ICOT Technical Report: TR-0747

TR-07F47

A Portable and Reasonably Efficient

Implementation of KL

by
T. Chikayama

March, 1992

© 1992, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 ~5

I C DT 4-2% Mita 1-Chome Telex 1C0OT 1320064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Portable and Reasonably Efficient Implementation of KL1

Takashi Chikayama
Institute for New Generation Computer Technology

Abstract

An implementation scheme of & concurrent logic programming language KL1 by compiling
inte C language code is investigated. The implementation can be portable with this scheme,
An experimental implementation with the scheme also showed reasonable efficiency.

This paper describes merits of the scheme, difficulties in efficiency and sclutions to the
efficiency problems. An cutline of the experimental implementation and preliminary evaluation

results are also given,

1 Introduction

A concurrent logie programming language KL1[4] was chosen as the interface between the hardware
and software of the parallel inference system under development in the Japanese Fifth Generation
Computer Systems project. The language has been proved to be a practical tool of parallel pro-
cessing software research through the development of the operating system PIMOS[Z] and various
application software on an experimental parallel inference machine, Multi-PSI[3]. Other imple-
mentations on more powerlul parallel machines are ongoing.

Sueh imp]&m-.hrm.imm, IH’]H‘H\-‘I‘!T:_ have a serions diﬁar]\rﬂntage that I!.hp:—:y are not porl.s.hle; al-
theugh they are efficient, they run only on specially devised hardware. A portable byte-code
imiplementation for software development does exist besides, bul s too ineflicient for practical
experimentations. To solve the problem, a scheme of compilation from KL1 to © s investigated.
As C, one of the languages whose implementations are most widely available, is chosen as the
imtermediate target language, the implementation beeomes quite portable. An experimental im-
plementation also showed reasonable efficiency.

In what follows, the merits of the scheme, difficulties of efficient translation of o language
like KL1 into C and our solutions to the problems are given in the next section, an outline of
the experimental implementation 18 drawn in section 3, and preliminary results of evaluating the
implementation s given i 4 followed by concluding remarks,

2 Pros and Cons for Compilation into C

This section first points out merits of the scheme to compile KL1 programs into C code. Then
difficulties in obtaining reasonable efficiency with such a scheme are investigated. Finally, our
golutions to the efficiency problems are deseribed.

2.1 Merits of Compilation into C

There are varicus merits in the scheme of compiling inte €, in which most important ones are the
following.

Portability The greatest merit is that the implementation becomes quite portable, As reason-
able C compiler can be found on almost any hardware and operating systens these days, porting
such an implementation usually requires re-compilation only.

Low-Level Optimization Another important merit is that some C compilers provide very good
low-level optimization. Il machine code were to be generated directly, the compiler must be aware
of the characteristics of the hardware architecture to obtain reasonable performance. By letting
' compiler take care of such low-level wsues, the language implementation can almost completely
forget aboul them.

Linkage with Programs in Other Languages Still ancther important merit is that linking
KL1 programs with programs written in C becomes quite easy. In addition, in Unix-like systems
where C is “the” language, most other programming fanguages provide certain interface with C
programs, Thus, KL1 programs can also be linked with them without much effort.

2.2 Efficiency Problems

Aldthough compiling programs of another language into language C has the above-mentioned merits,
it is not easy to realize efficient implementation when the implemented language is not sirmilar to
C, as in case of KL1. Typical efficiency problems are as follows.

Costly function calls The language C and its implementations are designed having in mind
that functions are not too small. Although overhead of the function invocations themselves and pa-
rameter passing are made rather small in recent implementations, dividing programs into functions
makes program analyvsis more difficult, resulting in less optimal object code. When computation
required within one funclion invocation is large cnoegh, Lhe cost s nol problematie. However, like
in Prolog, predicates of KL1 is usually very small, usually as small as one line of C. Many of them
are recursive, prohibiting inline expansion. If each predicate of KL1 were compiled in to a function
of ©, the cost of function calls would dominate the tolal computation cost.

