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Abstract

We have applied simulated annealing algorithms to solve problems of multiple alignment. A temperature
parallel algorithm, a simple parallel algorithm and a sequeniial algorithm were tested on a problem. The
results were compared with the result obtained by the conventional tree-based method. As a result, every
annealing algorithm has produced a better energy than the tree-based method. Particularly, either of
the parallel annealing algorithm has reached the best energy, probably the optimal solution. 'We consider
the temperature parallel algorithm of simulated annealing to be the most suitable for finding the optimal
multiple alignment, becavuse the algeorithm does not require any re-scheduling for further optimization.
The algorithm is also suitable for refinement of a multiple alignment obtained by other heuristic methods.

1 Introduction

The alignment of several protein sequences can provide valuable information for researching the function
or structure of proteins, especially if one of the aligned proteins has been well characterized. Comput-
ers partly solve the problem of multipie alignment auvtomatically, instead of relying on the hands and
eyes of experis. However the recults obtained by computers have not been as satisfying as those by
human experts. That iz because multiple alignment is one of the most time and space consuming prob-
lerns. Theoretically, dynamic programming algerithms provide an optimel solution to multiple alignment
(Needleman and Wunsch, 1970; Smith and Waterman, 1981). But, this requires memory space for an
N-dimensional array (where N is the number of sequences) and caleulation time for the N-th power of
the sequeace lenglh. Though a method was proposed to cut the unnecessary computation of the dynamie
programming algorithm {Carrille and Lipman, 1988]) it still needs too much computation to solve a
practical alignment problem. In order te obtain approximate solutions for multiple alignment problems
within a practical time, a number of heuristic algorithms have been devised (Barton, 1990; Johnson and
Doalittle). Most of these are based on pairwise dynamic programming combinations. These are likely to
promote so-called local optimals.

In this paper, we propose a parallel simulated annealing algorithm that ean be applied to be salving
multiple alignment problems. Simulated annealing is a stochastic algorithm used to solve complex com-
binatorial optimization problems (Kirkpatrick ef al, 1983). When the algorithm is applied to multiple
alignment, it can evaluate all sequences simultanecusly. The annealing process often gives an optimal
or a semi-oplimal solution i a reasonable Lime. We Lave adopted two paralle]l algorithms for simo-
lated annealing to sclve the problem efficiently. Onc is a simple paralle]l algorithm while the other is a
temperature paralle]l or time-homogeneous algorithm (Kimura and Taki, 1990).

The organization of the rest of this paper is as follows. We present the simulated annealing algorithm in
Seetion 2 and its parallelization mechanism in Section 3. After that, we formulate the multiple alignment
as a combinatorial optimization problem in Section 4. The resulis of experiments and comparison with
other methods are discussed in Section 5. Finally, conclusions are given in Section 6.

2 Simulated annealing algorithm

An outline of the simulated anncaling (SA) algorithm is as follows,
Let X be a solution space and E : X — IL be the objective function which we want to minimize.

Given an arbitrary initial solution zo€.X, the algorithm generates a sequence of solutions {zp}a=g1,2,...
iteratively as follows, and finally outputs =, for a large enough n

(i) Modify the current solution z, randomly and get a candidate for the next solution =z, .

(ii) Calculate the change in the objective function: AE = E{z] ) — E(=z,).



(1) When AE < 0, accept the candidate: 2,41 = z!. When AE > 0, accept the candidate with
probability p = exp(—AE/T,), but reject it if z4y; = zn where T, > 0 is a control parameter
decreasing with n.,

When T;, = 400, 5A is reduced to a blind random search; and when T, = +0, it is reduced to a
greedy algorithm (iterative improvement) converging to one of the local optimals at hand. For general
0 < T < +oo, it behaves in a manner between these two extreme cases. In the following, we refer to an
operation (i) as a meve and a sequence of operations (ij~{iii) as a step.

54 is based on an analogy between combinatorial optimization and statistical mechanics. The ob-
jective function F is referred to as energy and T, 1s referred to as femperature. We call {T, }nze,,
a cooling schedule. When the temperature is constant (1, = 1%, 5A simulates the equilibrium states
of an imaginary physical system at temperature T, which corresponds to a combinatorial optimization
problem. Hence, the sclution =, is distributed according to the Boltzmann distribution at temperature
T'. This Boltzmann distribution converges to the lowesl energy slate [optimal solution} as the temper-
ature decreases to zero. Thus, one might expect SA to be capable of providing the optimal solution, in
principle.

