ICOT Technical Report: TR-0736

TR-0736

A Scalable Termination Detection Scheme

Using Message Combining

by
N. Ichiyoshi & K. Rokusawa (Oki)

February, 1992

©1992, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191~5

I c DT 4.28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Scalable Termination Detection

Scheme Using Message Combining

Nobuyuki Lehiyoshi
ichivoshi@icot.or. jp
Institule for New Generation Cempnter Technology
1-4-28 Mita, Minato-ku, Takva 108, JAPAN

TEL: +81-3-3456-3102

Kaznaki Rokusawa
rokusawafiokilab.oki.cojp
Svsrems lLaboratory, Ok Electric Industry Co., Ltd.
4-11-22 Shibaura, Minato-ku, Tokyo 108, TAPAN

TEL: +81-3-3454-2111 ex. 2734

Abstract

We propose a scalable termination detection scheme for distributed com-
putation on large-seale multicomputers. It is based on the Weighted Throw
Counting technique (an application of the weighted reference counting for
distributed incremental gasbage collection), and employs software message
combining lo remove the bottleneck at the detecting process. We introduce a
delayed returning rule for combining an vnpredictable number of messages at
each internal node of the combining tree. In contrast to message complexity
commonly used as an cfficiency criterion of termination detection algorithms,

the scheme is aitned at minimizing the time complexity of detection.

Kev Words: distributed computation, termination detection, weighted throw
) P

counting (W1'C), message combining, tine complexity

1 Introduction

Termination detection of computation is a basic functional component of parallel
programs and parallel programming environments. Unlike sequential computation,
termination detection may not be trivial for paralic] computation because of the
difficulty of obtaining a consistent global state, especially when there can be inter-
processor messages inn transit.

A lot of distributed termination detection algorithms have been proposed [6, 18,
12, 4]. The Weighted Throw Counting (WTC}) scheme [17} is a simple and efficient
algorithm based on the weighted reference counting technigue for incremental dis-
tributed garbage collection [3, 21]. A similar technique was independently proposed
bv Mattern, who called it the “credit distribution and recovery” scheme [13]. A
termination detection mechanisin by WTC is realized in the implementation of a
parallel logic language KL1 [20] on the Multi-PSI, a parallel computer with up to
fi4 processors connected by an 8 x § mesh network with worm-hole routing [14].

The original WTC scherne has a Lottleneck at the detecting process; hence it is
not a scalable algorithn. This paper presents a method for removing the bottleneck
by software message corbining. We propose a heuristic called the delayed returning
rule for combining an unpredictable number of messages at each internal node of
the combining trec, which ensures a proper combining behavior. In contrast to
message complexity, a commonly used efficiency criterion for distributed termination
detection algorithms, the scheme is aimed at minimizing the time complexity of

detection.

2 Computational Model

Since our main concern is the time required for detecting termination of large-scale
parallel computation, we would like to define distributed computation as mapped on
a large-scale parallel computer — specifically, a distributed-memory parallel com-
puter, or a multicomputer [L]. A multicomputer consists of 4 number of processing
nodes connected by some interconnection network. Let V be the set of all processing

nodes, n = |V| be the number of all processing nodes, and £ be the set of all pairs

(N1, Vo) € V % V such that Ny can send messages to Nz We assume communica-
tion path is bidirectional, that is, if (N, Vo) € E, then (N, Ny} € E. We require
that (1) the graph {V,E) be connected, and {2) communication be reliable: cvery
message sent will be eventually received. We do not require that the communication
is FIFO, that is, we allow messages sent from N; to N3 to be received out of order,
bul we assume that the zero-load latency of a message is predictable. The latency
is the time [rom the start of sending a message packet at the sending node to the
completion of receiving it at the receiving node. We denote the latency of 2 message
m along the edge € by {,,(¢). When we talk about a spanning tree, it is one over
the graph {V, E), and not {V, ('} where ' is the set of network channels. A message
traveling along an edge in a spanning tree can cover more than one network channel.

