ICOT Technical Report: TR-737

TR-737

A Sheme for State Change in a Distributed

Environment Using Weighted Throw Counting

by
K. Rokusawa & Ichiyoshi

February, 1902

1992, 1COT

Mita Kokusai Bldg. 2IF (03)3456-3191 ~5

IGDT 4-28 Milu 1-Chome Telex ICOT 132064

Minate-ku Tokyo 108 Japan

Institute for New Generation Computer Technology




A Scheme for State Change in a Distributed Environment
Using Weighted Throw Counting

Kazuaki Rokusawa
rokusawafiokilab.oki.cojp
Systems Laboratory, Oki Electric Industry Co., Ltd.
4-11-22, Shibaura, Minato-ku, Tokyo 108, TAPAN

Nobuyuki Ichiyoshi
ichiyoshi@ieot.or jp
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, JAPAN

Ahstract

This paper proposes o scheme for changing
the erecution stale of a poel of processes mm a
distribufed environment where fhere may be pro-
cesses o transil The scheme can defect Ehe
complefion of sfale change usmg werghted throw
counlmyg and deles! the lermemnation as well [t
works whether the communication channels are syn-
chronous or asynchronous, FIFO or nen-FIFO.
The message complenly of the scheme s fypreally
O(neuwrnher of processing elements).

1 Introduction

This paper proposes a scheme for changing the
execution state of a pool of processes in s distributerd
environment., It works under the weighted fhrow
counting (WTC) scheme [1] ! for termination de-
tection. The completion of state change can be de-
tected while not losing the ability to detect termi-
natichn.

We assurne a distributed environment where mul-
tiple eomputational tasks are executing simultane-
ously. Fach task is distributed over many process-
ing elements, and each processing element can be
assigned more than one task.

In such an environment, one sometimes needs to
stop a task (to examine the compulational state,
or to collect statistics), restart it, change the pri-
ority of a task {to execute efficiently), or abort a
task (when il goes into an infinite loop, ete. ). We
call such actions slale change actions. They are dif-
ferent from general stability detection [5] which is
superimposed oo the basic computation and is not
intended Lo bring changes in the basic computation.

! This scheme has been employed in a paralicl implementa-
tion [7] of KL1 [8], a concurrent logic progranming language,
on the Multi-PST [4].

Char scheme can detect the completion of state
change and works whether the communication chan-
nels are synchronous or asynchronous, FIFO or non-
FIFQ. 'I'he state change scheme is implemented on
top of the WTC mechanism. The capability of de-
tecting termination (ncluding termination during
state change} 13 not lost.

This paper is organized as follows. Section 2 de-
fines the computation model and the state change
problem. The WTC scheme is deseribed briefly in
section 3. Section 4 presents a straiphtforward so-
lutiom wsing distributed snapshots [8]. Our scheme
using weighted throw counling is described in aec-
tion &. Finally, the comparison of our scheme with
the straightforward one is given in section 6.

2 Computation Model

Our process controf scheme is intended to work in
a distributed computation environment where there
may be multiple computational tasks running si-
multanecusly. We model such an environment as
follows:

s There are a finite number of process pools in
the system (process poals represent indepen-
dent computational tasks);

* A process pool consists of one controlling pro-
cess and a finite pumber of child processes;

s kach process pool is assigned a unique process
pool identifier (PID);

s Dach child process has one of the # execution
states: 5y, 5%, ..., 5, .

o A child process can terminate at any time;

+ A child process can generate another child pro-
cess having the same PTD and the same state,



A B Process Pool Identifier (PITY)
(A)  Child Process A
[B]|  Controlling Process B

. Process Pool

Figure 1: Computation Model

and a new process pool having a new PID as
well, On the creation of a process pool, all child
processes have the same state.

In this paper, “process” means “child process™ un-
less otherwise indicaled. A process pool ferminates
if all the children terminate.

A process pool described above is distributed over
the following machine:

¢ A finite number of processing clements (PEs)
interconnected by a commiinication network:

¢ No global storage; PEs may communicate by
passing Messages;

* Asynchronous communication, in which mes-
sages are delivered with arbitrary finite delay.