It is well-known that the cooling schedule has a great influence on 5S4 performance; a poor schedule
may lead to a poor solution. Here arises the cooling schedule problem: how slowly should we decrease the
temperature so as to get the best possible sclution within a given number of annealing steps (within 2
given amount of computation time)? However, characterizing the ideal cooling schedule is also a difficult

stochastic control problem.

3 Parallel algorithms of SA

SA has received much attention since it can provide much betler solutions than conventional heunstics,
although it often requires lengthy execution time. I order to accelerate its execution, the parallelization
of 5A has been studied extensively. We applied the following two paralle]l algerithms to the problem of

muliiple aligniment,

3.1 Simple parallel SA

The simple parallel algorithm is a naive combination of sequential SAs: every available processing element
(PE) has one solution and anneals it sequentially using a diline! sequence of random numbers. All
solutions are compared with each other and the best one, the one with the minimum energy value, is
selected as a solubion for the parallel algorithm, In each PE, such a simple cocling schedule as:

Tﬂ :ﬂ'L*l Il'j-;ll n= l]'lﬂ:l"'lr~r
l<a<l, K1

h
is often used (Kirkpatrick ef al, 198%). When the initial temperature Ty and the final temperature Ty
are chosen properly and both I and N/K (the number of so-called inner loops and outer loops) are large
enough, such a cooling schedule has been known to work well in many applications.

3.2 Temperature parallel SA

The basic idea behind the algorithm is to use parallelism in temperature, to perform annealing processes
concurrently at various temperatures (Kimura and Taki, 1980). The algorithm automatically constructs
an appropriate cooling schedule from a given set of temperatures. Hence it partly selves the cooling

achedule problem.
The outline of the algorithm is as [ollows. Each PE maintains one solution and performs the anneal-

ing process concurrently at a constan{ temperature that differs between PEs. After every & annealing



steps, each pair of PEs with adjacent temperatures performs a probabilisiic ezchange of solutions. Let
p(T,E, T, E') denote the probability of the exchange between two solutions: one with energy E at
temperature T and the other with energy E' at temperature TV, It is defined as follows:

r 1 if AT-AE <)
p(T.ET E) = ﬂp{_%ﬂ} otherwise

where AT=T1T-17", AE=FE-E.

In order to avoid the possible collisions between the pairwise exchanges, half of them perform k/2 steps
after the other half (Fig.1). The algorithm ¢an be stopped at any time after a large number of steps and
we will find a well-aptimized salution en the PE that has the lowest temperature.

Sinee exchanging the solutions between processors with different temperatures is merely changing
the temperature for each participant solution, each solution will select its appropriate cooling schedule
dynamically through successive competitions with others for lower temperatures. The probability of
exchange has been defined such that it is advantageous to solutions having low energies. Hence, the
solution having the lowest temperature, the winner of the competition, is expected to be the best solution
so far. The cooling schedule adopted by this winuer, which is dynamically and stochastically determined,
is supposed to be an efficient cooling schedule and is invisibly embedded in the parallel execution (Fig.1).

The temperature perallel algorithm is advantageous when we want to continue the execution until a
satisfactory solution is found. We can stop the execution at any time and examine whether a satisfactory
solution has already been obtained. I a solution has yeb to be reached, we ecan resume the execution
without any re-scheduling to obtain a better solution. In contrast, in the simple parallel algorithm,
when an oblained solution is not satisfactory, we have to reconsider the cooling schedule and repeat the
time-consuming annealing process.

It was reported that the temperature paralle]l algorithm gave hetter results on & graph-partitioning
problem than the simple parallel algorithm (Kimuora and Taki, 1990).

4 Application to multiple alignment

We must formulate multiple alignment as a combinatorial optimization problem before applying the SA
algorithm to it, Namely, a move to modify the current solution and an energy function to evaluate a

solution should be defined.

4.1 Move definition

A multiple alignment solution has a number of gaps (represented by “-"). The number of gaps varies
so much between problems that managing gaps is important for move definition. We add sufficient gaps
ta both the head and tail of each sequence. These are aligned to prevent the number of gaps changing
(Kanehisa, 1989). We refer to the special gaps as outgaps. For example, we start annealing from the
initial selution as Fig.2 (a).

To madify the solution, we focus on one sequence in the alignment and select & gap and a column
(horizontal location) randomly in that sequence. For the sake of efficiency, we don’t select any outgaps
except those adjacent to letters and any columns where outgaps are located. When the sequence RSV
is focused and the gap at column 63 and column 37 are selected, the gap moves to column 37 to give
solutien Fig.2 (b).