Inability to control register allocation In implementations of languages like KL1, accesses
to certain global data, such as the heap top pointer, are made very frequently. [t might be besi to
put such data on some dedicated register if the machine code is to be generated directly, In most C
implementations, however, such control of register allocation is not possible. Some compilers (such
as gee) allow this, but wsing the feature is disadvantageous Jor porlability; oblaining reasonalble
efficiency on many systems is an important part of “portability”.

Cost of provision for interrupts A multi-processor implementation should process interrupts
from ather processors. luterrupts can be handled as “signals” in Unix-C systems. Interrupt
handling requires operations such as allocation of memory area, enqueueing of goals er giving
values to variables. Data accessed in these oprations are frequently referenced and altered also in
normal processing within a processor. Thus, certain locking on data or inhibition of interrupts will

be required, which are usually quite costly in conventional operating systems.

Large object code size When compiled into C and then into the machine code, the object code
size tends to become very large, sometimes resulting in performance worse than interpretive code,
due Lo increase of the object code working sel.

2.3 Solutions

Chir solutions to the above-described efficicncy problems are as follows.

Costly function calls To avoid function call costs, ope whole “module” that defines a set of
elosely related predicates, rather than one single predicate, is compiled into one function of C. As
far as predicates within the same module are calling one another, no function calls will be made.
Arguments can be passed through vaciables local to the function, which might he allocated en

machine registers by C compilers.

pointer/immediate data tag

Figure 1: Tagged Pointer

Inability to control register allocation ‘To make accesses to crucial global data with lowest
cost, such data are cached to local variables, which C compilers may allocate on registers. Even if
not encugh registers are available, accesse to local variables are cheaper than to global variables

with most modern processor architectures.

Cost of provision for interrupts Signal handlers are made to set a certain flag, which will
be examined at certamn timing convenient for normal processing. If the lag 15 found to be set,
then the interrupt handling routine will be invoked. This will synchronize interrupt handling with
normal processing, without always preparing for interrupts. Further, this flag check is combined
with amcther mandatory check: heap limit check to invoke the garbage collector when needed.
Thus, this synchronization can be made virtnally without any additional cost. See the following

section for details.

Large object code size As modes of variable references are much more easily found for KL1
programs than in Prolog, the code size will not become too large without global analysis. By
generating code to call run-time routines for exceptional cases, the cbject code size can be made
reasonable, while norinal cases can be expanded in line. Nevertheless, the code size may be still
too large for software of practical size. This prnHE:J‘n miglﬂ. be solved by a hybrid implementation
combining native code compilation with source code interpretion or compilation to byte-coded
abstract maching eode which will be emulated.

3 Experimental Implementation

This section briefly describes an experimental implementation to evaluate the schemse

3.1 Data Repras&ntation

Every KL1 term is represented as a 32-bit word (Fignre 1), The upper 30 bits are used as the
pointer or immediate dala and the remaining lowest 2 bits are used as data type tags.
T'he 2 tag bits are used to distinguish the following types.

Variable Reference: The pointer part has the address of a variable value cell, which may e
either instantiated or not. Uninstantiated variables are represented as a word with the

vatiable reference tag, pointing to itself, as in WAM.

Atomic Data: For atomic data, 2 more lowest bils of data part are nsed as the tag extension,
which distinguish symbolic atom, integer or floating point data.! The remaining 28 bits
represents the value.

Comns: The pointer part has the address of a two-word memory block, which holds car and <dr of
the cons cell,
Functor; The pointer part has the address of a memory block of a functor structure. The first

word of the block contains the funcior identifier, from which number of arguments can be
known. The rest of the black are the argument values.? Any special data structures, such

!Flaating point numhers and symbalic atoms are not fully implementbed in the experimental Bnplementation.
#Functors alan are not fully implemented yot,

predicate descriptor

— code

pred. number

of arguments

arguments

Figure 2: A Goal in a Goal Stack

as character strings, I/O streams, or “merger” structure can be identified by giving them
special functor identifier.®

3.2 Goal Management

Possibly executable goals are put into a goal stack. A goal stack is a memory block allocated in
the heap area. In cach reduction step, the top-most goal is popped up from the stack, reduced
according to the program, and resultant children goals, if any, are pushed back into the stack.

