ICOT Technical Report: TR-739

TR-739

A Correct Top-Down Proof Procedure
for a General Logic Program

with Integrity Constrainis

by
K. Satoh & N. Iwayama

February, 1992

© 1992, 1COT

Mita Kokwsa Bldg. 21F (03)3456-3191 -5

| C DT 4-28 Mita 1-Chome Telex ICOT 132964

Minato-ke Tokyo 108 Japan

Institute for New Generation Computer Technology

A Correct Top-Down Proof Procedure
for a General Logic Program
with Integrity Constraints

Ken Satoh. Noboru Iwavama
Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokvo 108. Japan
ernail:ksatohQicot.or.p. iwayamaQicot.or.jp

January 28, 1992

Abstract

We present a correct top down procedure for every general
logic program with integrity constraints. Recenlly, stable model
semattics [4] of logie programs was proposed and has been in-
vestigated intensively, Although there are coreect boftom-up
procedures for evers general logic program [10. 3, 12] based on
stable models. there are no proposed correct lop-down proce-
dure for every general logic program. Qur proposed procedure
is correct ot only for suecessful derivation but also for finite
failure, This procedure is an extension of Eshghi’s procedure [2]
which is rorrect for every call-consistent logic programm. and can
be regarded as a combination of the ancestor resolution [8] and
consistency checking in npdates of implicit deletions [11].

1 Introduction

Recentlv, stable model semantics was proposed for an alternate seman-
tics of general logic programs |4]. The semantics reflects episterc
character of negation in logic programming and is related to the ex-
isting systems of nonmonotonic reasoning such as Default Logic and
Autoepistemic Logic. Moreover. the semantics can be used as a formal
basis of abdnetion in logic programming [2. 5]. So, the semantics is
very useful for representing various non-deductive reasoning in terms
of logic programming,.

However, there is a prohlem of computation for stable model se-
mantics. Although some have proposed bottom-up procedures which
compute stable models for every logic program (10, 3, 12|, only Eshghi
and Kowalski [2] proposed a top-down procedure which is not correct
fur every logic program but a call consistent logic programs. Major
difficulty of top-down procedure comes from its locality whercas stable
model semantics has a global property. In general, we must search every
rule in a logic program to obtain a stable model. Top-down procedure,
however, searches only rules relevant for a query.

To solve the problem. some people are working on a modification
of semantics which fits to Eshghi and Kowalski's procedure |7, 6.
Although this approach seems interesting, there are still arguments
which semantics is best, In stead of this approach, this paper goes
into the other direction. That is, we stick to the original stable model
semantics and tryv to fix Fshghi's procedure.

A solution from this approach is as follows. Firstly, we guarantee
that a considered logic program has alwavs a stable model by checking
consistency in accordance with addition of rules. Secondly. we pursue
a procedure which answers “ves” {if stopped) if there is a stable model
which satishes a query and answers “na” {if stopped) if there is no stable
model which satisfies a query. In our opinion, Eshghi's procedure has
the problem on correctness hecause it does not search rules which are
actually relevant to query.

Consider the following example in [2].

P~y (1)
v ~p (2)
req (1)
F— (4)

If we ask «— p then Eshghi's procedure answers “yes” since the
procedure only considers rules (1) and (2). However, if pis true, then g
must he false and the rule (3115 no more than applicable and it leads to
incomsistency by the rule (1), As far as we know. this phenomenon was
firstly observed by Sadri [11] and called “implicit deletion™. Sadri also
gave a procedure which checks integrity constraints by implicit deletion
and proved its correctness. We use Sadri’s idea to infer that rules (3}
and (4) are also relevant to the query « p.

Then. our procedure becomes a combination of ancestor resolu-
tion [8] and consistency check adapted from [11]. Concerning ancestor
resolution, we use it in a different manner and for a different purpose.
We 1se ancestor resolution in a different manner because rules (clauses)
in a logic program is directed and we do not consider its contraposi-

tives. We use ancestor resolution for a different purpose because we
want to detect consistency instead of inconsistency.