[n “second-generation” multicomputers [1] such as Symult 20010, Mult+-PSI and
Iutel Paragon, a node can send messages to any other node by worm-hole routing,
so that £ =V = V.

The activity of the base computation on a processing node will be referred to by a

process.! We assume the following about the base computation on multicomputers.
1. A process can be in either of the two stales: active or idle

2, An active process p can send messages to any process g with (N, N} & £,

where p and ¢ reside in nodes N, and N, respectively.
3. An active process can spontaneously become idle at any time.

4. An ddle process can never become aclive except when it recerves a message.
(For this property, a message in the base computation is sometimes called an

activation message.

5. Initially, all processes are idle and there are no messages; at the start of com-
putation, one process is activated by the outside “environment” (e.g., a shell

spawns the inilial process).

'A process defined here corresponds a “process subpool” in [17]. In [17], & “proecss” referred
to a process as defined in the language, and the collection of processes mapped on a physical
processing node was referred to by a “process subposl” (in contrast to the computation as a whole

which was referred to by the “process pool™).

A distributed computation is terminated when all the processes are idle and
there are no messages in transit (sent but not yet received). Termination is a stable
state [5], that is, a terminated computation remains terminated for ever,

It is interesting to note that there can be two definitions of idleness for the
same basc computation. Suppose some parallel coneurrent object-oriented language
was implemented on a multicomputer. A process on a processor would be defined
to be the colleclive activity of those objects that reside in that processor (“ohject
subpool™). An ebject could migrate to another processor by a %migrate message’
and creale another object in another processor by a Y%create message. When an
object needed a non-local value, it would request the value by sending a Yiread
message and suspend. [t would wake up when the required value was returned by
a %value message. Now, idleness of a process could be defined either by (LT the
state where the objecl subpool is empty (idle = ternunated}, or by (LT5) the state
where all object in the object subpool is suspended (idle = terminated V suspended}.
The assumptions for distributed computation is satisfied in cither case. Whereas
termination means global termination in Definition {L1), it means global quiescence
(global termination or global deadlock) in Definition (LTS}, Note also that a Yvalue
message is an activation message in Definition (LTS5}, but not in Definition (L17).

A termination delection problem is to transform the base computation withont
affecting the semantics of it (typically by superposing [5]} so that the environment
detects the termination of the base computation (in contrast to the superposed
computation, it is also referred to by “underlving computation™). It is required that
{1) when the detecting process detects termination, the base computlation has indeed
terminated (correctness), and that (2] the detecting process detects termination in
a finite time after the base computation has become terminated (liveness),

Let P be a base program and F; be the result of transforming P for termination
detection, and Tp and Tp, be the exccution times of I and F,, respectively.” A

“good” detecting algorithm for parallel computation on a multicomputer would be

?In this paper, message names are marked by prefixing i1t with a pereent sign.
My general, the time Tp is not directly observable because the termination of P may not be

directly observable. Indeed, the purpose of transforming the base computation P to Py is preciscly

to make the termination observable,

one such that the difference Tp, — Tp is small compared to Tp, Thus, a “good”
detecting algorithm {a) should not lmpose much overhead on the base computation
and (b} should be able to detect termination as quickly as possible. Also, memory
complexity of the algorithm should be small.

For the sake of discussion about time, we assume that there is only one system
of base computation running on the multicomputer.

In section 3, we describe the WTC technique, which adds relatively small over-
head to the base computation. Since the detecting process can become bottleneck

as the number of processes grows, we propose a remedy in Seetion 4.

3 Weighted Throw Counting (WTC)

3.1 Principle

In the Weighted Throw Counting technigue [17], the initially activated process is
assigned a certain positive “weight” W and the coviromment is given the same

weight, and the following invariant condition is maintained:
¢ Active processes and messages have positive weights.
¢ ldle processes have a zcro weight.

