ICOT Technical Report: TR-735

TR-735

A Formalization of Generalization-Based Analogy

in General Logic Programs

by
N. Iwayama, K. Satoh & J. Arima

January, 1992

© 992, ICOT

Mita Kokusai Bldg. 21F (03)3456.3191 ~5
| (: D | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Formalization of Generalization-Based Analogy
in General Logic Programs

Noboru IWAYAMA, Ken SATOH, Jun ARIMA

Iustitute for New Generation Computer Technology
1-4-28 Mita. Minato-kwu, Tokyo 108, Japan
email: iwayvama®icot.or.)p

Janmary 13, 1992

Abstract

Some research (3. 1 2] has revealed logical aspects of analogy based generaliza
tien. Given similarity % and projected property P, inductive generalization gives a
mile Wao Sie) 2 Pilr) from a fact Z20 S{x) A Pla). In this paper. we show that a
principle tor analogy based on generalization is described and implemented in logic
programs vory clearly and simply. By the description, we give a declarative seman-
ties of analogy based generalization. We also consider the implementation as heing
an analogical system by itself to support research on the analogy.

We need integrity constraints to deseribe the imtrinsic non-deduoctiveness of the
analogy, We consider the conclusion of analogical inference as one of minimal mod-
els which are not generally unique for a program. Therefore, stable mode] semantics
i= suitable for vor formuolation of the analogy. So, from the aspoect of logie program-
ming. this work gives us an important application of integrity constraints and a fine
instance of utilization of stable model semantics,

We shiw the rorrespondence between an analogical model for a Horn logic pro-
gram wilh integrily constraints and a stable model for an extended program of the
original program, We also show the computation of the analogy by non-deterministic
procedure of stable models,

Topic: hnowledege Hepresentation

Category: Analogy. Logic Programming, Stable Model Semantics, Generalization,
Integrity Constraint

1 Introduction

In this paper, we consider the analogy i the following sense: when two objects possess
some commen property (5 similarity), we would like to infer that a property (F: pro-
jected property) pussessed by one object (| HB: base) is also possessed by another object
(T2 target).

Research on analogy may be divided into two types as stated by Peirce [12]. One is
research to capture the analogy as a replacement of the base object with the target object
{most research [18, 6. 9. 7. 10. 16] on the analogy are of this type). The other is research
to capture analogy as a generalization from one instance [3]. Replacement is essential for
the former tyvpe of the analogy. The replacement 1= to replace B satisfying 5 with T also
satisfving S in order to obtain P{T) “directly” from F(B). In the latter type of analogy,
inductive generalization is essential. that is to infer a general knowledge Yr. S(z) 2 Plr)
(called the analogical grounded rule) from a fact S(B) A P(B) (3z. S(z) A P{z)). P(B)
is inferred from the analogical grounded rule and S{T'). We discuss the analogy from the
latter point of view. namely, the analogy based on generalization.

So far advanced studies[3. 2] have been done in order to formalize analogy based on
generalization from a logical point of view, it i1s important to crystallize fundamental units
of analogy based on generalization. Since the declarative meanings of analogy based on
generalization can strictly be expressed in logic programming, we believe that the descrip-
tion of the analogy based on generalization in logic programming is usetul and promising,.
lo this paper, we show that a principle for the analogy. provided by research on the anal-
ogy based on generalization, 15 described. aud implemented in logic programming very
clearly and simply. This implementation may also be considered as being an analogical
system by itsell 1o support research on the analogy as a logical inference.

Much work |10, 16,9, 7| has deall with analogy in logic programuming. (10, 16] discussed
analogy as a method to generate rules in the context of inductive logic programming.
(9. 7] gave us an understanding of the analogy itsell. Unlike those, this paper gives an
implementation supported by a declarative semantics as a general tool for research on
analogy based on generalization. Moreover, all of them have considered analogy as a
replacement, while Lhis paper deals with analogy based on generalization,

Now, we need further consideration to analogy in logic programming. Firstly, we
discuss a relation between the non-deductiveness of analogy and logic programming. Pre-
vious implements of analogy in logic programming has not given enough attention Lo Lhe
non-deductiveness of analogy, though analogy is non-deductive intrinsically. The reason
seers Lo be that previous systems have mostly implemented in a subset of the first order
theory, logic programming {ex. Prolog). in practice[7, 9, 11]. and that knowledge repre-
sentations in these svstems have also been restricted to the syntax of logic programming
(definite clause').