Moreover, by obtaining this procedire, we automatically obtain a
procedure for onr first purpose, to check consistency for added rules. It
is because this procedure contains a subprocedure which checks consis-
tency [or rules relevant to query.

The structure of the paper is as follows. First lv. we give definitions
necessary for our procedure and then we show a top-down procedure
of evaluating a query for a general logic program with integrity con-
straints. Finally, we compare it with related researches.

2 Top-down procedure

We restrict ourselves to considering a propositional case, If we consider
predicate case, we change it into a ground logic program by instanti-
ating every variable to an element of Herbrand universe of considered
logic program to obtain a propositional progratu,

A literal is a proposition or negated proposition of the form ~.
Definition 1 Let | be a literal. We denote the inverse of the literal as
I and define it as follows.

LA is a positive Literal, then T = ~f,
L.;'. ff; 5 f.ll:'y{,‘!fﬂ‘i— hff'l"ﬂf :}f the fm'm w.lr'r, fhf,n_? =I.

We use special literals L and T where | expresses inconsistency and
T = 1.

Lhen, we define a general logic program and integrity constraints.
Definition 2 Lei A be o propositional symbol, and Ly, ... Laim > 0)

be propositional literals. A general logic program consists of {possibly
countably infinie) rules of the form:

."1. — LI 5 '!"'J* reag I"ﬂt*

We vall A the head of the rule and L. ... L, the body of the rule. Let
it be a rule. We denote the head of B as head| 1) and the set of literals
in the body of K as body{ B) and the set of positive literals in the body
of B as pos(R} and neg(R} = {p|~p & hody(7]}

Definition 3 Let Ly, ... L, (i = 0) be propositional lilerals. A set of
integrity constraints consists of (possibly countably infinite) formulas
af the form:

1 - L|. [.-;, .,...Lm.

L1 means inconsistency and we write integrity constraints as the above
form for notational convenience so that we do not have to distinguish
integrity constraints and rules. So, from this point, we call the above
set of rules and integrity constraints a logic program.

Definition 4 A stable model for a logic program is a set of propaosi-
tions M of L @ M and M is equal to the minimal model of T™M where
T™ = [Rlhead{ H) = head{ ') and pos| R} = pos(R')

and neg{ B} — @ where ' € T and neg(Ry M = 0}.

This definition gives a stable model of T which satisfies all integrity
constraints., We say that T' is consistent if there exists a stable model

for T.
Before showing a procedure. we need the following definitions.

Definition 5 Let T be a logic program.

1. A set of resolvents wort. a positive literal p and T, resolve(p, T')
is g sel of such a rule R that:
head{ R) = head(R') and body(R) = body(R’} — {p}
where B € T and p € body(R').

ke

A sel of resolvents wor.t. a negative liferal ~p and T, resolve(~p, T')
is a sef of such a rule K that:

fa) vither head{ R) = L and body(R) = body{ It")
where B & T and head{ B') = p.

(bl or head(R) = head| B') and body(R} = body| R') — {~p}
where ' & T and ~p € body(R').

The second definition of a resolvent for a negative literal corresponds
with a resolvent oblained by “extended™ resolution introduced in [11].
This extended resolution and the resolution for a positive literal ex-
presses “lorward” evaluation of the rule.

Definition 6 Let | be w literal and T be a logic program. Then, o
sel of deleted rules. del({,T), wort. § and T 15 such o rule B that

R eT and & body| K).

Now. we give a derivation procedure. It consists of 4 subprocedures,
dervive(p. A). liberal con{l. A), rule con(f.A) and deleted_con(p, A)
where p 15 a proposition and A is a set of literals which have already
been derived and [1s a literal and H is a rule.

Fach subprocedure returns a set of literals which is a union of A
and literals which are newly found to be derived during the execution
of subprocedure.

In subprocedures, there is a select operation and fail operation.
A select operation expresses a nondeterministic choice among alter-
natives and a fail operation expresses an immediately failure of the
execution. So, a subprocedure succeeds if calls of subprocedures in the
subprocedure is successful, We say a subprocedure succeeds with A if
the subprocedure successfullv returns A.

An informal specification of 4 procedures as follows.