¢ The sum of all weights of processes and messages are equal to the weight that

the environment has.

Under the above condition, the condition that the environment has weight 0 is
equivalent to there being no active processes and no messages in transit, that is, the
base computation being terminated.

To maintain the invariant, the handling of activation messages are changed as
follows. When a process sends an activation message, it splits the weight W in two
positive values Wy and Wy such that W = W, + Wa, assigns W to the activation
message and retains W5 to itselfl. When a process receives an activation message,
the weight carried by the message 15 added to its weight.

To actually detect termination, a detecting process is placed on some processing

node. When computalion iz initiated by the environment, the first process and the

n

detectingn process are given the same weight. The weight of the environment during
computation is defined 1o be the weight of the detecting process minus the weights
of all %return WTC messages thal are in transit. On becoming idle, a process in
the base computation sends a Y%return WTC (W) message to the detecting process
to return the weight W of the process. When the detecling process receives a
Gpreturn . WTC (W) message, it subtracts W from its weight. Note that this ensures
the invariant condition on the weight.

T'he detecting process detects termination when its weight becomes zero. The
invariant condition guarantees correctness of termination detection, and the eventual
delivery of Yoreturn_W'I'C messages to the detecting process gnarantees the liveness

property.

3.2 Implementation

I actual implementations, the weight could be represented by variable length binary
fluating-point numbers or it could be represented by fixed length binary numbers. In
the latter case, overflow and underflow of weight have to be handled. A process can
sitnply send a Breturn WTC message when the weight is overflowed. The weight
underflow can be handled by the introduction of a WTC request-supply protocol.

The WTC scheme is very simple. The memory requirement is only a few words
per process. Bach message of the base computation is piggy-backed with the weight
{also a few words). In the worst case, as many %return WTC messages as activation
messages in the base computation are sent.

In the tmplementation of ihe parallel logic language KLI on the Multi-PSI,
the syvstem detects the termination of distributed computation (Definition LT is
adopted). The weights of processes and messages are represented by 32 bit unsigned
integers, and the weight of the detecting process represented by a 64 bit unsigned
integer. When a process with weight 1 is to send a message, the message sending is
suspended, and the process sends a Ygrequest ' WTC message to the detecting process,
which supplies a large fixed amount of weight (2*! in the current implementation).
An activation message is given the weight of 2'" when the process sending 1t has the

weight W, = 2", When 1 < W, < 2!, an activation message is given the weight

of | W,/2|. Once receiving a %supply.-WTC message, a process can send more than
24 activation messages. Therefore, only very few WTC supplies are usually made

during compultation.

4 Message Combining with Delayed Returning

4.1 Bottleneck in the Flat WTC

The WTC technique as described in Section 3 (which we will refer to as “the flat
WTC") has a potential bottleneck: As the number of processes increases, the de-
tecting process may be flooded with Toreturn WTC messages sent [ron all processes
and may become bottleneck. Also, the communication channels near the detecting
process may become congested.

In the KL1 immplementation on the Mults-I'S1, it takes the detecting process about
150 wsce to service an incoming %return WTC message.® In one application (the
Packing Piece Puzzle) [T], when a speedup of 50 was atlained, the average execution
time of a sublask was about 40 msec. 'I'his means, assuming the processor utilization
of 80% (50/60 = 0.78), the detecting process is receiving one Yireturn . WTC message
per 800 psec on the average. In this case, the detecting process was not a bottleneck.
But, if the nurmber of processors increased four fold, the detecting process would be
barely calching up with the Treturn W1T'C messages. Things would be worse with

higher processor utilization and smaller subtask granniarity.