Let us consider non-deductive inference systems from a general point of view. We
can consider the consequence of non-deductive inference as being a hypothesis, since the
consequence is not necessarily deduced from given facts. In the process of scieniific theory
formation. the hvpothesis should be verified. The verification must include the confirma-

'For locally stralified programe, including the class of definite clause, a clear semantics is given hased on
the ordinary Prolog interpreter with SLUNF strategy(13]). Uafortunately even locally stratified programs
cannol help eseapiang the Lllowing argument.

tion that there is no counter example to hypothesis (the hypothesis is consistent to facts).
Because scientists may revise or discard hypotheses to which there is a counter example,
the refused hypotheses play a great part in acquiring the “correct” hypothesis. The use of
counter example is very common to research in fields of inductive inference and learning.
The point is that there is no way to prevent over-generalization except for counter exam-
ples, especially negative examples. The theory formation process that does not take into
account negative examples becomes worthless, since the excessive generalization might
explain any facts. However, we cannot represent negative examples in definite clause’.
Therefore, research dealing with knowledge only in definite clause leave the verification
process out of arguments from the logical standpoint. Tt follows from what has been said
that the knowledge representation for analogy should he extended to logic programming
which can deal with negative examples.

Recently, in the field of logic programming, much valuahle research has enabled the
extension of logie programming with clear logicul semantics. One such extension of logic
programuing, logic programs with imfegrity consiraints{l4, 4], enables us to represent
negative examples. So. in this paper. we discuss the analogy in logic programs with
integrity constraints.

From the aspect of logic programming. this work gives us not only an important
application of logic programs with integrity constraints but also of a fine instance of
utilization of stable model semantics. We will consider the role of stable model semantics
in the analogy in a little more detail. In this paper. to compute the analogy we will use
general logic programs with integrity constraints that are not locally stratified programs.
There ar: two semantics which deal with larger classes of logic programs beyvond stratified
programs: well-founded semantics [17] and stable model semantics [5]. We will consider
the conclusion of analogical inference as one of minimal models which are not generally
unique for a program. Intuitively speaking. while. in well-founded semantics. the union
of all minimal models is considered as the meaning of the program. each minimal model
is considered as the meaning of the program in stable model semantics. Therefore. we
think that stable model semantics is suitable for our formulation.

To sum up. the main point stated above is that we give a formalization of analogy
hased generalization in general logic programs with integrity constraints. In the following
section. we describe a principle for the analogy. which will be defined as an elementary
form of analogical generalization. In section 3. we will translate it into a definition of
the analogv which is based on the Herbrand model of a logic program with integrity
constraints. In section 3 we show the correspondence between the definition of the analogy
{Herbrand model) and stable model of the extended program of the original program. In
section 4. we show the computation of the analogy by the non-deterministic procedure of
stable models, previously given in [15].

*There are loopholes in sonw cases. Research on generation of definite clause program is in the field of
inductive inference. in which this argument plays one of the key roles. In such a research, the technigue
to represent negative cxamples is some “meta” way, that is out of logic. But this way cannot strictly give
logical meanings o negative examples (the inconsistency to the hypot hesis).

2 Elementary Form of Analogical Generalization

In this section. we define a principle for analogy based on generalization.
A schema (1) is often used to explain the analogy. However, the prerequisite of the
schema lacks some conditions [3. 1].

S(B) A P(B)
S(T) (1)
Pi(T)

Since the investigation of the ymphicit prerequusite in thiz schema s the heart of the
research into the analogy. many researchers have devoted their efforts to this investigation.
Researchers disagree on what the appropriate prerequisite is. Firstlv, we provide the
following two necessary prerequisites on which researchers, thinking of the analogy as a
generalization from one instance, wonld agree:

Condition of Buse Fristence: Ak Sr. SirFrn Plr), (2}
Crounded Hule Consisteney: Al{%r. S(r) 2 Plri} is consistent. (3)

Condition (2] means that there must exist a base rase, since analogical inference is based
on the hase case. Condition (3) means that the resnlt of the generalization from one
instance, the analogical grounded rule. must be consistent with the original knowledge to
guarantee the consistency of the inference by the analogv. We note that the grounded
rule consistency s equivalent to the following conditon:

Au{=(Fe. S{ri A =Plr))} s consistent. (37}

This condition shows that the entire knowledge is consistent with the original knowledge.
even though there is no target object such that a conflicting result {=P({1'}) 1s inferred by
the analogy.