An entry of a goal stack has, as its first word, & pointer to a predicate descriptor. The predicate
descriptor contains a pointer to the module code (a C function), the predicate number within the
meodule, and the number of arguments. The rest of the block contains the arguments of the goal
{Figure 2).

There can be multiple goal stacks i the heap, each corresponding to one prierity level. The
priority mechanism has been found to be very useful through application software research on the
Multi-PS[system in describing various algorithme including speculative computation

When one goal stack averflows, another one is allocated in the heap and they are linked together.
The linkage is actually made by pushing in its bottom a special goal which changes the goal stack
pointer. Thus, no explicit check is required Lo detect emply goul stack., Overflow check, on the
aother hand, is needed.

An uninstantiated variable with goals awaiting for its instantiation is also represented by a
peinter with the variable referenee tag, The pointer part references a memary block that describes
a list of suspended goals. The first word of the block contains special indicator which can be used
to distinguish from normal instantiated variables. When such a variable is instantisted during
unification, goals suspended should be waken wp and pushed into the corresponding goal stacks.
Thizs may require allocation of new goal stacks, which in turn may need garbage collection. To
avoid this, if more than one goals are suspended, a special goal for awaking such goals will be
pushed into the current goul stack. Thus, one unification will allocate at most only one new goal

stack in the heap.

3.3 Heap Area Management

"L'he heap area is organized as shown in figure 3.
The heap area is uscd fromn both sides. Memory allocations are usually made at the heap

pointer downwards, At the end of each reduction, whether the heap pointer exceeds the heap limit
or not is checked out. If it does, the garbage collection routine will be called in normal cases.

Built-in mergers, that allow mossages to pass through with constant delay for arbitrarily nomber of inpat

streams, is a crucial feature of the KL1 langusge.
4 The privrity mechanism is not implemented yet on the experimental implement ation.

~— heap pointer

____________ -+— heap limit pointer

-+— system heap pointer

Figure 3: Heap Area

The current garbage collector adopts the copying scheme with certain modification to cope with
directly referenced structure elements.

Exceptional allocations, such as allocation of & new goal stack, is made from the other side
upwards at the system heap pointer. Thus, the heap pointer can be kept cached in a local varable
even when such allocation is required.?

When svme allocation s made at Lhe bottom, nol only the systemn heap peinter but also the
heap limit pointer is moved upwards by the same amount to keep a certain amount of gap between
the systern heap pointer and the heap limit pointer. The size of the gap is made greater than
the maximum amount of memory allocation in one reduction from both sides,® so that the area
allocated from both sides will never collide with each other during one reduction.

3.4 Interrupt Handling
When some interrupt (actually a signal in Unix) takes place, the interrupt handling routine will
set some flag in a global variable and modifies the heap limit pointer so that the next heap Hmit
check at the end of reduction will find it. The check routine can examine the flag and tell whether
a garbage collection or interrupt handling (or both) is needed.” Thus, no extra check of interrupts
is require-':rll t‘]l]ring normal pmceﬂsing,

The same mechanism can be used to notify newly available goals with higher prierity than the
\'.'l.ll'l'l‘.‘]'.l[.l}' pmcr&scd ll.'.\l'.l.CE.‘s

3.5 Compilation

A prototype compiler from KL1 to C is written in Prolog.® It generates simple clause indexing
code, but no global analysis whatsoever is made.
One module 15 compiled into one function of C, which hes the following parts.

& Jump according to the top-most goal to the top of the predicate.

s Statement blocks corresponding to predicates defined in the module, each of which contains
the following,

- Statements to pop geal arugments to local variables.

%Mote that simple unification may require allocation of new goal stack for goals awaken by variable instantiation.
8This can be controlled during compilation,

T Interrupt handling is not implementsd vet.