4.2 Message Combining

In order to remove the bottleneck at the detecting process, it 1s a natural idea to put
the processes in a tree structure in which each process has a small number of child

processes.” If each process simply forwarded %return WTC messages Lo the parcnt

“When a process becomes active, it notilies Lhe detecting process (by a “fiready” message),
and the latter supplies a weight 2% to the process. The time 150 psec is actually the sum of cne
Yready message handling time and %return WTC message handling time, but for simplicity of

argument, we ignore %oready messapges here.
SMole, sines we can identify a process with the node where it resides, we use the terminology

of the tree nodes, such as “root”, “child”, “parent”, “leaf” and “internal” (non-leaf) for describing

process, the detecting process would still be a bottleneck since it would receive the
same number of messages as before. Insicad, cach process must combine multiple
incoming %return_WTC messages from the child processes and send a smaller num-
ber of %return WTC messages to the parent process. To combine a Foreturn W'I'C
message at a process 15 to add its weight to the weight of the process. Message
combining was proposed by Pfister ef al. as a hardware mechanism for alleviating
hot spot contention in multistage interconnection networks [16], and a number of

variations have appeared [10, 11], including software message combining |22, 19].

4.3 Delayed Returning

The basic idea of message combining is simple, but exactly how best to combine
messages depends on specific applications. Combining s straightforward when the
number of messages Lo be combined at a process is predictable as is the case with
barrier synchronization: an internal process must receive as many messages from
child processes as there are child processes before it sends a combined message to
its parent. In the combining of %return.-WTC messages, this is not the case — it is
unpredictable when and how many %return. WTC messages a process might receive.
Thus, a process must somchow determine when to send a combined message up o
ils parcot.

According to the delayed returning rule we propose here, the non root processes
are required to keep the rate of sending %oreturn WTC messages lower than a certain
fixed rate. The fixed rate is determined as follows. In order not to make an internal
process N a bottleneck of message processing, its child processes ought not to send
messages al a higher rate than the rate at which the process can handle incoming
messages. Supposce the rate at which a %ereturn WT'C message can be serviced 15 A,
(the time it takes an internal process N to handie a message from a child process is
t, = 1/A.) and the number of the child processes is f. If a child process keeps the
message sending rate A, to be smaller than A,/ f, then message handling at process

N will not become bottleneck. In general, for any given 0 < p < 1, il i, 15 chosen

the processes. [n particular, the parent process of a process is not the process which spawned the

latter. The set of processes does not change dynamically in our model.

so that ¢, = ft./p, the time spent for processing %return.WTC messages at an
internal process is guaranteed to be less than p of the total processor tume of N,

The following are two ways by which the delayed returning rule is enforced:

(1) Each non-root process keeps a local clock which schedules the message sending
routine at an interval of ¢,. The routine sends a Yireturn . WTC message if the

process is idle when it is invoked.

(2) On becoming idle, each non-root process waits ¢, before sending a %return WTC
message. If il receives an activation message before t, elapses, it simply be-
COTILS active,

Two possible ways of how a process waits a specified amount of time js:

{a} To set an local alarm clock to wake it up after ¢, unit of time, and to
sleep. On receipt of an activation message during the sleep, the alarm is

canceled,

(b} To gu into a busy waiting loop when it becomes idle. 'L'he process counts
down in the loop Gll the counter value reaches zero. The initial value of
the counter is detennined so that the time f, elapses in the countdown.
On receipl of an aclivalion message during the sleep, the busy loop is

wexited,

An idle process that has not sent a %return WTC message after it has become
idie for the last time is said to be in the delay slot. The WT(C invariant condition is
changed to allow an dle process in the delay slot to have a positive weight. The life
time of a process appears to hecome longer to the environment. An internal process
treats a Wreturn WTC that arrives at it just as an activation message bringing a
null task. The weight of the message is added Lo that of the process, and if the
process is idle when it receives the message, it behaves as if it became active and

immediately hecame wdle again,

5 Message and Time Complexities

5.1 Message Complexity

Lot M be the set of all activation messages generated and m = |[M|, Jt be the set
of all %return W'1'C messages generated and v = [[¢|. In the flat (i.e., one without
combining tree) WT'C with or without delayed returning, at most one %return WTC
message 15 sent for one activation message. Thus, r < m.