We define an elementary form of analogical generalizalion as au inference of the ana-
logical grounded rule, ¥r. S} O Plr), under the above two conditions. Moreover we
sav the above two conditions. condition of base existence and grounded rule consistency,
as the necessarv conditions for the analogy. In the following we discuss the analogy on
the basis of the elementary form of analogical generalization.

3 Analogy in Logic programming

3.1 General Logic Program with Integrity Constraints

Firstly we define general logic programs with integrily constraints and their models. Those
definitions are based on [14]. We should notice that the purpose of integrity constraints
is different from the definition in [14]. While integrity constraints described in [14] are
utilized when updating database to verifv the consistency of the database. in this paper
integrity constraints are utilized to verifv whether the analogy s applicable.

Definition 3.1 Let A be an atom, Ly, ... Lo(m = 0) be a literals. A general logic pro-
gram is a sel which consists of the following rules of the form:

A+~ LI ' L23 veny L'ru-
or integrity constraints of the form:
v= Ly, Ly oy L.

We call A the head of the rule and Ly, ... L, the body of the rule. Let R be a rule. We
denote the head of B as head(R}, the set of positive literals in the body of R as pos(R)
and the set of atoms obtained by removing negation symbols from negative literals in the
hodyv of R as neg(K). We sav that a program that has no negative literal in bodies of
rules nor integrity constraints is a positive program. In this paper, positive programs are
subjects for the analogy while general logic programs are used for the computation of the
analogy.

As stated in section 1. integrity constraints are used to represent negative exam-
ples. For example, an negative example P{T) {ohject T does not satisfy property F)
15 expressed as an integrity constraint +— P(T). A general form of integrity constraint
i— L. La, ... L, means that there 1= at least one literal which is not satisfied.

I'he semantics for general logic programs is based on stable model semanties [5].

Definition 3.2 [ef K be o general logic program and 8 be an arbitrary substitution of
elements in the Herbrand base for all variables in K. A stable model M for K s a

Herbrand model satisfying the fallowing conditions.

1. M s equal lo the munimal Herbrand model for the positive program K™ where
Y = [R® head B'Y) = head{ BRE) and pos{ R'8) = pos(RE)
and negl By =@, for K¢ K and negt RO M =}

2 For every integrity constraint (" € N and every substifution 1, pos(C'0) & M nor

(neglCOy M} £ 8.
We say that M does not violate (.

3.2 Analogical Model and Analogical Schema

In the following we give definitions of the analogy for positive programs on the basis of
the elementary form of analogical generalization defined in the previous section.

Definition 3.3 Let A be a positioe program, 5, P be predicate symbols in K. HU (K} be
the Herbrond base of K and rmon{ &) be the least Hevbrand mode! for K. A predicate P
is prajeclable based on simidarity S by analogy under K if the following condilions are
satisfied:

[. There erists t £ HU TR} s, man(K) | S(ti A Pit),
2. There erists a Herbrand model M for K s.t. foranyt e HU(K), M E S(t) 2 P(t).

e

R satisfies the necessary conditions for the analogy deseribed above, since the conditions
of definition 3.3 correspond to the necessary conditions. Since K is a positive program,
atoms satisfied by ran| A) are also satisfied by all models. The condition of hase existence
is given by this fact and the first condition of definition 3. The second condition is

equivalent to grounded rule consistency.

Definition 3.4 Let 5. F be predicate symbols in positive progrum K, P be projectable
based on similavity S by analogy under K. A Herbrand meodel M for K is an analogical
model for K on P with similarity S iff M 1s the least model for KU {Plz) « Sz}

Although this definition is a ‘meta’ definition with respect to the Herbrand model for
K., we can define the analogy as a stable model for the following extended program of K.