I derive(p. A) mainly searches a rule of p whose body s true. Intu-
itively speaking, if this procedure succeeds, there exists a stable
model which satisfies such a rule,

2. literal _con(l. A) checks consistency of [Intuitively speaking. if
this procedure succeeds, there exists a stable model which satisfies
[, In this procedure. we assume [for ancestor resolution.

3. rule_con(R, A) checks consistency of a rule R. Intuilively speak-
mg. if this procedure succeeds, there exists a stable model which
satisfies /7. This procedure can he used also for checking integrity
constraints for addition of a rule.

4. dedeted_conip. A) checks consistency of implicit deletions of rules
related to p.

derive(p. A) p: proposition; A: setl of literals
begin
if p £ A then return A
elseif p € A then fail
else
begin
select K € T such that head(R) = p
if such a rule is not found then fail

Ap:=A.1:=10
for every | ¢ body(R) do
begin

if [is positive and derive(l, A;) succeeds with A,y
then s := 1 + | and continue
elseif | is negative and literal_con{l, A,) succeeds with A4,
then : := 1 + | and continue
end
if literal con(p, A,) snceeeds with A’ then return A
end
end (derirve)

Literal_con{l. A) I: literal: A: set of hterals
begin
if I € A then return A
elseif | € A then fail
else
begin
Ao ={lJUA, i:=0
for every R ¢ resolve(l, T) do
if rude con(K. A) succeeds with A,
then : := ¢ + | and continue
for every p € {heud(R)|R € del(1.T)} do
if deleted_com(p, A,) succeeds with A
then : =/ + | and continue

i+1

end
return A,
end ([ileral_con)

rulecon(K, A} B: rule: A: set of literals
begin
select (a) or (k)
(a) select | £ hady(1)
if [is positive and literal_con(l. A} succeeds with A’
then return A/
elseif [is negative and derive(l, A} succeeds with A’
then return A’
[1‘]]' .ﬁu =A, i:= [}
for every | € hodyi K) do
begin
if is positive and derive(l. \,) succeeds with Ay,
then i ;= ¢ + | and continue
elseif [is negative and literal_con(l, A;) succeeds with A4,
then i := ¢ + | and continue
end
if iteral con{head| R). A, succeeds with A’ then return A’
end (rule_con)

deleted_con(p, A) p: proposition: A: set of literals
begin

select (4] ur (b

(a) if derave{p, A) succeeds with A’ then return A’

(b} if literal_con(~p, A) succeeds with A* then return A’
end (deleled con)

If we remove deleted_con and do not consider resolvents obtained
by the “forward™ evaluation of the rule, then this procedure coincides
with Eshghi’s procedure [2]. In other words, our procedure is obtained
by augmenting Eshghi’s procedure by an integrily constraint checking
in a bottom-up manner and an implicit deletion checking.

We can show the following theorems,

Theorem 1 [ef T be a consisient logic program. If derive(p, {T})
succeeds. then there erists a stable model M for T such that M &= p.

This theorem means that if the procedure dermre(p, { T }) answers “yes™,
then there is a stable model which satishies a gquery — p.

The following theorem expresses an infegrity constraint check for
an added rule,

Theorem 2 Lot T b a ronsislent logie prograw and B be a rule. [f
rule_con(ft, [T }) succeeds. then T 1R} is consistend,

So, by this theorem. we can use the above procedure 1o check consis-
teney i accordance with addition of miles.

The following are theorems related to the correctness for finite fail-
res,

Theorem 3 Lel T be a logic progran., Suppose thal ceery seleclion of
rules terminates for derive(p, { T} [f there erisls 0 modd M for T
such thal M = p. then there is a selection of rufes sueh that deviee(p (T}

stereeds,

This theorem means that if we can do an exhaunstive search for selection
of rules and there is a stable model which satisfies a querv. then the
procedure always answers “ves”.

Fram the ahove theorem. we obtain the following corollary for a
finite failure.

Corollary 1 Let T be a logic program. [fderiveip, { T} fails, then for
every stable model M for T M = p.

