ICOT Technical Report: TR-729

TR-T2%

CAL: A Constraint Logic Programming
Language Its Enhancement for Application to
Handling Robots

by
A. Aiba, S. Sato, S. Terasaki, M. Sakata
& K. Machida

January, 1992

@ 1992, ICOT

Mita Kokusai Bldg. 2IF {03)3456-3191 -5
1C0O | 4-28 Mita |-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

CAL: A Counstraint Logic Programming Language
Its Enhancement for Application to Handling Robots

Akira Atha Shinichi Sato Satoshy Terasaki
Institute for New Generation Computer Technology®

Masahiro Sakata
Software Engineering Development Laboratory, NEC' Corporation

hazuhiro Machida
NLC Scientific Information Svstem Development. Ltd.

Abstract

At TCOT, we have been researching inte the Constraint Logie Programming Language
CAL (Contrante Ao Logegus) since 1957 [1. 7]

AL was originally designed as a CLP language with a constraim solver for algebrae
poby nomial eguation constraimes enploying the Buchberger algorithin As part ef our research
inte: UAL applications we have been investigating a designe support systenn for handling
robaots,

Simee the appliration necds several extra funetions besides its original funetioms of com-
puting (aribiner hases, we have extended the CAL language processor 1o version 2.1

This paper describes these additional functions for the appheation: a facility 10 approx
mate the real roots of univanate cquations in the algebrase constraint solver cmploying the
Buchberger algocithm. handling multiple sclutions for each non-bnear univariate sguation
by introddueing the concept of context.

Through this research and development, we are aiming 1o establish a very high level
progEramemng langwagr for prnhhpm ﬁnh'ing,. based an COncepl of the constram Ioﬁi«' jarie
ErAnLHiing.

1 Introduction

A programming paradigm called Constramt Logie Programnnng (CLP) was proposed by A
Colmerauer [3], and J, Jaffar and J-L. Lassez [5] as an extension of logic programming. Jafar
and Lassez showed that C'LP is a generalization of logic programming in the sense thal it
possesses coinciding logical. functional. and operational semantics in the same way as logic
programming [11].

Al the Institute for New Generation Computer Technology (1ICOT) we have boen working on
a CLP language named CAL {Confrainte Avee Logigue) since 1957 [L 7). Oue of the significant
differences between CAL and other CLP languages is its constraint solver. That is, since CAL
employvs the Buchberger algorithin as its constraint solving algorithm, it can deal with non-linear
polvnomial equation constraints. We refer to this constraint solver as the “algelrwie ronstraint
solver™

*NF, Mita kKokusai Boilding. 1-18, iiit-a I-Chome, Minato-ke, Tokyo 108, Japan

Since then. we have been studying the application of CAL with algebraic constraints to
handling robots. Our goal was a design support system for handling robots that calls for the
enhancement of CAL.

This paper describes our enhanced CAL, Version 2.1, and the two programs that constitute
the central functions of the design support system: Kinematics and statics of handling robots.

The advantages of using CAL for handling robot kinematies and staties are as follows,
Firstly. kinematics consists of two main areas. These are “direct kinematics™ for computing
a position and the orientation of the end effector from given arm lengihs and joint rotation
angles, and “inverse kinematics”™ for computing desired arm lengths and joint rotation angles
when moving the end effector to a given position with a given orientation. By nsing CAL, both
direct kinematics and inverse kinematics can be handlued by a single program. Secondly, this
program can deal with any configuration of handling robot. The confizuration is reflected into
the structure of the guery.

Since the algebraic constraint solver computes the Grobner bases of a given set of constraints.
even il those constraints contain sufficient information to determine the values of all variables,
a CAL program can return a set of equations, Grobner base. As the simplest example. let
us consider the equation «® = 4 be the only constraint, In this case. the value of & can be
determined to 2 or =2, however. the (Grobner base of it is ¢ =

Todetermine the values of variables, we adopt Strum’s theorem to approximate the real roots
of uni-variate equations. Since these approximated values contain computational errors. we have
to maodify the Buehberger algorithm to enable caleulation using approximated values. For the
real roots of nnivariate non-linear equations, one variable may have more than two values. For
example. for the equation #? = 4. the values of r are =2 and 2, To deal with such sitnations.
we introduce a concept of context,

The function to approximate real roots is necessary in the handling robot kinematics and
statics especially when they are used in the context of the design support system. As presented
in the section 4, because of the degree of freedom of handling robot, there will be two or more
solutions of problems in kinematics represented by non-linear equations. And since each value
gives different torque, thus, they will give different results in the further evaluation.

That is, the following enhanced functions are offered:

¢ facility to approximate real roots of univariale equalions in the algebraie constraint solver,
o maodification of Buchberger algarithm to enable handling of approximated values, and

 handling of multiple solutions for each von-linear univariate equation by introducing the
concepl of contet.