Definition 3.5 Let A be a positive program, S, P be predicute symbols in K, appli, contra
be predicate symbols not in K. The following set of rules is the analogical generalization
schema on P with simiarity S, erpressed as A(S, P):

P(r) « —contra,appli, S{x).
appli «— S{r). Plr).

rontra +— S[x). ~Plr).

In the schema. applt s true 1f the condition of base existence 1s satisfied, while confra is
true if grounded rule consistency is not satisficd. When appli is true and contra is false,.
the first rule of the schema is equivalent to the analogical grounded rule. Therefore, we
may sav that this schema represents the elementary funin of analogical generalization.

Definition 3.6 Let A be a positive program, S, P be predicate symbols in K. An analog-
ical extended program of K is a general logic program K O A(S, P). When S and P oare
identificd frowm the contert. we express KU A(SP)oas Ry,

The following (wo theorems show the correspondence between analogical models and
stable models for an analogical extended program (for proofs. see appendix).

Theorem 3.7 Lef K be a positive program, [f ther erists a stable model M for Ky
such that appli € M and contra & M, then P is projectable bused on similarity S, and
M — {appli} is an analogical model for K on P with similarity 5.

Theorem 3.8 Lef h be a positive program. If P is projectable based on sumidarity S by
the anulogy under K. and M is an analogicel model for K, then M U {appli} is a stable
model for K.

It follows from these theorems that we can obtain an analogical model for A by computing
a stable model M for K. because M ~ {appli} is an analogical model for A if and only
if appli € M and contra & M.

Since A, is not a locally stratified program, a stable model for A, corresponding
to an analogical model for K is a minimal model that is not generally unique. As de-
scribed in section 1. stable model semantics gives us a key to grasp the analogy based on
generalization, The following example makes this clear.

Example 3.9 Felation between Analogical model and Stable Model

When there is an analogical model for K, there iz probably a stable model for K, which
does not correspond to the analogical model. Consider the following program K:

S(H).
P(H).
TI.

There are two stable models for K, of this program: {S(B), P(B), S(T), P(T'), appli} and
{S(B), P{B), S(T), appli,contra}. The hrst model corresponds to the analogical model
for K. hecause in the first model appli is included and contra is not included. On the
other hand, the well-founded model for K, s {S(B), P(B),S(T),appli}. This model
cannot represent the possibility that P(T') is satisfied. We can see from this example that
stable mode]l semantics provide us with the ability to select the analogical model from
minimal models.

]

4 Computing the Analogy

In this section, we provide a way of computing the analogy using a nondeterministic
bottom-up procedure. To terminate the procedure, we deal with general logic programs
satistving the following conditions:

1. There i= no function symbol.
{ There are constant symbols only.)

2. All rules are range-restricted.
(All variables in the head of each rule must occur in the body.)

During the computation. the bottom-up procedure uses ground instances of rules in gen-
eral logic programs, thanks to the above conditions. Now we will show a nondeterministic
procedure computing stable models. The procedure is an expansion of procedure [15]
which is a bottom-up procedure that compuies stable models for propositional general
logic programs with integrity constraints.

A procedure computing stable models
Let A be a general logic program and # be an arbiirary substitution of elements in the Herbrand
base for all variables in k.

ii= 1,
Ma. My := propagate(.9).
If ."!-Ig;. M !'Hu ?':' ﬂ then fail.

Step 1:
Select a rule R and # in K such that head{ B8 & M, and pos{ #8) C M; and [neg{ R#) N
M} =9, theu go to Step 2.
If such a rule is not found and there exists an integrity constraint ¢ in A and & s.t. M,
violates ('8
then fail else return M.

Step 2:
=1+ 1,
M, M; := propagate(M,_ U {head{ R}, M;_; Ul neg{ B})

H MO ﬂ,- # @ then fail else go to Step 1.

propagate] M. M)
begin _ ~
k=10, MP = M, ﬂ-f,u = M.
do . .
ko=k+ L M= M M= ML
For every tule Hin K
1. If there is a # such that head{ R8) & _-:i':“l and pos{ K8) < ME and
negl B8) C MF", then add head{ R#) to M.