It is assumed that a PE can detect the termi-
nation of all processes in it baving the same PID,
and can change their states. The controlling pro-
cess and PEs can communicate in both directions.
A PE may send a message to the controlling process
inlorming it of the termination of all processes, and
the controliing process may send a message which
forces processes to change their states,

Processes may migrale among PEs for load bal-
ancing; & PE may throw a process in the PE to an-
other PE. As the thrown process is delivered with
arbitrary finite delay, processes may be in transit at
a given time (see figure 1).

Definition of the Problem

Initially, all processes in the same process pool
are in the same state. State change is to change
all processes in one process pool from one state to
a new state, and is completed when the states of
all the processes have changed into the new states.
We require that two state changes not overlap, that
19, & state change action not be initiated until the
previous state change has completed,

To ratisfly the above, a state change scheme st
be able to:

= change states of all processes belonging to a
particular process pool into a specified state,
and

» detect the completion of a state change.

Note that the possible of existence of processes in
transit {processes migrating from one PE to an-
other) makes the completion detection nontrivial.

3 The WTC Scheme

This section gives & brief explanation of ithe
weighted throw counting (WTC) scheme [1] #, which
is a distributed termination detection scheme. The
scheme is an application of the weighted reference
counting [4, 4], which is a garbage collection scheme
for parallel processing systems, and can efficiently
detect termination without probing or acknowledpe-
ment.

A non-empty set of processes in one PE having
the same FID forme a subpool of processes, which
is called a “process subpool”, or a “subpool” in
short. On recciving a thrown process, the PE de-
cides whether there is already a subpool having the
same PID as the thrown process. If there is, the PE
adds the received process to the subpaoal; otherwise,
it creates a new subpool.

We associate weight with the controlling pro-
cess, each subpool and each process in transit. The
weight of a subpool and that of a process in transit
are posilive Integers, while the weight of the control-
ling process is a negative integer. ‘Ihe WT'C scheme
maintaing the invariant that:

The sum of the weights is zemo.

This ensures that the weight of the controlling pro-
cess reaches zero if and only if all processes termi-
nale, 1.e., there is no processes neither in & PE nor

in transit.
When all processes in it are terminated, the sub-

pool terminates and sends a terminated message to
?leinlly the same scheme numed Credil Recovery al-

gorithm i presented in [2]. Credii in [2] corresponds ta weight
in the WTC scheme.




1) mntrﬂ-lmce-m

w = =B0O
PEi

subpoold 'IQr"*
O w = B0
O O PEj

subpoals
w = 450

O
O

w = ZT0

FPELK

2) controllin I process

w = —B0O PEk
PEi subpoolk
subpooli i'.:rmmu!eaf\.
o {w = 270) O
@, PEj 80
, =
¥ = 400 Q subpooly created
| |
w =580 | I
1 |
terminated

Figure 2: The WTC Scheme

the corresponding controlling process. This {ermi-
nated message carries the weight of the terminated
subpool. On receiving a fermimated messape, the
controlling process adds the weight to its {nega-
tive] weight, If the weight of the comtrolling pro-
eesq reaches zero, the termination of all processes is

detected (see fipure 23

4 Straightforward Solution

This section describes a straightforward seheme
using distributed snapshots [6],

Slate change can be divided into the following
twir phases:

s Changing the state of all processes belonging to
the pool;

s Detecting the completion of state change.

The former phasge is performed by broadcasting
and memorizing. The controlling process broadcasts
a change message which carries the PID of the pool
and a new state. When a PE receives a change mes-
sage, it changes the state of processes belonging to
the specified pool and keeps the new state with the
FI1D. If there is no corresponding process, the PE
only memorizes the PID and the new state. When
all processes in a pool terminate, the PE still keeps
the new state with the PID. On receiving a pro-
cess with different state, the PE also changes the
state of the received process into new one memo-
rized. Therefore, a process with old state in a PE
changes when a change message arrives, and a pro-
cess with old state in transit changes when it reaches
a PE with new state,

The latter phase is performed by the technique of
repeated ohservolions using distributed snapshots.

After broadeasting a change message, the control-
ling process slarls distributed snapshots, and re-
peats it until the completion is detected.

5 Solution Using the WTC scheme

As described in previous section, if the controlling
process broadcasts a message and each PE memo-
rizes a new state, it iz ensured that state change
completes in finite period. Therefore, only the de-
tection of the ecompletion of state change is required,

As mentioned in section 2, the operation of
changing into the new state begins on the assump-
tion that all processes have the old state.