¥ This can happen during unification.

f"'.|.":|'|.-|.= crrrent cnq;npqlu' 15 ;inmj.mblz ol l:ul:upilin-_i; almosi a.n:'l.ll.i.:ls Lol “nadve reverse".

:- modulel(nrev),

a([l, ¥, Z) := ¥ = &.

a([WlXl, ¥, WZ) ;- WZ = [WIZ], a(X, ¥, Z).
n([l, R} := R = [].

al[EIT], R) := true | nfT, RT}, a(RT, [E], R).

Figure 4: Source Code of the Tested Program

— Statements to index a clause.

— Statements corresponding to the bodies of elanses, including memery allocations, unifi-
cations, goal creations and possibly a tall recursive invoecation within the module. When
a predicate within the module is to be called, arguments are set up in local variables
and the control s tranferred to the top of that predicate’s part, after checking the heap
limit. Otherwise, when the recursive call is to go outside of the module or when no
body goal exists, the control transfers Lo the last part of the function.

— Statements for suspeusion and failure, This part is jumped in from the indexing code.

» Statements for proceeding when no invocations of predicates within the module is in the
body of the selected clanse. First, the heap limit is checked and the garbage collector or the
interrupt handler will be invoked. Then, the top of the goal stack is examined, and if the top-
most goal has the predicate descriptor with the pointer to the same module as one currently
running, the control ie tranferred back to the predicate diepatching part. Otherwise, the
function returns and the top-level routine will dispatch to the function of the module for the
top-mest goal.

The statements for unification expanded inline is only for cases when one of the arguments
of the unification!? is an uninstinatiated variable without goals awaiting for its instantiation. All
other cases are treated by an invocation of the general unification subroutine.

4 Performance Evaluation

4.1 Systems

The implementation has been ported to the following systems.
Sun-3,/260 running Sun UNIX 4.2 Release 3.6, compield with GCC.
SparcStation 1+ running Sun(S Release 4.1.1, compiled with manulaclurer-provided CC,
SparcStation 2 running SunOS Helease 4.1.1, compiled with manufacturer-provided CC.

Sequent Syrmmetry running Dynix V3.0, compiled with GCC.

4.2 Tested Program

The only program tested so far is “naive reverse” of Lhirly elements. The source code is as given
in Figure 4.

4.3 Execution Speed

The execution 5peﬁd is measured 1:_1{ running thirt}' element naive reverse Programs rep-eat.ed 2,000
times, which requires 992,000 reductions. The execution speed iz greatly affected by the heap size,
Lut best figures are as shown below.

Pl hand side, in the current compiler.

HEirs

500 //”T\
00 / | B ~C

&00

500 - N"sq0

400

30

551+
200 ——.
"
E"‘-—-———- Sun-3
100 e — L Svmmetry

SN N

B '2“ 2!.# 115 zll' 2Il 2!! 22I] 2.'21 22‘2 223- l:lj"k!ﬂ

Figure 5: Effect of Heap Size Lo Execution Speed

System Performance
“Bun-i | 206,809 LIPS
551+ 455,045 LIPS
859 861,111 LIPS

Symmetry | 116,431 LIPS

The tighest loop of the program is in the “append” predicate. The machine code traces of the
loop are given in appendices.

As stated above, the performance figures are affected greatly by the heap size {Figure 5). With
stnall heap, frequent garbage collection degrades the performance, With large heap, on the other
hand, increased working set seems to make problems; frequent cache miss hit may be making
systern run slower. This tendency is found monst strong with SparcStation 2, where the speed
ratio of the cache and main memory is larger.

In case of SparcStation 2, the highest figure obtained was about 861 KLIPS with heap size 32
KB, which is about half the size of the cache memory. As the current implementation uses copying
scheme for garbage collection, it means that the whole heap area almost fits in the cache, With
8,192 KB of heap, the performance degrades to about 4789 KLIPS, which is Jess than 56% of the
highest figure.