2 If there is a # such that headi B8) € IE*" and there exists P € pos(R#) s.t.
P g MU and (pos{RE) ~ {P}) C M['. and neg(RE) C M¥=! then add P
to .'H:r.

3. If there is a such that head(R6) € M and pos(RE) C MF™' and
neqgi RB) C .-"I-fl-k ' then fail.

For every integrity constraint ' in A",
1. If there is a # such that there exists P e ('#s1. P ¢ M’Lk" and (CF— { P} C
M then add P 1o M},
5. 07 there is a # snch that €8 C M7, then fail.
until M5 = M ' and MF = M.
return M MF
end
In the procedure, select in Step 1 expresses nandeterminism and fail expresses going back
to the recent choice point. For the range-restricted programs without function symbols
as stated above, the output of the procedure is a stable model (sound) and the procedure
putputs all stable models by exhaustive search {complete). See [15] for a proof of soundness
and compleleness of the procedure.

Example 4.1 Computation of the Analogy

(onsider the following program A :

SR (1)
P B (2}
511, (3)
We will add the following analogical generalization schema A(S, F) to the above program,
Fir) — =eontra.appli, 5. {4}
applt — Stx), Plao) (&)
rontra — S{x).~Plr). (6}

We show how models for K (= K LU A(S, F)) are constructed by each selection of the
rules in the above procedure.

Selection 1,

0. My = {S(B). P(B), S(T).appli}. My =0

. Select (6) with # = {x =T}.)
M, = {S(B}. P(B),5(T},appli.contra}, M; = {P(T)}

=
H

Since there is no selected rule, M, is returned as a stable model. However, M, does
not correspond to an analogical model because the model iaclides contra,

Selection 2.
0. My = {S(B), P(B),S(T),appli}, My = @

I. Select (1) with # = {r = T} .
M, = {S{B), P(B). S(T). appli, P(T)}. M, = {contra)

2. Since there is no selected rule, M; is returned as a stable model. M, — {appli} is
an analogical model becanse appli is included but contra is not included in M,. It
follows from the analogy that P(T'} is satisfied in M,.

Example 4.2 Effect of the Integrity Constraint

Consider the following program A which includes integrity constraint (4):

SCH). {1
PiB). (2]
SiTh. (3}
—~ R(T}. (4}
Rix) — Piz). (5]
We will add the following analogical generalization schema A(S, P) to the above program.
Fir) — —contra.appli, 5(r). i6)
applt — S(x), Plx). (v
contra — S(r).-Plr). (k1]

We show how maodels for K are constructed by each selection of the rules in the above
procedure.

Selection 1.
0. My = {S(B). P(R), S(T). appli . contra}, My = {R(T), P(T)}

. Since there is no selected rule, My is returned as a stable model. M, does not
correspond to the analogical model for A because My includes contra.

Sinee there is no selection of rules, there is no analogical model for K. The reason for
this iz that the grounded rule consistency is not satisfied by (4],

Example 4.3 Helaration of the Restriction for 8 and P

In the definitions for the analogical model and the analogical generalization schema, pred-
icates” arity is one. This restriction is not critical for our analogy. In definitions for the
analogical model and the analogical generalization schema, predicate S may be replaced
by a conjunction of predicates and predicate P may be a predicate with any arity. The
following serves as an example. Consider the following program K

o

ApartF romi Ball, Block). (1)

Apart Fromi Planet. Sun). (2}
ApartFrom{ Electron, N ueleus). (3
Attractsiz.y) — AstroHeavy(x), Object(y]. (4}
Attractsiz, v) — Posblectiz), NegElect{y). (3)
Attracts(z.y) — Neghleetir), PosElect(y). (6]
AstroHcavy Sun). (7)
Object{ Planet). (&)
PosElecet{ Nuvleus) (9)
NegEleet| Electron). (10}
Hevolves{ Planet, Sun). (11}
— Revelves| Ball, Flock). {12}

We will show whether Revolves| Electron, Nucleus) { *clectron revolves round nucleus™),
which is a non-deductive consequence, can be inferred by the analogy for different can-
didates of similarity. To do so, we consider Revolves(z.y) as projected property Pz, y)
and {Electron, Nucleus) as a target object T

Case 1. A candidate for similarity S(zr.y) is NegElect(r) & PosElect{y): We will add
the following analogical generalization schema to A