The procedure derive(p. { T} answers “no”. then there is no stable
model which satislies Lthe query, Moreaver, the ahave corollary means
that we can use a finte failure to check if a literal is true in all stable
models since finite failure of derave(p. {1}) means that every stable
model satisfies ~p. From the above correctness for a finite failure, we
can say completeness result for a finite program provided that we can
check a loop of the same call of derive(p. A) to make the execution fail.

Corollary 2 Le! T be a finite logic program. [If there erists a stable

model M for T such that M k= p, derveip, {T}) (wnth loop check)

.‘Iu{'[’t‘t‘dﬂ-.

Corollary 3 Let T be a finite consistent logic program. [f there exists
a stable model M for T' such that M = K, there is a selection of rules
such that rule con{ R, { T} (with loop check) succeeds.

3 Examples

Example 1 Consider the following program.

P~y (1)
g — ~p 2)
e q (3)
P~ (4)

Then, Figure | shows o sequence of calling procedures oblained for
derive(g. {T}).

Example 2 Figure 2 shows a sequence of calling procedures oblained
for derive(p, {T}) for the aboee program by depth-first search. (| We
omil the success message so that the sequence is shown i one page.

In Fignure 2, since deleted con{r. {p. ~q. T} fails. we can detect incon-
sistency with respect Lo+ and come to know that assuming p and ~yg
1= impossible,

4 Related Work

4.1 Eshghi’s procedure

As we have said 0 the section of the top-down procedure, if we remove
deleted con and literal_con for positive literals from the procedure and
do not consider resolvents obtained by the “forward” evaluation of the
rule, 1t is identical with Eshghi's procedure. Although {iferal_con tor
positive literals and “forward” evaluation of the rule is mainly used for
a forward checking of integrity constraint, note that it is also essential
il we consider consistency by implicit deletion sinee we must check
which rule is deleted by assuming new literals in a bottom-up mauner.
Therefore, the overall procedure is needed to check consistency not
only for a general logic program with integrity constraints but also for
a general logic program withou! integrity constraints.

derivelg. {T})
select (2]
Literal con{~p. { T}
rude con((L = =g, {~p. T} (resolvent with {1))
devivelg. {~p. T}
select (2]
literal_con{~p. {~p. T }}
succeeds with {~p. T} (literal con|~p, {~p. T}
Literal_conig. {~p. T}]
rile ccon({r —) {g.~p. T} (resolvent with (3)}
literal con(r g ~p. T1)
deleted_conlr, Jrog.~p. T 1) (for (13)
derivelr, {I'. q.~=p, T}
succeeds with [r.q. ~p. T} (dereee(r {11
succeeds with {r.q.~p. T} (defeted con(r {...})]
succeeds with {r.q.~p. T} (fiteralconir {q.~p. T})
succeeds with {r.q.~p. T} (rale_con((r —), {q.~p. T}])
e leted coni . {r.q'. ~p. T tfor (1))
lete pard comi|mep, {rogo~p. T3 (for {11}
succeeds with {r.q,~p. T} (Lteralcon(~p {...}])
succeeds with {r q.~p, T} (deleted _con(p. {r.q.~p. Tih
succeeds with {r.q.~p. T} ({iteralcon{g. {~p. T }))
succeeds with {r.g.~p. T} (derivelg. {~p. T }]]
succeeds with {r.q.~p. T} (rulecon({L — ~g) {~p. T}))
rule con({q —). {r.q.~p, T}} (resolvent with (2})
Literal .conl(g, {r,q.~p, T})
succeeds with {r.q. ~p. T} (literal_conig, {r.q.~p, T}
succeeds with {r.q. ~p. T} (rule con(ig <) {r.q.~p. T 1))
succeeds with {r.q.~p. T} (literalcon(~p, {TH)
Literal_con{g. {rog.~p. T 1))
succeeds with [r.g.~p. T} (lteral conlq. {r.q.~p. T}))
succeeds with [r.g. ~p. T} (derive(q. { T}

Figure 1: Calling Sequence for derive(g. {T})