5.1 Detection of the Completion

We show here how to detect the completion of
state change using the WT'C schermne,

Before state change, the controlling process allo-
cates a variable called changed weight and sets its
initial value at the [negative) weight of the control-
ling process, This changed weight plays an impor-
tant role; it indicates the weight of processes with
old states.

The controlling process broadeasts a change mes-
gage. On receiving a chonge message, the PE
changes the states of all processes in the correspond-
ing subpool having the specified P11 and sends back
@ changed message in acknowledgement. It carries
the copy of the weight of the subpoo], which indi-
cates the sum of the copies of the weights of pro-
cesses whose states have already been changed. If
there is no corresponding subpool, the PE memo-
rizes the P11 and the state carried; which is equiva-
lent to the creation of an emply subpool, a subpool
with no weight.



changef’.ﬁy

PEi
subpool: change(S, }
5,
5
O " prj
Q "“‘“QH subpoolj
- —‘—“ 1
O \
2 S
(]
-’.'fmngt'f.ﬁy
PFi
subpool
Sa

O Sn PE;j
O -0 3 subpooly

Sn_" Sri

O

= L

Figure 3: Which state is new 7

When a PE receives a thrown process having dif-
ferent state (rom the one of the corresponding sub-
pool (including an empty subpoel), it also changes
the state of the received process and sends a changed
message to the controlling process which carries the
copy of the weight of the received process.

On receiving a changed message, the controlling
process adds the received weight to the (negative)
weight of the rﬁ.anguf wetght. Since the m:ight of
the changed weight indicates the sum of the copies
of the weights of processes whose states remain old,
when the changed weight rearches gero, the comple-
tion of state change is guaranteed.

5.2 Situations to be Considered

Allbough the scheme mentioned above can de-
tect completion of state change correctly, it is still
incomplete because the following situations are not
considerad.

Which state is new T

Since messages are delivered with arbitrary finite
delay, a PE can receive a thrown process with not
only old state but also either new state or same
state. In figure §, PEj (subpoolj) receives a thrown
process with old state (5.}, while PEi (subpooli)
receives A thrown process with new state (5, if the
thrown process reaches PEi earlier than the change
message does.

When the state of a received process i old, the
state of the process is changed into the (new) stale of
the subpool and the copy of the weight of the process
should be sent back. On the other hand, when the
state of a subpool is old, the state of the subpocl
should be changed and the copy of the weight of the
subpoo! should be sent back.

Therefore, when a PE receives a thrown pro-
cess with different state from the one of the cor
responding subpool, it must decide which state is
new. To perform this, we associate generation with
each state. The controlling proccss holds a genera-
tion which is incremented on each state change and
carried by a change message to I'ks with a state.
Fach subpool holds a generation and assigns it to
o thrown process. Since there are only two genera-
tions of state in a process pool during state change,
three generation numbers are enough for generation
control; for example, 0 =1 =2 —=0— ...,

Termination during state change

Since a subpool can terminate at any time, the
controlling process can receive two kinds of ferm:-
nated messages; a ferminafed meseage sent before
receiving a change message and send after receiv-
ing a change message. In figure 4, the former and
the latter are ferminated messages sent by PE and
PEj reaspectively,

As the former carries the weight of & terminated
subpool having old state, it is necessary to add the
weight to the changed weight. This operation is sim-
ilar to the action when receiving a changed message.
On the other hand, as the latter carries the weight
of a subpool with new stale, the weight should not
be added to the changed weight.

Thus, operations of the controlling process must
differ in different. ferminated messages. Assigning
generation to each ferminated message makes it pos-
sible to the controlling process to discriminate be-
tween two kinds of ferminated messages described
ahove,

change message in transit
In case a change message reaches a PE having

no corresponding subpool, no weight is sent back.
Therefore, even if the changed weight reaches zero,



f.&unyf{.’iy
Y
&hungtfﬁn,i‘

PEi

H"I'_bEUEh ffﬂ?jiﬂﬂi{'d
TS, {w = 500) PE;j
: ! subpoalj
| | S,-.
terminated OR)
w = 200
i
<)
0
w = =700
/.( \ changed
terminated {w = 200)
(v = 5OC)
termanaled
(w = 2000 PEj
subpool)
S S
! i
| I
terminated after
state change

Figure 4@ Two kinds of lermmeled messages

it iz not sure that all change messages are received.
Since messages are delivered with arbitrary finite
delay, termination leaving change messages in tran-
sit is quite dangerous. If the PID is rensed and new
process pool with the PID is created, wrong state
change may occur. To avoid the wrong termination
detection, each PE sends back a ackChange message
when it receives a change message.