This seems to indicates that ineremental garbage collection such as MRB[1] is profitable in KL1
implementations, The performance degradation of 56% means almost 80% increase in execution
time. Ewven if instruction steps were to be increased by incremental garbage eollection by 50%, it
would pay off if the working set size could be kept much smaller by the effort.

The MRB schermne was not used in this experimental implementation mainly because one extra
tag bit needed for the scheme could not be allocated in a tagged word without slowing down
processing drastically. Specially divised hardware architectures, like Multi-PSI or PIM's have no
problem here.

More compilation time analysis should ensble reusage of memory area without run-time anla-
yais. A sample coding {(by hand} assuming such an analysis showed that the performance of 1,048
KLIPS on SparcStation 2.

4.4 Object Code Size

The object code sizges generated by the C compiler iz shown in Table 1. These figures include code
for cotry and leaving C functions. The sizes are not prohibitively large, but if a large programs
are to be run on the system, using slower but much mure compact interpretive or byte-compiled
code together with native code might be profitable,

Table 1: Object Code Size of Naive Reverse

System Text Size Data Size
Sun-3 516 bytes 24 hytes
S51+ & 2 BOO bytes 24 bytes
Symmetry 536 bytes 24 bytes

5 Conclusion

A scheme for portable implementation of KL1 on systems with conventional architecture is de-
scribed. The scheme employs the strategy to compile KL1 source code into C for increased porta-
bility, rather than directly generating machine code taillored for each machine architecture. The
preliminary implementation shows that reasonably efficient implementation is possible even hy
such a scheme,

Furihier eflorls in various direclions are vel lo be made for a syslem practical for parallel

software research, including the following.
 Full implementation of various language [eatures
+ Multi-processor implementation

® Providing tools to supporl software development

References

[1] Takashi Chikayama and Yasunori Kimura. Multiple reference management in flat GHC. In
Proceedings of 4th International Conference on Logic Programming, 1987.

[2] Takeshi Chikayama, Hiroyuki Sato, and Toshihiko Miyazaki. Overview of the parallel inference
machine operating system (PIMOS). In Proceedings of FGCS'88, pages 230-251, Tokyo, Japan,

1988.

[3] Yasutaka Takeda, Hircshi Nakashima, Kanae Masuda, Takashi Chikayama, and Kazvo Taki.
A load balancing mechanism lor large scale mulliprocessor systems and its implementation.
In Proveedings of FGOS'88, Tokyo, Japan, 1988, Also in New Generation Compaoting 72, 3

(1920}, pp. 172-195.

[4] Kazunori Ueda and Takashi Chikayama. Design of the kernel language for the paralle] inference
machine. The Computer Journal, December 1990,

append_3.loop:
deref_and_switch(argd, ...);
1 Li0: btst #1,42
2 jne L60O
3 L60: btst #0,d2
4 jne L20
work0 = makecons(allocp);
5 movel a2,di
i) addgl #2,d1
*allocp++ = car.of (arg0);
7 movel d2,a4
8 movel a4@{-2),a2@+
workl = makeref(allocp);
9 movel az,d3
tallocpt+ = workl;
10 movel aZ,ald
11 addgw #4,a2
unify(arg2, work0);
12 movel al,d0
13 meveq #3,d4
14 andl d4,d0
15 jne LZ23
18 empl ald,al
17 jeq L22
18 L22: movel di,aid
arg0d = cdr_of (arg0);
19 movel d42,ad
20 movel ad@(2),d2
arg? = workl;
21 movel d3,al
execute(append 3 loop);
22 cmpl heaplimit,al
23 jes L10

A Trace of append loop on SUN-3

sargl has REF or ATOM tag?
;na, branch

;argl has CONS tag?