9

derive(p, { T}
select (1)
hteralcon{~q,{T})
rule con((p +J. {~g. T}) (resalvent with (1))
leiteral_eon(p. {~q. T })
deleted_con(q. {p, ~¢, T} (for (2))
Literal conl~¢, {p,~q. T}) (for (2))
rule_con{{ L & ~p).{p. ~q, T}) (resolvent with {2))
derive(p. {p.~q. T})
deleted_con{r, {p,~q, T} (for (3}
derive(r. {p.~q, T})
select (3}
derive(q. {p,~q. T}
fail {derive(y. {p,~q. T}})
select (1)
biferal con{~r {p.~q, T})
rile con((L v g), {~r, p, ~q, T} resolvent with (3)
literal.con{~q, {~r. p,~q, T})
rule con({L « ~r). {~r. p,~q, T}) resolvent with (1)
devive(r, {~r. p, ~g. T})
fail (derive(r, {~r, p,~q. T}))
liferal con{~r, {~r p ~q, T})
lteral con{ L {~r p, ~q, T])
fail (iiteral con(L. {~7,p,~q. T}]))
fail (rule_con({L — ~r), {~r p,~q, T}
fail (literal con{~r. {p,~y, T}))
fail (derree(r, {p.~g. T }))
literal coni~r, {p, ~q, T}
rule_con((L + g, {~r p, ~g, T}) resolvent with {3)
literal con(~g, {~r p.~q, T}
rule_con({ L e ~r), {~r.p, ~q, T}) resolvent with (4}
dervive(r, {~r p.~q. T})
fail (derive(r, {~r. p ~q, T}))
Literal con(~r, {~r p.~q, T}
fiteral_con{ L. {~r, p.~q, T})
fail {lileral_con{ L, {~r,p, ~q, T})}
fail (rule con({ L — ~r) {~r. p.~g, T)))
fail (literal.con{~r {p, ~q. T }))
fail (deletedcon(r, {p,~q. T }))
fail (literalconi~q. {T}))
fail (derive(p. {T}))

Figure 2: Calling Sequence for derive(p, {T})

10

4.2 Ancestor Resolution

literal .con actually corresponds with ancestor resolution [B] in the sense
that literal_con firstly searches to check if there is the checked literal
in the assumed literals and then, to check if the checked literal is in-
consistent with the checked literal being added to a set of the assumed
literals,

However, there are three main differences between ancestor resolu-

sion and lleral_con.

We do not want incansistency which is the original goal for an-
cestor resolution. but we want consistency to assume the checked
literal.

. In ancestor resolution, a contrapositive form of a rule is logically

equivalent to the original form. hut in logic programming, it is
not the case. Consider the following three rules.

P g (2]
g+ ~p (3)

If we consider a program Ty = {(1},(2)} and a query « r for
T,. then we check consistency [or ~p and then fails since p is
derived by the rule (2). On the other hand, if we consider a
program T, = {(1).(3}} and a query «— r for T,, then we check
consistency for ~p and then succeeds since ¢ must be true from
the rule (3} but ¢ is consistent. This example shows that il we use
a contrapositive form. the result might be different. So. we can
sav that we have a directed ancestor resolution in our procedure.

In ancestor resolution. we discard assumed literals in a branch
of an AND-tree if we detect inconsistency. On the other hand,
we accumulate assumed literals in A in our procedure so that
coherence of assumed literals maintains over branches of an AND-
tree.

4.3 Sadri’s Integrity Constraint Checker

Sadri and Kowalski propose an integrity constraintl check by augment-
ing SLDNT procedure with “forward” evaluation of rules and an in-
consistency check for implieit deletions [11]. Although they show cor-
rectness for their procedure, they only show completeness for a logic
program with integrity constraints which contain no negative literals in

the body of each rule. So, they does not gnarantee consistency for an
addition of a rule for every general logic program. On the other hand, if
rile_con(B, {T}) succeeds, we can guarantee that f is consistent with
the current program even if it contains negative literals in the body.

Moreover, since we use ancestor resolution, we can prove consistency
for addition of rules for a wider class of logic programs. For example.
consider the following program:

] (1)
{ & ~p {(2)

If we check consistency for addition of p in Sadri’s system, we invoke
a query — p and see if it finitely fails. However, it enters an infinite
loop and does not stop, although rule_con{p, {T}) succeeds in showing
consistency for the addition.