The structure of this paper is as follows. tn Section 2. the CAL language is briefly summa-
rized . and the construction of the CAL langnage provessor is described in Section 3. In Section 4.
an application of CAL to handling robots is deseribed, and other constraint solvers are sketched
in Section 5,

2 CAL language

This section summarizes the syntax of CAL. For a detailed deseription of CAL syntax. refer to
the CAL User’s Manual [4].

The syntax of CAL is very similar to that of Prolog, except for its constraints, A CAL
program features two types of variables: logical variables denoted by a sequence of alpha-numeric

characters starting with a capital letter (same as usual Prolog variables |, and constraint variables
denoted by a sequence of alpha-numeric characters starting with a lower-case letter. Constraint
variables are treated as global variables in UAL. while logical variables are treated as local
variables, This distinction has been introduced to enable casy incremental query.,

The following is an example CAL program that features algebraic constraints, This program
gives the new property of a triangle, the relation of which holds among the lengths of the three
edges of the triangle and its surfare area. from three known properties of a triangle,

1= public triangle/4.

surface_area(H,L,5) :- alg:L*H=2+3
right{A,B,C) - alg:A 2+B 2=C" 2,
triangle(4,B,C,5) :-
alg:C=CA+CB,
right (CA,H,4),
right(CB,H,B),
surface_area(l,C,5).

The first clanse “surface_area” capresses the fovmala Tor commputing the surface area of a
triangle 3 from its height Hand its baseline length Lo Ll second bs the Pyvthagorean theorem for
aright angled triangle. The thicd asseets dhat overy toiangle car e divided o two righ e angled
triangles, [See Fignre |}

1

- CA c CB -

Figare-1: The third efanse

tn the following query, *heron: ™ is the name of the UM sonree file in which the desired program
15 defined.

?- alg:pre{s,10}, heron:triangle(a, b, ¢, s).

This query asks for the general relationship thar holds among the lepgths of three edges of
a triangle and its surface area.,

The invocation of “alg:pre(s,10)7 defines the procedence of the variable s to he 10, Sinee
the algebraic constramt solver emplaovs Buchberger algorithn, ordering among monomials is
essential for its computation. This rommand shanges the precedence of variables. lnitiallv, all
variables are assigned a precedence of 0. So. in this vase, the precedence of variable s is upped.

To this guery, the svstem responding with the following cquation:

5872 s -1/16#b"4+1/8%a " 2sb"2-1/16#»a"4+1/Bec " 2xb"2
#1/Bec " 2ka”2=1/160c7 4,

This equation is, actually. & developed form of Heron™s formula.

3 CAL system

In this section, we will introduce the overall structure of a CAL system: system configuration.
the approximation of real roots of univariate polynomials in an algebraic solver, and context.

3.1 Systemn Configuration

The CAL language processor cousists of the following three subsvetems: Translator, Inference
Engine, and Constramt Solvers. These subsystems are connected as shown in Figure-2,

User = Translator
Program,
ery,
%mrr};'lmm Translated Code

Inference Engine

Constraints Cannonical Form

Constraint Solvers

Figure-2: Overall stracture of CAL language processor

A CAL systen runs on the £51{ Personal Sequence Inference) machine. developed in Fifth
Generativn Computer Syslem project, The language used on the PSI machine is called ESP
{ Extended Self-contained Prologj [2]. an objort-oriented logic programming langnage.

The translator receives all inputs from a user, then translates them into ESE code. Thus, a
CAL source program is translated into the corresponding ESP program. The inference engine in
Figure-2 utilizes the ESP language processor itself, and a translated program invokes a constraint
solver whenever the language processor finds a constraint during execution,

The constraint solver adds a newly obtained constraint to the set of canonical forims of the
former constraints, then returns a new set of canonical forms.

At present. CAL Version 2.1 offers the following five constraint solvers for varions domains:

I. Algebraic Solver emiploving Buchberger Algorithm |1, 7).
2. Boolean Solver employving Boolean Buchberger Algorithm(9, 1. 7].
4. Boolean Solver employing Incremental Boolean Elimination Algorithm|[6]

4. Linear Solver emploving Simplex method, and

[]
b

Set Solver emploving Modified Boolean Buchberger Algorithm|10]

3.2 Approximation of real roots

Since the * Algebraic solver” employs the Buchberger algorithm, the solver does not always return
a value for cach variable. For example. il we input the following query to the CAL program
shown in Section 2,

7- heron:triangle(3,4,5,s)

then the CAL system calculates the surface area of a triangle whose edges have lengths 3.
1. and 5 The CAL processor. however, returns the following answer since this is the Grabner
hase ol a given set of squations:

g2 = 36

|'herefore, we cannot obiain an answer of 8 = 6.

The nser. however, will want to know the value of variable 8 in this rase.

I a variable has Auitely many values in the whole solutions. there s a way of oblaining
univariate equation with the variable in the Grobner base. Therefore. if we can add a fune-
tiomality that enables us 1o extract approsimate values for a variable from univariate non-linear
sqations. we can approxinate all possible real solutions.

