satisfy hypothesis
{c) of Corollary 3.4 by introducing atoms with = in the body.

Example 3.3 The program and the definition formula in Example 2.1 satisfy the

hvpotheses of Theorem 3.3 and Corollary 3.4, if clause s is replaced with the equivalent
clause ;

Ci » member(U,[V|L]) — U=V,
3

In fact, a definite clause program can be obtained, as shown in subsection 2.2,

11

Next., we show an extension of the results shown in Theorem 3.3. Let F be a
nen-ascending definite clause program and ¢ be a definition formula for P of the form
H — AAYX(F, — F;). where A is an atom. and Fy and F; are conjunctions of
atoms. Let [, be the definition clause for P of the form H; « F, for ¢ = 1.2, .If
D; can be transformed into a set of definite clauses which satisfies the hypotheses of
Theorem 3.3, by replacing F, with H;. we can show that FU {C'} can be transformed
into an equivalent definite clause program.

‘I'he above problem is related to the foldability problem in [16]. The foldability
problem is described informally as follows. Let P be a definite clause program and
(' be a definition clause for P. Then. find program P' obtained from F U {C'} which
satisfies the following : for every descendant clause (" of (" in P, there exists an
ancestor clause 1) of (' such that s body is an instance ol s

Proietti and Pettorossi showed some classes of definite clause programs such that
the [oldability problem can be solved [16]. We show that their results are also available

Lo our problern.

A definite clause program P is said to be linear recursive when at most one defined
atom appears in the body of each clause in P. Note that a linear recursive and linear
terin program (clause) is a strongly linear term program (clause).

Lemma 3.5 Let P be a linear recursive non-ascending program and " be a non-

ascending definition clause for £ of the form ff « Ay A Ay A By AL A By where 4,

and A, are defined atoms and Hy.. ... H, are base atoms, Suppose that the following

hold.

(a) For every clause [in P of the form Hp — Ap A By AL A Bl where Ap is the
only defined atom in the body of [. the following hold.

(a-1) Let ty be any argument of Hyp. For every argument Ly of Ap, if ty contains

a common variable with £, then 4 is a subterm of fy.
(a-2) For every argument £, of Ap. il {4 is a subtern of an argument ty of Hp,
then no other argument of Ap is a subterm of £y,
(b) There exist arguments ¢, of A, and &, of A; such that the following hold.

(b-1) vars{ Ay Nvars(A, jJ=vars(f; ivars(d,).

(b-2} Either t; is a subterm of ty, {; is a subterm ol {; or vars(t, JNivars(i;)=0.
Then. from P U {('}, we can obtain a linear recursive non-ascending program which
define the predicate of H by unfold/fold transformation.

Prool. As shown in [16], we can get a solution of the loldability problem for P and €.
Then, obviously, a lincar recursive program is ohtained O

Example 3.4 Let P be a linear recursive non-ascending program as follows.
"y subseq([],L]).
Cy ¢ subseq([X|LL[Y[M]) « X =Y A subseq(L,M).
(5 : subseq(|X|L].[Y[M]) + subseq([X|L].M}.
Let (' be a non-ascending definition clause for F as follows.
(' : csub{X.Y,Z) — subseq(X.Y), subsey(X,Z).
Then, P U {("} can be transformed into a linear recursive non-ascending program as
follows.

esub{[1.Y.Z).

csub{[A|X][B[Y].Z) — A = B A cs{AX.Y.2).
esub{[A|X].[BIY].Z) « csub{[A|X].Y.Z}.

esl AXY[B|Z]) — A = B A esub(X.Y.Z).
cs{ ALY [B|Z]) — es(AX Y Z).

Though Proietti and Pettrossi showed one more class [16]. we will not discuss this

here.
Now. we get the following theorem.