We have employed not only a move depending on a single gap but also a move depending on a cluster
of gaps, which we refer to as a dock operaiion (Ogiwara, 1990). Since a good multiple alignment has
some clusters of gaps in general, the block operation accelerates convergence of the annealing process.
The operation has three modes: the vertical cluster mode, the horizontal cluster mode and the block

cluster mode.



Let’s apply the operations successively to solution Fig.3 (a). In the vertical mode, gaps at the same
column move together Lo another selected column. When the number of gaps is equal to the number of
sequences, they are forced Lo move to the head or tail of the sequences and become outgaps. If a gap
at column 21 and column 15 are sclected, all five gaps at column 21 move to column 15. That modifies
solution 100 making it solution Fig.3 (b).

In the horizontal mode, a row of gaps on a sequence move to another selected column on the sequence,
If a gap at column 38 and column 21 are selected, a row of three gaps at column 38 moves to column 21.
That modifies solutian 101 making it solution Fig.3 (c)-

Tn the block mode, rows of gaps at the same column move together to another place selected by
column number. If & gap at column 57 and column 63 are selected, six rows of two gaps at column 57
move to column 63. That modifies the solution 102 making it solution Fig.3 (d).

4.2 Definition of energy function

“The SA algorithm makes it possible to evaluate all sequences simultaneously, thus solving problems of
multiple alignment. An energy function gives encrgy as the evaluation value. We have defined the energy
function as follows. The function sums up the similarity scores of every pair of aligned sequences. Each
similarity score is derived by summing up the similarity values of every character pair in the column.
Each similarity value is given by odds matriz. A gap penalty correspending to each row of gaps in the
two sequences is added to the similarity score.

We use PAM250 (Dayhoff ef al, 1978) as the odds matrix. Each value of the matrix iz a logarithm
of mutation probability of a chiaracter pair so that zero is the meutral value. We have reversed the sign
of each value of the matrix according to the habit of SA; the lower the value the better it is. So the most
similar character pair, W us. W, is assigned to the lowest value, =17, and the least similar one, W vs. €, is
assigned to the highest value, 8.

The gap penalty imposed on a row of n gapsis a linear relation; a + bn where a and b are parameters.
We set a = 4 and b = 1 as default values. The linear relation is suitable and popular for alignment done
by dynamic programming algorithm (Gotoh, 1082). Character pairs gap vs. gap and cuigap vs. any
character are ignored; they are assigned the neutral value zero.

5 Experimental results

We have implemented the two parallel algorithms for multiple alignment on the Multi-P51/V2 (Nakajima
et al., 1989), an MIMD parallel machine having 64 processing elements (PEs). The initial solution, Fig.2
(a) was annealed by the two parallel algorithms using (i3 PEs; one PE was used for monitoring. We
compared the histories of the energy given by the paralle] algorithms with those given by other methods

(Fig.4).

{a) Temperature parallel SA: Fach of the 61 PEs perform 20,000 annealing steps at & distinet
constant temperaturc. The highest and lowest temperatures are determined empirically, and the other
temperatures are determined so that adjacent ones have the same ratio. We set 1/400 as the frequency of
exchange f. Each point represents the average of two runs with different sequences of random numbers.

{b) Simple parallel SA: Each of the 63 PEs executes the sequential annealing of 10,000 steps using 2
distinct sequence of random numbers, The cooling schedule consists of exactly the same sequence of 63
temperatures as those in (a). A history of the energy of the best solution among those held by PEs is

indicated.

(¢) Sequential SA: On a single PE, 20,000 annealing steps are performed with the same type of cocling
schedule as that held by each PE in (b). Fach point represenls an average over 60 runs with different
sequences of random numbers.



(d) Tree-based algorithm: The tree-based algorithm is a conventional method to rapidly produce a
practical multiple alignment (Barton, 1880). The algorithm aligns sequences one after another by pair-
wise dynamic programming. The order of aligning sequences depends on a tree-like representation that
was previously determined by distance analysis of every pair in the sequences. Our implementation of
the algorithm solves the problem within a minute. The energy of the solution, -1684 is indicated by a

horizontal line.

We made the following observations from these results.

1. (a) and (h) show that either of the parallel algarithms gives the best solution within 30 minutes
{Fig_.ﬁ}. The energy of this result might be a global minimum, because another 30-minute a.nneaiing

on I:A:I didn’t imprr:w-r it Turther.

2. Although the conventional tree-based algorithm {:T:I- is fast, it sometimes provides a result that has
an energy separate from the global minimum, as in this case.

3. The sequential algorithm (c) iz unable to find the optimal solution even within an hour. But the
final energy obtained by {c) is better than (d).