;yes, den’t branch

:heap top pointer to workD
sput on CONS tag

;argl to ad reg
;ear of it to heap top

;heap top pointer to workl

;make self reference
sadvance heap pointer

jexamine arg

;prepare tag mask

sget tag part of arg

;f RET, don't branch

1iF self referencing var

ido branch

;store new cons to value cell

;prepare new argll for recursion
i by taking cdr of argh

snew arg? will be the new variable

icheck heap overflow
;with no problem, loop

The identifiers in the souree program are slightly modilied for readability.

append.3.loop:
deref_and svitch(arg0, ...);
I Lei: testl $2.%ebx
2 je L18
3 testl $1,%ebx
4 jne L20
work0 = makecons(allocp);
b leal 2(%esi), Yeax
*allocp++ = car_of (argd);
fi movl -2(%ebx),Nedx
T movl Hedx, (¥esi)
& addl $4,%esi
workl = makeref(allocp);
o movl Hesi,-4{}ebp)
*allocpt+t = workil;
10 movl Yesi, (Yesi)
11 addl %£4,%esi
unify(arg?, work0};
12 testl $3,-8(%ebp)
13 jne L23
14 mowl -B{}E.a'hl:l:l , fedx
15 capl (Yledx) , Kedx
16 je L22
1T L22: wmavl -B(%abp), ledx
18 movl Yeax, (Yedx)
argd = cdr of(arg0);
19 movl 2({ebx), lebx
arg?2 = workl;
20 mevl —4(Yebp), ledx
21 movl Wedx,=8(lebp)
execute(append _3_loop);
22 cmpl heaplimit,fesi
23 jb L61

10

B Trace of append loop on Sequent Symmetry

;argl has REF or ATOM tag?
;no, don’t branch

;argl has CONS tag?

;yes, don't branch

;heap top with CONS tag to workD

;Eet car of argl)
smove it to heap top
;advance heap top pointer

sheap top pointer to workl

;make self reference
jadvance heap pointer

;arg2 has REF tag?

syes, don’t branch

iload arg? to rog

;arg? is self referencing?
i¥es, do branch

iload work(to reg

istore new cons to value cell

ilet argl be edr of argld

iload workl to reg
istore to arg?

rcheck heap overflow
iwith no problem, loop

The identifiers in the souree program are :insllt.ly modified for rm:!abi]ity.

C Trace of append loop on SparcStations

append. 3_loop:
deref_and_switch(argd, ...);

work(

1 L¥14: aendec ¥i5,2,%g0
2 be LY17

3 andcc %i5,1,%g0
4 bne,a LTTO3E

= makecons(allocp);

*allocp++ = car_of (argl);

workl

mev 17,%iE
1d [4i5-21 ,%eT
add %i4, z.%i0
st YoT, [Hig]
inc 4,%i4
makeref (allocp);
10 mov #id,hiz

||'LCE¥}I-'--IC-‘JI'-“

*allocp++ = workl;
unify(arg2, work0);

argd

arg2

11 mev %il,Ni3

12 andcc i3, 3,%g0
13 st %iz, [hi4l

14 btne LYTO22

15 ine 4,%i4

16 1d [%4i2].,%10

17 emp W10,%i1

15 be,a LYLG

14 st %io, [%i3]

= cdr_of (argld);
200 L¥1i6 1d [WiB+2],%4i3
= workl;

execute(append 3 leep) ;

20 sethi %hi(_heaplimit), il1

21 14 [W1l1+%lef{ heaplimit}] 11
22 mew HiZ,¥il

23 emp ig, %11

24 btlu ,a LYls

25 moy Hid,%ib

:argl) has REF or ATOM tag?
;no, don't branch

;argl has CONS tag?

;yes, don't branch

;delay slot notl executed

‘,gfet. car of a.rgﬁ

;make cons pointer

istore car of argl to heap top
;advance heap top pomter

sheap top peinter to workl

itest argl

swhether it has REF tag
;store work] to heap top
;arg? is REF, don’t branch
snerement heap pointer
sget contents of value cell
;self reference?

iyes, do branch

;store value {in delay slot)

stake cdr of argd

:load heap limit

;on a register

;eet up arg 2

scompare with heap pointer
:branch if no problem

;set up argl (in delay slot)

The identifiers in the source programn are slightly medified for readability.