As for the combining WTC, let us suppose that the fanout of the combining tree
is constant f{> 1). In the worsl case, every activation message is received by an idle
leaf process and cause d Yereturn WTC messages to be sent, where d = log g n is the
depth of the combining tree. LThus, the worst case message complexity is O{m log n).
slightly worse than O(m).

In a lypical case, however, aclivalion messages may arrive al aclive processes.
Moreover, with the combining WTC, an idle process in the delay slot may receive an
activation message. This causces a Rreturn-WTC message which would have been
sent in the flat WT'C to be canceled, A process could become active and idle alter-
natively & number of times, but could send only a small number of Yreturn.WTC
messages. Note this effect is due to delayed returning. 1If the flat WTC adopled
delayed returning alone (the (flat) WT'C with delayed returning), it would enjoy the

cffect.

5.2 Time Complexity
5.2.1 Flat WTC

In general cases, processes can hecome active and idle alternatively many times
during computation. Suppose that at some stable stage in the computation, cach
process becomes active at the rate of A, times per unit time. In the flat WTC,
Tareturn-WTC messages will be generated at the rate A, per process. Unless nd, is
less than a unit time, the detecting process cannot catch up with the incoming %re
turn.WTC messages. To prevent the detecting process from becoming a bottleneck,
A has to decrease proportionally to 1/n — in other words, the average granularity

of { “subtask™) has to increase proportionally to n {or local idle time has to increase).

10

5.2.2 Flat WTC with Delayed Returning

The above mentioned hottleneck can be removed by decreasing the generation rate
of Treturn WTC messages. The delaved returning rule ensures that the sending
rate be kept less than X./(n — 1) (the fanout at the root is n — 1}, where A, is the
rale al which %oreturn WTC messages can be serviced.

If the maximum message latency of the network is O(n), the time it takes to
detect the lermination is O{n). Thiz upper bound is attained when ©(n) processes
participatle in the base computation in the Jast {}{n) time of the base computation,
i.e. when the parallel computer is efficiently used. Thus, the observable runtime
T, is at least §1(n). If the base computation time Tp is o(n}, the detection time
will eventually become battleneck as n — 0. Howcever, since the service time
of & Tereturn W'LI'C message is vervy short, this is not cxpected be a problem in
practice. Agajn, In the case of the KL1 implementation, even with n = 10,000
processors, the total service time of 10,000 %return WTC messages is only 1.5
scconds. The runtirme of a large-scale application progriumn that makes an cfficient
use of the large scale parallel computer would be much much longer. (The total
amount of computation necessary for maintaining a constant clliciency usually has
to increase more than linearly in the number of processors [9]. 'Lhis means the

paralicl runtime has to grow as the number of processors grows.}

5.2.3 Combining WTC

A theoretically better detection time can be achieved by employing a spanning tree
for message combining. We consider the case that all processes (or €{n) processes)
participate in the base computation. Under the constant fanout f, the detection
time will be (logn). Since combining of WI'C from all processes 1s a special case of
single-node accumulation, the detection time is also fsingle node broadcast time).

The lower bound can be attained in a binary hypercube, since a two-rooted
binary balanced Lree can be embedded in it 2],

As for a two-dimensional square mesh network, the lower bound of O /n) can
he attained. A very simple spanning tree with which te achicve this bound is as