6 Conclusions

We have applied simulated anpealing algorithms to the problems of multiple alignment. Parallel annealing
algorithins could find an optimal solution for a problem in a reasonable time. The result had a better
energy value than that obtained by the conventional tree-based method. Sequential annealing algorithin
could alse find a better result than the conventional methed, but its energy value didn't reach the hest
one in a so short time as the parallel algorithms.

Although the two paralle] algorithms, simple and temperature parallel, gave the best solution to the
problem, the temperature parallel algorithm is advantageous for multiple alignment, since it gives better
solutions earlier and it does not requite any re-scheduling for further optimization.

The alignment problem we deal with in this paper has only 385 residues, whereas a typical practical
problem has about 4000 residues, which is about ten times more, And the number of gaps in a solution of
the practical problem is supposed to be also ten times more. We can roughly estimate that the practical
problem would need a hundred (ten times ten) times more annealing steps to solve than the problem
shown in this paper.

When we don't have enough time to exccute whole anncaling steps for a practical alignment problem,
it is useful Lo regard Lhe simulated annealing algorithm as a refinement tool for a multiple alignment. After
we make an initial alignment by a heuristic method like the tree-based algorithm, we can often anneal
up the initial alignment in a reasonable time. Actually, we could have the best solution, Fig.5 within
fifteen minutes annealing from the initial alignment obtained by the convenlional tree-based methed. In
this case, the temperature parallel algorithm is also advantageous, because it works without designing a
3].“:-".'-if'-| Ewliﬂg -Efll.tdu].t rUl' HIII.I.EEIHIIE I..mm a half—ausned ﬂﬂlu"ig\ﬂ.
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Fig. 1. Parallelization of sequential simulated annealing in temperature (Kimura and Taki, 1890). A
cooling schedule for a sequential simulated annealing {upper part) is embedded in the parallel execotion
of the processing elements, PE=s (Jower part). An appropriate cooling schedule is dynamically constructed
from a given set of temperatures assigned to PEs, but it never manifests itself explicitly.
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BTLV=-7: ————-——DTFSGAVSYSCKEKETSCETISAVLOAISLLGKPLEINTDNGP AFLSQEFQEFCT == =-~—=
BLV  :—--———--HASAKRGLTTOTTIEGLLEAIVELGRPEKLNTDOGANYTSETFVRFCQQFGVSLE —————~
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(ol i 2 3 4 ] &
12345678801 23456 TEOO1 23458 TRO01 23456TER0 1234567890 123456789012 3466789
SHRV :-—--—-—GFILATFQTGEASKNVISHVIHCLATIGKPETIKTDRGPEYTCENFQDFCOQRLOI-————-~
METV =====—- YSHFTEATARTGEATEDVLORLAQSFAYHGIFOKIKTDNAPAYVSRSIQEFLARW—~—=~-~
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HTLU-11===—===5GAISATOKRKETSSEATSSLLOAT ABLGKPSYINTDNGRAYISQDFLNKCTSLA-———= -
BTLY -2 ————-——DTFSGAVSVSCKKEETSCETISAVLOAISLLGKPLAINTONGP AFLEQEFQEFCT - ===~
BLV  i=mm=eee HASAKRGLTTGTTIECLLEATVELGRPEKLNTDOGANYTSKTF VRFCQOFGVSLS—— ==~

(energy = 866)

Fig. 2. Initial and firstly modified solution of simulated annealing. In the initial selution {a), & number
of gaps are added to both head and tail of each sequence. The first move of a gap, for instance, modifies
(a) to (b). When a move reduces the energy of the solution, it will be accepted.
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Fig. 3. Modification by block operations. A move of a vertical cluster of gaps modifies {a) to (b}, a
move of a horizontal cluster modifies (b) to {¢), and a2 move of a block of gaps does () to (d).



(c) Sequential SA

(b) Simple parallel SA

(a) Temperature parallel SA

(d) Tree-based algorithm

0 20 40 60 80
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Fig. 4. Comparing energy histories of the simulated annealing algorithms. For the temperature parallel
SA algorithm (a), each of 63 PEs performed 20,000 annealing steps at a distinct constant temperature
and the energy history at the lowest temperature is displayed. For the simple parallel SA algorithm (b},
each of 63 PEs executed the sequential annealing of 10,000 steps and the best energy history obtained
from them is displayed. The sequential SA algorithm (¢} shows a history of an average energy along
20,000 annealing steps using a single PE. The horizontal line (d) shows the energy level of the solution
obtained by a conventional trec-based algorithm.
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Fig. 5. The best energy solution, This solution was generated by the parallel simulated annealing
algorithms within fifteen minutes. It might be the optimal alignment.
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