Theorem 3.6 Let F be a lincar recursive non-ascending program and (' be a linear
term definition formula for P of the formn H «— A, AVX(A; A By — A3 A By), such
that the following hold.
{(a) Hypothesis (a) of Lemma 3.5 holds for F.
ib) Let 5 be the sel of all the arguments of A;, and 5, be the set of all the arguments
of A, and B, for i = 2,3, Then, there exist two terms {; and s; in some S; ({; #
s;,0 = 1.2 or 3) such that the following hold.
(b-1) there exists a term & in Sy () # &) such that
vars(S Nvars{S; J=vars(t, JNvars(i;). and
either ¢, is a subterm of 1, £ is a subterm of t; or vars(t;)Nvars(i;)=0.
{(1-2) There exists a term & of S; (£ k) such that the same relations as ahove
hold for =; and =,
(b-3) S, contains no conunon variable with 5.
Then. there exists a dehnition formula set T for P such that P U {("} 15 closed with
respect to 10,

Proof. Obvious from Theoremn 3.9 and Lenuna 1.5, |

Note that it is easy to extend the result of Theorem 3.6 to allow the conjunction
of an arbitrary number of atoms to appear in the body of the definition formula. Note
also that it is possible to extend the result to allow arbitvary definition of A5 and By,
in a similar way to Corollary 3.1

3.3 Further Consideration about Syntactic Restrictions

As described in 3.2, the application of unfolding may be prohibited in Kanameori and
Horiuchi's framework. In this subsection, we discuss some methods to avoid prohi-
bition, though we do not necessarily give the precise syntactic restriction. (Due to
space limilations, we do nol refler Lo the terminatling property, though several sufficient
conditions are known to guarantee it.)

(1) Universally Quantified Variables Appearing in Positive Atoms

Positive unfolding can nol be applied to definite formulae at positive atoms with uni-
versally quantified variables. Thus, we have the following two problems.

13

{2) Svunchronized descent rules can not be defined when universally quantified vari-
ables are instantiated by negative unfolding.

(b) We can not unfold formulae of the form VXA when A is an atom and some
variables in X appear in A.

To avoid case (a), the following restriction is sufficient. When applying negative un-

folding. no universally quantified variable is instantiated. Though the restriction seems

to be strong, most of significant examples of program synthesis can be dealt with under

the restriction.

Case (b) corresponds to the compilation failure in Sato and Tamaki's first order
compiler {19]. They restricted their language as follows. For every implicational goal
F; — F, appearing in a formula, uvar(Fy)2uvar{#3) holds, where uvar(F;} means the
set of universallv quantified variables appearing in £

The above condition iz available for our problem. Note that the application of
positive unfolding does not affect the condition. When applying negative unfolding at
atom A in universally quantified implicational goal (&, the following restrictions are
also required. All the universally quantified variables appearing in A also appear in
some negative defined atom in each result of negative unfolding G, or they are unified
with terms consisting of constants and global variables by reduction w.r.t. =,

We helieve that techniques such as mode analysis are available to guarantee that
every applicable negative unfolding =satisfies the ahove conditions.

(2) Global Variables Appearing in Negative Atoms

Negative unfolding should be applied without instantiating global variables. In some
cases, this restriction mayv be critical. [lowever, we can deal with most of those cases hy
adding positive atoms to the formula such that the global variables can be instantiated
by applj.'ing positive l_mfl:rlding al those atoms. Atoms with predicates which specif}f
dala types (cf. list) are available. For example, with the definitions of *‘member’ and
‘<" i Example 2.1, negative unfolding can not be applied to the definite formula below.
less-thap-all{ X,L) — ¥ Y{member(Y.L) — X<Y).
However, we can apply negative unfolding to the formula below. after positive unfoiding
list(L),
less-Lhan-all{ X, L) — list(L) AV Y[imember{Y, L) — X<Y).

(3) Sato’s Unfold/Fold Transformation

Recently, Sato proposed unfold/fold transformation rules for full first order programs [18].
Their unfolding operation does not require conditions like Kanamori and Horiuchi's.