follows. Lel processing nodes be identified by the coordinate {z,y) (0 < 2,y =

Ll

vwn — 1), The tree has the root at (0,0). The child nodes of the root node are
(x,0) (0 £ 2 < n —1). The child nodes of node {z,0} are (r,y) (0 < y =
Wm = 1), Thus, the depth of the tree is 2, the fanout of all internal nodes except
the root node is vn — 1, and the fanout of the root node is 2{y/n — 1). The
maximum latency of %oreturn -WTC messages is ©(y/n). Note, although there could
be contentions between the messages, that would not aggravate the time complexity.
For example, /n — 1 %return.WTC messages could simultaneously compete for the
network channel between {z,0) and {r,1}. But since it takes the processing node
(z,0}) an ©(y/n} time to process these messages, the conlention does not aflect the
order of the overall Lime for termination detection. Alternatively, by recursively
dividing the square mesh into four square sub-meshes and placing the root at the
center of each sub-mesh, & spanning tree with fanout 4 and depth [log,n] can be
constructed. The distance between the global leal node and the global root node
along the tree edges is ©(y/n). This spanning tree also attains the lower bound
of detection time. Some channels arc on more than onc tree edge, but since the
degree of this "overloading™ is at most 2 {under the ¢-cube routing — to route in
the first dimension then in the second dimension), the contention can only increase

the detection time by a constant factor.

6 Discussions

A number of distributed termination detection schemes have been published, such
as [6], [18}, [12], and [4]. But as far as the authors are aware, complexity arguments
arc concentrated on the message complexity [18, 4] with time complexity ignored or
only lightly touched upon. Probably, the reason is that mest termination detection
schremes are intended for very gencral distributed environments where it is hard
to make assumptions about node-to-node or site to site communication delay. In
contrast, the scheme proposed in the current paper is specifically intended for use
in large scale parallel computers.

Besides detecting algorithms, there are algonihms for testing the termination.
Some distributed terminalion schemes repeatedly use such an algorithm and re-

port the termination when after a number of failures the termination test becomes

12

successful. Mattern [12] compares and discusses such algorithms. Typically, each
process maintains a counter that records the number of messages sent minus the
number of messages received, and reports the value to the testing process when re-
quested. The problem is that, since the reporting times can differ from process to
process, the testing process does not in general obtain a consistent global state. This
is solved by introducing local flags or message generations, etc. Dy using a spanning
tree for broadcasting the request for report and for combiniug the reports®, the time
required for a test can be minimized. The main difference is that one global test can
be initiated for one active message. Thus, when only a limited number of processors
are in use, the repeated lesting scheme will generate much more control messages
than the WTC scheme. The worst-case message complexity r = f2{mn). The ad-
vantage over the WT(C scheme is that message counting is much simpler than the
handling of weight. In particular, active messages do not have Lo be pigey-backed
with a weight.

A number of nessage combining schemes have heen proposed. [n Plister ef al. the
network switch has a buller at the input to hold those messages not yet served, and
on arrival of a new input essage the bufter is looked up for combinable messages.
The congestion level of the switch determines the level of combining. In contrast,
the delaved returning rule removes the bottleneck at the receiving node by limiting
the message generating rate at the message source. The concept of window [19] is
close to the sending inlerval ¢, of the delayed retnrning. But [19] does not indicate
the right size of the window or the way to guarantee the eventual message sending
to the pareni. The problem with the delayed returning is a relatively high overhead
of delaying & message sending, and this may confine its use in limited situations,

such as termination detection.

7 Conclusions

A termination detection scheme for use in large-scale multicomputers was prescnted.

It is based on the Weighted Throw Counting (W'L'C) technique, but the bottlencck

Sln order Lo reduce the mumber of tests, the sendimg of the combined message to the parent

should be delayed until the process Lbecomes idle,

13

at the detecting process is removed by message combining. The delayed returning

rule guarantees a proper combining behavior at a combining node in the presence

of unpredictable number of incoming messages. It also helps to greatly reduce the

number of control messages (Yorcturn.WTC messages). The time complexity was

discuzsed,

References

1]

[2]

(]

W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent comput-

ers, JEEE Computer, 21{8):0-25 19858,

D). P. Bertsekas and J. N. Tsitsiklis. Parallel and Iistributed Computation — Nu-
merical Methods. Prentice Hall, L9895,