4.4 Poole’s System

Poole [9] develops default and abductive reasoning system called The-
orasf. Since onr procedure uses assumptions, his work 15 also related.
However, there are two major differences.

I. The basic language for Theorist is a first-order language whereas
we use a logic program. So, in Theorist. a contrapositive form of
a rule is logically equivalent to the rule whereas in our setting. it
is not always true.

2. Assumptions in Theorist correspond with normal defaults without
prerequisites in Default Logic, whereas in our setting, rules in
a logic program can be regarded as arbitrary defaults. So. our
procedure is a kind of proof procedure for a default theory which
consists of only arbitrary default rules without proper axioms.

5 Conclusion

In this paper. we propose a top-down procedure for a gencral logic
program with integrity constraints. This procedure can be regarded
as a combination of a modified ancestor resolution and checking of
consistency by an implicit deletion. As a further study, we think that
the following are needed

1. Negalions in general logic programs are “negation as ignorance”,
However,. in nonmonotonic reasoning, we use not only negation

12

as ignorance but also a logical negation. So, we should handle
those logical negations as well in our procedure.

2. We should compare with bottom-up procedures to compute stahle
models [10, 3, 12] in terms of computational complexity.

Appendix

We need the following definitions and lemmas to prove Theorems,

Definition 7 Let A be g sef of literals. F(A) is o set of rules defined

8!
lLp—ipeAandp#T. or
4 L +—pif~pe

Definition 8 Let T be u logic progrum. A set of propositions M is a
linite grounded model for T of the followtng are satisfied

I M s model of T,

2o M ean be written as a scquence of proposifions (py.py. ... py) such
that each p, has al least onc rule K, sueh that head(R;) = p,
and pos K,) C {preoop,o) where pyooop oy are the element of
the sequence up lo j — 1 oand (neglfl,)0V M) =B We say a se-
quence of such rules for proposition p, is a sequence of supporting
rules for p, and especially a sequence of supporting rufes for p,,
{Ry.R;....R,}. is a sequence of supporting rules for M.

We can prove the following lemma by extending [1. Theorem 3.8].

Lemma 1 Lel T be a logic program. A sel of propositions M is a finitr
grounded model for U if and only if M is a finile steble model for T

Lemma 2 fef T be u logic prograin und X be a sel of literals such that
il meludes T oand for voery | € A 1E AL

. Suppose devive(p, A) sueceeds with A" and et R be a sel of rufes
i T which are checked during the erecution. Then, pos(A) (a
set of positive literals in N'} s a stable model for R F(A).

2. Suppose literal_con{l, A} succeeds with A" and let R be a set of
riles in T which are checked during the execution. Then, pos{A')
is a stable model for R’ U F({1} U A).

13

3. Suppese rulecon| B, A} succeeds unth A" and let R be a union of
{R} and a sel of rules in T which are checked during the erecu-
tion. Then. posiA') is a stable model for R U F(A).

4. Suppese delete_coni{p, A) succeeds with A’ and let R be a set of
rides in 1 which are checked during the crecution. Then, pos{A')
is a stable model for B U FA).

Proof of Lemma: By induction of the number of calls of subproce-
dures during the execution. 0

Proof of Theorem 1: Suppose dertve(p. {7 }) succeeds with A but
for every stable model M for T, M & F(A). Let R be a set of checked
rules, Let By be a set of rules in R with a hiteral [such that [&€ A
and [& A and let R, be R — R,. Then, everv rule in R, satisfies the

following conditions.
1. There exists a literal | in the body such that { ¢ A

2. Let the head be p. Then, p & A or p € A since deleted con for
the rule has heen invoked.

~ Let'y beaset of rules in T — R with a literal [such that 1 e A or
[Aandlet T, be T'— R — T,. Then. every rule in T, satisfies the
following conditions.