On the other hand, more complex conditions are required when applying folding. Thus,
when we adopt Sato’s rules in place of Kanamori and Horiuchi's, we need not consider
the restrictions discussed in (1) and (2] above, while some other difficulties are intro-
duced to satisfy the folding conditions.

14

4 Discussion

The work described here is an extension of Pettorossi and Proietti’s work on program
transformation [14, 15. 16]. They formalized the successful unfold/fold transformation
in three ways, and showed that the problem of whether a given program can be trans-
formed successfully or not is unsolvable. They also showed some classes of definite
clause programs which can be transformed successfully. Qur results owe much to their
work. though currently we do not know whether our problem is decidable.

Proietti and Pettorossi also showed that any definite clause program can be trans-
formed successfully by performing suitable generalization of the atoms to be folded [15,
16]. However, the generalization technique is not available for our problem. Folding by
a definition formula obtained by generalizing atoms with universally quantified vari-
ables may not satisfy the conditions for folding [7]. since universally quantified variables
can not appear in the head of the formula.

Proietti and Pettorossi also showed a trausformation procedure called loop absorp-
tion [15, 16]. In this procedure, they found clause ' and its descendant clause ¢ such
that (""’s body is an instance of ("'s (or a subset of ("'s body 15 identical to (s body).
Then, a new definition clause whose body 1s identical to that of (7 is constructed.
Theyv also showed a procedure to eliminate unnecessary variables [17). We can mod-
ifv our naive procedure deseribed in 3.1 by incorporaling the loop absorption and the
elimination of unnecessarv variables. Programs ohtained by the modified procedure
are expected to he more efficient and have less code than those abtained by the naive
procedure,

There have been several studies on logic program syuthesis [rom universally quan-
tified implicational formulae [3. 1, 19]. Our work is closely related to that of Dayan-
tis [3]. There. program synthesis was also considered from formulae of the [orm
H — %X(A — B). They showed that a class of those formulae can be transforined
mto definite clauses by deductive derivation. They also discussed the generality of
the class using several examples. Their deductive method is analogous to unfold/fold
transformation and the derivation processes almost correspond to those by our pro-
cedure when our procedure does not apply positive unfolding. They also mechanized
their derivation processes. Our notion of the sonndness of the application of unfolding
is ensured by part of their syntactic restrictions on the arguments of formulae, though
we have pot discussed how this is ensured. However, the classes we have shown are
still wider than those they showed after we incorporate those restrictions.

Sato and Tamaki showed a deterministic algorithm to transform logic programs
with universally quantified implicational formulae into definite clause programs [19].
I their method, unfold /fold transformation is applied to universal continuation forms.
Their method can be applied to a wider class of first order formulas than ours, while
the results of the compilation are not necessarily efficient and the code sizes of those
results increase generally.

15

5

Conclusion

A logic program synthesis method from some classes of first order logic specifications
have been shown. The method is based on unfold/fold transformation. Some classes
of first order formulae which can be transformed into definite clause programs by
unfold /fold transformation have been shown.

A cknowledgments

1 would like to thank Tadashi Kanamori and anonymous referees for helplul comments.
I would also like to thank Koichi Furukawa and Ryuzo Hasegawa for their advice, and
Ihazuhiro Fuchi for giving me the opportunity to do this research.

References

1]

2]

[3]

[4]

[9]

Burstall. R.M. and J.Darlington, “A Transformation Svstem for Developing Re-
cursive Programs”, JLACM, Vol.24, No.l. pp.44-67, 1477.