5.3 The Whole Scheme

In consideration of situations mentioned abewve,
the scheme is revised. The whole scheme 15 as fol-
lows (see figure 5).

Operations of the Controlling Process

On start of state change, the contrelling pro-
cess performs the following operations:

1. Alloeates two variables called changed
weipht and ack counter, and sets imitial
values at the weight of controlling process
and the number of the PEs respectively:

The value aof the ack counter indicates the
number of ackChange messages which are
not received;

2. Incremwnts Lhe generation,

3. Broadcasts a r.fmn_glr. MEssage which car-
ries the PID and new state with the incre-
mented generation.

On rel:ei.ving a ackChange message, the control
Hng process decrements the ack counter,

On receiving o chenged message, the controlling
process adds the received weight to the (nega-
tive) weight of the changed weight.

On receiving a lermunaled message with the
oli generation, the controlling process adds
the received weight to both its weight and the
changed weight.

On receiving a ferminated message with the
same generation, the controlling process adds
the received weight to only its weight.

Detection of State Change: When both values
of the changed weight and eck counter reach
mero, the state change is completed; there is no
processes with old state neither in a I'E nor
in transit, and no messages concerned {ckange,
changed and ackChange) in transit.

Termination Detection: When the completion
of state change 15 detected and the weight of the
controlling process reaches zero, the controlling
process broadeasts a farge! messaga. On re-
ceiving a forget message, the PE forgets the
PIT} and the state memorized, and sends back
an ackForget message to the controlling pro-
cess. When receiving all ackForgel messages,
the termination of the process pool completes,

Ovperations of Each PE

On receiving a change message, the PE sends
back an ackChange message and performs one
of the following operations:

« If the state carried by the change message
is different from the one of the subpool
wilh the specified PID, the PE changes the
states of all processes in the subpool into
the specified new state, and sends back a
changed message which carries the copy of
the weight of the subpoal,

s If the state 1s the same as the one of the
subpool, nothing 15 done. This is the case
of having received a thrown process with
new state before receiving the change mes-
Bage.



1 :| Sa —+ Sﬂ
= 800 change(S,, )

h ri}}/"' = -800 T

change Sy
Ei PEk
bpools \.—aanqers,. )

5. ]

IPEj S

OO subpuacly

S, . O/= 10

w = 300 O

580
’ o
ackChange ackChange
chanafn‘ = :g':m -
30,'2/" uckCﬁunyc empty subpoolk
PE‘ changed oTe
subpoals = 580) i I
H,— 5a g ! i
O PEJ O.-:- L= _t'ﬂ_dJ
. : crea
O subipoaly / - 16

E“u_" HII

Q

O

= B&8§
3) changed
- Lw = 10)
w = =800 T PEk
¢ = =10 subpoolk
I'Ei Sa
ubpool O
Sa | PE;

w = 10

Oo  pewo
¥ = 300 -
OO

W = 5B0

Tigure 5: State Change Operations

» If there is no corresponding subpuol, the
PE memorizes the PID and the new state;
which is equivalent to the creation of an

empty subpool.

On receiving a thrown process with the same
state, the PE only adds the weight of the pro-
cess Lo the weight of Lhe corresponding subpool.
No message s sent,

On receiving a thrown process with the dif
ferent state, after performing either of the fol-
lowing operations, the PE adds the weight.

o If the generation of the state of the sub-
pool is newer than that of the process, the
PE changes the state of the process and
sends a changed message which carries the
copy of the weight of the process.

e If the peneration of the state of the sub-
pool is elder, the PE changes the state of
the subpool and sends a changed message
which carries the copy of the weight of the
subpocl,

When a subpool terminates, after sending a
terminated message with the gencration of the
terminated subpool, the PE still keeps the 'ID
and the state; which iz equivalent to remain an
empty subpool.