I. For every literal [in the body, | & A and | € A since otherwise,
the rule has heen checked,

2. Let the head be p. Then. p = L or p € A since if p £ | and
p € A, rule con for the rule has been mvoked. '

Let. M’ be a stable model for R. From the assumption, there is no
stable model for T° which subsumes M,

This means that there is no stable model for R0 T, which subsumes
M" since if there is such a model. every rule in Ry U T} is satisfied by
the stable model and this coutradicts the assumption.

Suppose there is a stable model for 75 then there is a stable model
for Ry U Ts since there is no common proposition between Ry and T,
and R itself has the stable model M. This contradicts the above
result. Therefore, there is no stable model for 7).

Then, any rule in T — T; cannot save inconsistency for T; even if it
is added since any rule in T T, does not have a proposition in T, as
its head. Therefore, there is no stable model for T and this contradicts

the consistency of T, O,

14

Proof of Theorem 2: In a similar way to the proof above, O

Proof of Theorem 3: It is sufficient to show the following. O

Lemma 3 Let T' be a logic program and A be a sel of literals such that
it includes 7 and for everyl e A 1 & AL

{.

iy

e

Suppose that derive(p, A) lerminates for every selection. If there
erists a stable model M for T U F{A) such that M £ p, then
there 1= a selection of rules for which derive(p, A) sueceeds with

A and M FIA).

Suppose that Literal_con(l, A) terminates for every selection. [f
there erists a stable model M for TOFIA) such that M |= 1, then
there s a selection of rules for which literal coni{, A} succeeds

with A" and M | F{A').

Suppose that vule con{ K. X) ferminates for every selection. [f
there erists a stable model M for T F(A) such that M = R,
then there is a selection of rules for which rule con{ K. A) sueceeds

with A and M = FiA').

Suppose that deleted _con{p, N) terminates for o very selection. If
there erists a stable moded M for T U F{A), then there 5 @ se-
lection of rales for which deleted_con(p. A) sueceeds with A" and
M = FiA).

Proof of Lemma: For | if there 15 a stable model which satisfies p,
then there is a sequence of supporting rules for p and so, we can always
select a rule whose head is p and which is satistied by M. Others can
he proved by induction of number of the longest calls of subprocedures
among seleclions, O

References

1]

2N

3]

Elkan. ('.. A Rational Reconstruction of Nonmonotonic Truth
Maintenance Svstems, Artificial Intelligrnee. 43, pp. 219 234
(1990},

Eshghi, k.. kowalski. R. A.. Abduction Compared with Negation
by Failure. Proc. of ICLP'S9, pp. 234 - 254 (1939).

Fages, F.. A New Fixpoint Semantics for General Logic Programs
Compared with the Well Founded and the Stable Model Seman-
tics, Proc. of ICLE90, pp. 442 — 458 (1990).

15

4] Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic
Programming, Proc. of LP'85, pp. 1070 - 1080 {1938).

[5] Kakas, A, ., Mancarella, P., Generalized Stable Models: A Se-
mantics for Abduction, Proc. of ECAI'90, pp. 385 - 391 (1990).

[6] Kakas, A. C., Mancarella, P., Stable Theories for Logic Programs,
Froc. of ILPS91, pp. 85 - 100 (1991).

7] Dung. P. M., Negations as Hyvpotheses: An Ahductive Foundation
for Logic Programuning, Proc. of [CLP'91, pp. 3 - 18 (1991,

[8] Loveland, D. W., dutomated Theorem Proving: A Logical Basis,
North-Holland {1978).

[9] Poole, 1., Campiling a Default Reasoning System into Prolog, New
Generation Computing, Vol. 9, No. 1, pp. 3 - 38 (1991).

[10] Sacca, D.. Zaniolo, (.. Stable Models and Non-Determinism in
Logic Programs with Negation, Proc. of PODS 90, pp. 205 217
(1990).

[11] Sadri, F., howalski. R., A Theorem-Proving Approach to Database
Integrity. Foundations of Deductive Database and Logic Program-
ming, {J. Minker, Fd.), Morgan Kaufmann Publishers, pp. 313
362 (1988).

[12] Satoh, K.. Iwayama, N.. Computing Abduction Using the TMS,
Proc. of ICLE'01, pp. 505 518 (1991).

16