). T. Tlevan. Distributed garbage collection using reference counting. In Proceedings
of Parallel Architectures and Languages Europe, pages 176-187, June 1957, Also in
Parallel Computing, Vol.9, No.2, pp. 179-192, 1980,

§. Chandrasekaran and S. Venkalesan. A message-optimal algorithm for distributed
termination detection. Journal of Parallel and Distributed Computing, 8(3):245-252,

L840,

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1085,

E. W. Dijkstra and C. S. Sholten. Tremination detection for diffusing computations.

Information Processing Letters, 16{5:217-219, 1980,

M. Furuichi, K. Taki, and N. Ichiyoshi. A multi-level load balancing scheme for or-
parallel exhaustive search programs on the Multi-PSL. In Preceedings of PPoFFP 80,
pages 5055, 1490,

A. Uota, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto. Overview of the parallel
inference machine (PIM) architecture. In Proceedings of the Internutional Conference

on Fifth Generation Computer Systems 1958, pages 205-229, 1988.

V. Kumar and A. CGupta. Analvsis of scalability of parallel algorithms and architec-
tures: A survey. In Proceedings of The 199 International Conference on Supercom-

puting, 1991,

14

[10]

(1]

17]

[13]

[14]

[15]

|16)

[17]

[18]

9]

[20]

T. Lang and L. Kurisaki. Nonuniform traffic spots (NUTS) in multistage intercon-
nection networks. Journal of Parallel and Distributed Computing, 10(1):55-67, 1990.

R. L. Lesher and M. I. Thazhuthavetil. Hotspot contention in non-blocking multistage
[=]

interconnection networks. In Proceedings of ICPP'90: Volume I, pages 401-404, 1990.

I'. Mattern. Algorithms for distributed termination detection. Distributed Computing,

2 3):161-175, 1987

F. Mattern. {lobal guiescence detection based on eredit distribution and recovery.

Information Processing Letters, 30{4):195 200, February 1989.

K. Nakajima. Y. Inamura, N. Ichiyoshi, K. Rokusawa, and T. Chikayama. Distributed
implementation of KL1 on the Multi PSI/V2. In Proceedings of the Sizth International

Clonference on Lewie Programming, pages 436-451, 1984,

H. Nakashima, K. Nakajima. S. Kondo, and Y. Takeda. Architerture and implemen-
tation of PIM /1. In Proceedings of the Infernational Conference on Fifth Generation

Computer Systems 1992, 1992, To appoear.

G. F. Phster and V. A. Norton. "Hot spot” contention and combining in mullistage
interconnection networks. JEEE Transactions on Computers, C-34{10):043-8945, Oc-

tobeor 1985,

K. Bokusawa, N, Ichivoshi, T. Chikayama, and H. Nakashima. An cfficient termina-
sion detection and abertion algorithm for distributed processing systems. In Proceed-
ings of the [988 Mternational Conference un Parallel Processing, Vol I Architecture,

pages 18-22 1988,

N. Shavit and N. Frances. A new approach to detection of locally indicative stability.
In L. Kott, editor, Procecdings of Internalional Conference on Autvmata, Languages
and Programming, pages 344-355, 1986. Lecture Notes in Computer Science 226,

Springer,

P. Tang and P-C. Yew. Software combining algorithms for distributed hot-spot

addressing. Journal of Parallel and Distributed Computing, 10(2):130-134, 1890,

K. Ueda and T. Chikayama. Design of the kernel language [or the parallel inference

machine. The Computer Journal, 33{07:494 500, 1594,

[21] P. Watson and 1. Watsom. An efficient garbage collection scheme for parallel computer

architectures. In Proceedings of Parullel Architectures and Languages Furope, pages
432-443, June 1987,

22] P.-C. Yew, N.-F. Tzeng, and D. II. Lawrie. Distributing hot-spot addressing in large-
scale multiprocessors. TEEE Trunsactions on Computers, C-36(4):388-305, April
1987,

L6