('lark, k.L. and §. Sickel, “Predicate Logic: A Calculus for Deriving Programs”,
Proc. of 5th International Joint Conference on Artificial Intelligence. pp.419-420,
977,

Davantis. (5., “Logic Program Derivation for a C'lass of First Order Logic Re-
lations”, Proc. of 10th International Joint Conference on Artificial Intelligence,
914, Ttaly, 1987,

Frihourg, L., “Extracting Logic Programs from Proofs that Use Extended Pro-
log Execution and Induction”, Proc. of Tth International Conference on Logic
Programming, pp.685-699, Jerusalem, 19940

Hausson, A. and Tarnlund, 5.A., *A Natural Progranming Caleulus™, Proc. of
Gth luternational Joint Conference on Artificial lntelligence, pp.343-355, 1979,

Hogger, C.J.. *Derivation of Logic Programs", J.ACM, Vol 25, pp.372-392, 1951,

Kanamori, T. and K. Horiuchi, “Construction of Logic Programs Based on Gen-
eralized Unfold/Fold Rules”, Proc. of 4th International Conference on Logic Pro-
gramiming. pp.744-T68, Melbourne, 1987.

hawamura, T., “Derivation of Efficient Logic Programs by Synthesizing New
Predicates”, Proc. of 1991 International Logic Programming Symposium,
pp.611-625, San Diego, 1991.

Komorowski, J., “Partial Evaluation As A Means for Inferencing Data Structures
in An Applicative Language : A Theory And Implementation in The Case of
Prolog”, Proc. of the ACM Symposium on Principles of Programming Languages,
pp.255-267, 1982

[10)

[11])

[12]

[13]

[14]

[15])

| L6]

17

Komorowski. J.. “Towards a Programming Methodology Founded on Partial De-
duction”, Proc. of the European Conference on Artificial Intelligence, pp. 401~

409, 1990.

Lau, k.K. and S.). Prestwich, “Top-down Synthesis of Recursive Logic Proce-
dures from First-order Logic Specifications™, Proc. of Tth International Confer-
ence on Logic Programming, pp.667-634, Jerusalem, 1990.

Lau. K.K. and S. D. Prestwich, “Syuthesis of a Family of Recursive Sorting Proce-
dures”, Proc. of 1991 International Logic Programming Symposium. pp.641 653,
San Diego, 14991,

Liovd, J. W.. “Foundations of Logic Programming”, Springer-Verlag. 2nd Edi-
tion, Berlin, Heidetherg, New York, 1987,

Pettorossi, A. and M. Proietti, “Decidability Results and Characterization of
Strategies for the Development of Logic Programs”, Proc. of 6th International
Conference on Logic Programming, pp.5349-553, Lishoa, 1954,

Proietti, M. and A. Pettorossi, “Construction of Efficient Logic Programs by
Loop Absorption and Generalization™, Proc. of the Second Waorkshop on Meta-
programming in Logic. pp.57 81, Leuven, 1990.

Proietti, M. and A. Pettorossi, “Synthesis of Fureka Predicates for Developing
Logic Programs”, Proc. of Jrd Luropean Symposinm on Programmiiug. Copen-
hagen, LNC'S 432, Springer-Verlag, pp.307-325.1990.

Projeiti, M. and A. Pettorossi, “Unfolding - Definition - Folding, In This Or-
der, For Avoiding Unnecessary Variables [n Logic Programs™, Proc. of drd In-
ternational Symposium on Programming Language [mplemcentation and Logic
Programming, Passau, LNCS 528, Springer-Verlag, pp.347 338,1991.

Sato, T.. “An Eguivalence Preserving First Order Unfold/fold Transformation
System”, Algebraic and Logic Programming, Proceedings. LNUS 163, Springer-
Verlag, pp. 173138, 1990.

Sato, T. and H. Tamaki, “First Order Compiler : A Deterministic Logic Program
Synthesis Algorithm”, J.Symbolic Computation, Vol.§, pp.605-627, 1934

Tamaki, H. and T. Sato, “Unfold/ Fold Transformation of Logic Programs", Proc.
of 2nd International Logic Programming Conference, pp. 127138, Uppsala. 1954,

17