Hevolvesir.y) — —econtra,appli, NegElectiz), PosElect{ y), [13)
appli - NegElect{ e}, PosElect{y). Revalvesiz, yl. [11)
confra — NegEleetiz), PosEleetiy), - Revolvesiz y). [15)

We show the computation by each selection of the rules in the procedure. We use M and

M for convenience:

M = {Apart Fromi Ball. Block), ApartFrom| Planet, Sun), Apart From(Elcetron. N ueleus).
AstroHearyl Sun |, Objectl Planet}). PosElect{ N uclens), NegElecti Electron), Revolves{ Planet. Sun).
Attractsi Sun. Planet), Attracts{ N ucleus. Electron), Attracts Eleetron N ueleus)},

M= {Revolves(Ball. Block)}.

Selection 1,
0. My=M. My=M

. Select (13} with 8 = {r = Electron,y = Nuclews).
M, = My U feontra}, My = My U { Revolves{ Electron, Nucleus)}.
Since there is no sclected rule, M, is returned as a stable model. M, does not
correspond to the analogical model for A because M| includes centra.

Sinee there is no selection of rules, there 15 no analogical model for K. The reason
for this is that the condition of hase existence is not satisfied by the fact that there is
no ohject which satisfies (NegElect(ry A PosElect(y)) A Revolves{r y) [“a negatively-
charged object revolves round a positively-charged object”).

Case 2. A candidate for similarity S(z.y) is Apartfrom(r, y): We will add the following
analogical generalization schema to k.

Revolves{r.y) — —contra.appli, ApartFromiz,y). {16
applt — Apari From|z, y). Revolves{z, gyl {17)
contra — ApartFromiz,y), ~Revolves(z, y). {18}

We show the computation by each selection of the rules in the procedure.

Selection 1.
0. Mg = M U {appli, contra}. My =M

I. Since there is no selected rule, My is returned as a stable model. M, does not
correspond to the analogical model fur K because M includes contra.

Since there 1s no selection of rules, there is no analogical model for h,. The reason
for this is that the grounded rule consistency is not satisfied by the fact that there
18 a connter example against the analogical grounded rule. Apart From(Ball, Block) A
= Revolves{ Ball, Block) { *though Ball is apart from Block. Ball does not revolve round
Rloek™).

Case 8. A candidate for similarity S(r.y) is ApartFrom(z, y) A Attracts(y, r): We will
add the following analogical generalization schema to K

Revolvesiz, gy} — —contra,appli, Apart From{x. y). Attracts|y, z). [14%)
appli — Apart From{r. y). Allracts(y.), Revolves{r. y). (20
comtra — Apart From{xr.y). Attracts(y. r), - Revolvesiz, y). (21

We show the computation by each selection of the rules in the procedure.

Selection 1.
0. My = MU {appli], .:ﬁu =M

1. EIIE]".‘:'['I (21) with # = {& = Electron, y = Nucleus}. My = MyU {eomtral, ;':L =
My U { Revolves{ Electron, Nucleus)}.
Since there is no selected rile, M, is returned as a stable model. M, does not
correspond to the analogical model for A because M, includes contra.

Selection 2.
0. My =Mu{applil, My = M

L. Select (19) with 8 = {+ = Flectron,y = N u.cfie_,.:s}_
My = My U { Revolves(Electron, Nucleus)}, M, = ;'E'DU {contra}.
Since there is no selected rule, M, is returned as a stable model. M, — {appli}
18 an analogical model because appli is included but contra is not included
in M. It follows from the analogy that Revolves(Electron. Nucleus) is satis-
fied in M. This computation process corresponds to the following inference of
Revolves| Electron. Nueleus): after the analogical grounded rule.

W,y Attracts(y,r) A ApartFromir, y) 2 Hevolves(z, i)

(“if y attracts r and u is apart from y, then r revolves round y"), is obtained on
the basis of the elementary form of analogical generalization,

Attracts{ Nucleus, Electron) A Apart From(Electron, Nucleus)

(" nucleus attracts electron and electron is apart from nucleus™) is inferred.