5.4 An Efficient Variant

Assigning a weight with a change message inakes
an ackChange message needless, An assigned weight
is regarded as a weight of a thrown process with
old state. An ackChange message can be merged
into a changed message or replaced by a ferminated
TNERRREE,

On start of state change, the controlling process
perforns the following aperations:

1. Increments the generation;

2. Droadcasts a change message with a weight
and sublracts the swin of the weights from the

weight of the controlling process;

3. Allocates o variable called changed weight and
sets initial value at the weight of the controlling
process after subtraction,

When a PE receives a chenge message, it adds
the weight of the change message to the weight of
the subpool having the specified PID, and performs
either of the following operations:

s I the state carried by the change message is
different from the one of the subpool, the PE
changes the states of all processes in the sub-
pool into the specified new state, and sends
back a changed message which carriea the copy
of the weight of the subpoel.

¢ If the state is the same as the onc of the sub-
pocl, the PE scnds back a changed message
which carries the copy of the weight of the
change message.

If there is no corresponding subpool, the PE creates
an empty subpool and sends back a terminated mes-
sage with old generation which carries the weight of
the change message.



6 Comparison

The straightforward scheme presented in sec-
tion 4 has the following disadvantages:

e It only works under FIFO communication.

e Since all communication channels must be
traced by a marker message [6], a large number
of marker messages are needed. In the model
defined in section 2 where all PEs can commu-
nicate each other, n{n—1) marker messages are
sent among n PEs. Thus, the message complex
ity becomes ({n*)

In contrast, our scheme has the following advan-
tages:

e [t works under both FIFO and non-FIFO com-
minication,

» Both a change message and a changed mes-
sage in response to a change message are send n
times. Although a changed message is also sent
when a process with old state arrives, the num-
ber of processes in transit is in proportion to n
in general. Therefore, the message complexity
15 Cn).

7  Summary

We have devised a schemne for changing the exe-
cution state of a pool of processes in a distributed
environment, Our scheme can detect the comple-
tion of state change nsing weighted throw counting
and detect the termination as well.

Its major advantages are as {ollows:

« It can be applied to the both computation mod-
els with FIFO and non-FIFO communicalion.

o The message complexity s
Onumber of PEs).

The techniques described in this paper are appli-
cable to many kinds of distributed processing sys-
tems.

typically

References

[1] Rokusawa, K., Ichiyoshi, N., Chikayama, T.
and Nakashima, H., “An Efficient Termina-
tion Deteetion and Abortion Algorithm for
Distributed Processing Systems” Froc. of In-
ternational Conference on Parallel Processing,
Vol Architecture, pp.18-22, 1988,

[2] Mattern, F., "Global quiescence detection
based on credit distribution and recovery,” Inf.
Proc. Leti., Vol 30, Nod, pp.195-200, 1980.

(3]

[6]

7

[8]

191

Watson, P. and Watson, 1., “An efficient
garbage collection scheme for parallel com-
puter architectures,” Proc. of Parallel Architec-
tures and Languages Europe, LNCS 259, Vol II,
pp-432-443, 15987,

Bevan, 1.1, “Distributed garbage collection us-
ing reference counting,”  Parallel Computing,
Vol9, No2, pp.170-192, 1989,

Chandy, KM and Misra, J., “Stability Detec-
tion,” In Parallel Program Design, A Foun-
datton, pp.269-288, Addison Wesley, Mas-
sachusetts, 1988,

Chandy, K.M. and Lamport, L., “Distributed
Snapshots: Determining (lobal States of Dis-
tributed Systerns” ACM Trans. on Compuler
Systems, Vol 4, No.l, pp63-T5, 1985,

Wakajima, K., Inamura, Y., Ichiyoshi, N
Rokusawa, K. and Chikayama, T., “Dis-
tributed Implementation of KL1 on the Multi-
PS1/V2 Proc. of Sizih International Confer-
ence on Logic Programming, pp.436—451, 1984,

Ueda, K. and Chikayama, T., “Design of the

Kernel Language for the Parallel Inference Ma-
chine” The Compuler Joarnal, Vol33, Nod,

pp.494-500, 1990,

Taki, K., “The Parallel Software Hesearch and
Development Tool: Multi-PSI System,” In Pro-
gramming af Fulure Generation Compulers,
pp-A11=426, Flsevier Science Publishers BV,
North Holland, 1988.