10

5 Related Work

Orihara et al. [11].proposed the analogy on the basis of stable model { generalized stable
model precisely). LThey discussed the analogy for locally stratified programs without
integrity constraints. Since [11] added extra rules to the original program to compute
generalized stable models representing analogical models. their formulation is similar to
our approach. However, there are two main differences between their approach and ours,
as follows:

1. Negative Information

[11] used locally stratified programs for knowledge representation. As we described
in section L. negative information is not described in locally stratified programs.
Therefore [11] used heuristics or justification by the user to select a plansible ana-
logical model. Because our formulation uses integrity constraints, we can control
analogical inference only in a logical framework.

2. Result of the Analogy

[11] does not distinguish similarity from projected property to infer as many facts
as possible. For example. the analogical model intended in [L1] for a model
{S{BLPIBL ST L PU is o model {S{B) PIB)S(T0 PUT). ST, P(T:)}.
Since our analogical model is a model {S(B). P(B),S{1)), P(Ty), P(T1}}. a fact
S(150is not obtained by the analogy. The reason is that [11} added the following
two riles 1o the original prograny a rule that corresponds to the analogical grounded
rule Wro Siel T Pled and a rule that corresponds to a rule Wr. Ple) 2 S{r), the
reverse of analogical grounded rule,

6 Cnncluding. Remarks

In the future, we will consider the following two points. The first is concerned with the
nature of analogical inference. The second takes the standpoint of logic programming.

The solution of central problems have heen important in the study of analogy: which
ohject should be selectid as a base with respect to a target, which property is imporiant
in the analogy among properties shared by two objects. and which property is5 to be
projected with respect 1o a certain similanty, These problems are all concerned with
similarity and projected property. However. in our formulation. similarity and projected
property should he specified before the computation. Tt follows that we cannot deal with
how to specify similarity and projected property in logic. We have just found a clue to
this difficulty, Thal is a modification for the analogical generalization schema:

[, p) — —contrals,p) applifs, p), Clrs).
apple{s.p) — (o s} U xp).
contra{s, p)« C'(r,8). ~Ulx,pl

In this modified schema. ('(.r, s) means that the value of attribute " in object z is . We
introduce this notation to avoid the use of second order languages. Because, using the

11

above schema, we would specify similarity aud projected property in logic programming,
we will consider more about the schema.

From the standpoint of logic programiming, there are two points to be considered. The
first is the expansion of the class of the original programs for the analogy. In this paper,
the class of the original programs is Horn logic. We would like to deal with general logic
programs as the class of the original programs. The second is the utilization of a top-down
procedure to answer queries efficiently. Our bottom-up procedure presents the possibility
of computing irrelevant models to the query. We think that a top-down procedure in [8]
may he nseful.

Appendix

Proof of Theorem 3.7: A stable model M for a program A, is a minimal mwodel for
a program K that is KU {P(t) « appli. S(1)|t € HU(K)} U {appli «— S{u), P{ullu €
HUTK)} U {eontra «— S(v)jv € HU{K) and Plv) € M}, and M is consistent with the
integrity constraint in K. So M — {appli} 15 a model for K.

Suppose P s not projeciable.

1. Suppose that there does not exist t € HIUR) s.t. man(K) = S A P,
Since appli € M, appli should be inferred from K. S(u) A Plu) is not inferred
from K or olher rules. This s a contradiction.

Lo

. Suppose that for same t € HI'(R L M — {appli} B S(H) 5 Pit).
Sinee there exists £ € JIU{R) st M | S(t) A =P{1). contra is inferred. However.
this contradicts the fact that contra & M.

Since appli is a predicate symbol not in K, and M is the least model for K'Y, M — {appli}
is the least model for K L {P(r) « S(r)}. O

Proof of Theorem 3.8:
Let an analogical model for & be M.
We show that ie = M U {appli} is a stable model for K, . In other words, we show that
e = e K7D

Since conira is a predicate symbol not in K, contra € m and K = K U {P(t) —
appli. SUEE € HUR) U {applt — Slu). Plu)|lu € HU[K)} U {eontra «— S(v)|v €
HI'{K) and Plo) @ M.

[, Siwee M S omeoon satisfies K

2o mmee for any £ € HUGK), M | Pl — St m{= M U {appli}) satisfies {P(t) «
appli, S{#)|t € HU(KY).

3. Since appli € m. m satishes {appli — S{u). Plu)|u € HU{K)}.

4. Since for any € HU(K), M = P(t) — S(t), S(v) & M if P(v) € M. Therefore m
satisfies {contra « S(v)|lv € HU(K) and Plv) & M},

Therefore, m is a model for AT

Since for any ¢ € HU(K), min(K) | Sit) A P(t) appli € min(RT). M s the least
model for K U {P(r) — S{z)}. From these facts, we obtain that m 2 min{K7'). So we
conclude m = min{ K7*) from the minimality of min{ KAL),

M does not violate integrity constraints in K, since M is an analogical model for K.
Therefore. m is a stable model for K. O

References

[1] Arima. J.. A Logical Analysis of Relevance in Analogy, in Proe. of ALT 91, Japanese
Society for Artificial Intelligence. pp. 253 - 265 (1991},

[2] Arima, J.. Logical Structure of Aualogy, to appear in fnf. Conference en FGOS92
{1002),

4] Davies. T.. Russell, S0 A Logical Approach to Reasoning by Analogy, Froc. of
IICAT-RT pp. 264 270 (L987).

[4] Eshghi. K.. kowalski. R. A. Abduction Compared with Negation by Failure. Proe. of
[CLPRG, pp. 2301 254 (19849,

[5] Gelfond. M., Lifschitz. V.. The Stable Model Semantics for Logic Programming, Froe.
of LPRS pp. LOTO 1030 { 1938],

r_f'r] Gientner. 1. Structure-mapping: Theoretical Framework for Analogy. (agriliee Sei-
enee. VolL7. No2 ppo 1350 170 (19583)

7] Haragnehi. M., Arikawa, S.. Parlial identity between least Herbrand models of logie
programs. Proc. of the Inl. Workshop on Analogical and Inductive Inference 86,
Springer LNCS 265, pp. 61 8T (1987,

8] Kakas. A. (.. Maucarella, P.. On the Relation between Truth Maintenance and Ab-
duction. Proc. of PRICATO0. pp. 135 443 (1890},

[9] Kedar-Cabelli, 5., Purpose-Direcled Analogy, Froc. of the th Annual Conference of
the Cognitive Seience Society, Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 150
1509 (1985).

(0] Kodratoff, Y., Using Abductive Recovery of Failed Proofs for Problemn Solving by
Analogy, Proe. of the 7th Int. Conference of Machine Learning . pp. 295 - 303 (1990},

[11] Orihara. K. Analogical Reasoning as a Form of Hypothetical Reasoning and
Justification-based Knowledge Acquisition, in Proc. of ALT 91, Japanese Society for
Artificial lutelligence, pp. 243 - 254 (19891,

[12] Peirce. ("S.. Elements of Logic, in:Hartshorne, C., and Weiss, P. (eds.), Collected
Papevs of Charies Sanders Peiree, Volume 2 (Harvard University Press, Cambridge,
MAL 14932

13

[13] Przymusinski,T.C., On the Declarative Semantics of Deductive Databases and Logic
Programs, Foundations of Deductive Databases and Logic Programs (J. Minker, ed.).
Morgan Kaufman, Chapter 5, pp. 193 - 216 {1988).

[14] Sadri, F., Kowalski, R., A Theorem-Proving Approach to Database Integrity, Founda-
teons of Deductive Datubases and Logic Programs (). Minker, ed.), Morgan Kaufman,
Chapter 9, pp. 313 - 362 {1988).

[15] Satoh, K., Iwayama, N., Computing Abduction by Using the TMS, Proc. of ICLP 91,
pp. 505 - 518 (1901},

[16] Tausend, B.. Bell. S., Analogical Reasoning for Logic Programming, Proc. of Int.
Workshop on Inductive Logic Programmang, pp. 159 — 165 (1991).

17] Van Gelder, A., Ross, K.A., Schlipf, J.S., The Well-Founded Semantics for General
Logic Programs, Journal of ACM, Vol.38, No.3, pp. 620 — 650 (1991).

[18] Winston,P.H.: Learning Principles from Precedents and Exercises, Artificial Intelli-
gence, Vol. 19, No. 3 (1982},

14