For this purpose, we implemented a means of approximating the real roots of univanate non-
linear polynomialbs, based on Steam™s theoren, T CALL by applying Stram’s theorens. all real
roets of univariate polvnomials are isolated by obtaining a set of intervals. where each interval
coutain one real root. Theus each solated real root is approximated by the given precision.

There are several well-known methods of approximating the real roots of univariate non-linear
equations. such as the Newton Raphson methad. or the hisection niethod. However, since the
real roots compited using these methods are approximated values. the algehraic constraint solver
should be maodified to be capable of handling of approximated values when these approximate
real roats finetionalities are combined info the solver,

By combining these funetionalities into the solver. the values of variables can be obtained
when nnivariate equations are included into a set of answer constraints by estimating the ap-
proximated values for their real roots. Furthermore, these approximated valies can also he used
to reduce other constraints to produce ot her univariate equations. Thus, il all variables have
finitely many values, then by performing this iteration all combinations of values of all variables
can he obtained.

The number of iterations is relatively small with the Newton-Raphson method, But. il the
initial value is not appropriate then the iteration wmay never terminate. Ou the other hand. in the
hisection method. the pumber of iterations is groater than in the Newton-Raphson method. and
detection of multiple roots is required. However. estimation of the initial value is not required.
Becanse of the stability on the selection of the initial value. the bisection method is employed
to approsximate the real roots of univariate non-linear equations in CAL.

In the computation of the Grobner base, redundant monomials whose coefficients are zero.
and redundant cquations whese all monomials are zero are removed, I an approximate value
is introcluced into the computation of the Grabner base withont changing the algorithm. re-
dundant monomials/equations may not be recognized as being redundant. or pon-redundant
monoinials fegquations mav be wrongly recognized as being redundant. becanse of a compnta-
tional error. '

Therefore, the monomial redanduney check is changed from detecting the zero coefficient to
comparing the coefficient with precision #rr. That is, if the absolute value of a roeflicient. is

smaller than Err. then the monomial is recognized as being redundant. If the numerical com-
putation of coefficients is carried ont using Hoating point number, then errors such as rounding
errors and cut-off errors should be cared. Therefore, in (AL 2.1, the computation of coefficients
15 carried out wsing infinite precision rational numbers,

The following illustrates the finding real roots of the equation 82 = 36,

To approximate real roots, the query

?- heron:triangle(3,4,5,8).
should be replaced with

- alg:set_out_meda(float),
alg:set_error1(1/1000000),
alg:set_error2{1/100000000),
heron:triangle(3,4,5,s),
alg:get_result{eq,!,nonlin,R),
alg:find(R,5),
alg:constr{s).

Fhe fiest line of the above "alg:set_out_mode” sets the output mode to “float”. Without
this. approximate values are output as fractions.

The second line of the above “alg:set.errort” specifies the precision used to compare
cocfficients in the computation of the Grishuer base. The third line “set_error2” specifies
the precision wsed to approximate real roots by the bisection method. Usually, the value of
set_error? is much smaller than set.errori.

The fourth line "heron:triangle” is the invocation of the user defined predicate.

The filth line "alg:get result”™ sclects appropriate equations fram the Grobner base. [n
this case. univariate {specified by 1) non-linear (sperified by nonlin) equations {specified by aq)
are selectod, and wnified to a variable R,

Ris then passed to “alg:find” to approximate the real roots of equations in R. Such real
rools are aoblained v the variable 5.

Then, 8 s again input as constraint to reduce other constrainls in the Grébner base.

For the above query. the CAL system outputs the following answer,

R=[s"2 = 358].

S = [s = real(-, [5121, 7921, 1030], [9184, 7386, 171])]
= [s = -6.00000008%]

58 = =&.000000099

and

R = [s72 = 38].

5 = [s = real(+, [5121, 7921, 1030], [9184, 7986, 171])]
= [z = +6,0000000949] .

g = B.000000099

Thus. the first solution is 8 = -6.000000099. and the second solution is 8 = 6. 000000099
with tiny errors.

1.3 Context
3.3.1 Manipulating multiple values

To deal with a situation where a variable may have plural values. as in the above example, we
have introduce the concepl of “comtert”. and “contert free”

A context is a ronstraint set. A new context iz created whenever the set of constraints is
changed. In CAL 2.1, contexts are manipnlated by the “context tree”™ A “carrent context” is
a node of the contexi tree, and is the targel of the context manipilation.

A ser of comstraints s changed i the following cases:

[o% goal execation:
A pew context is created as a child-node of the current context in the rontext tree.

20 Creation of new constraint set by requiring another answers for a goal:

A pew context s created as a sithling node of the curerent context in the context Tree.

3. Changing the precedence:

A onew rontest is ereared as a child-pode of the current contest in the context free

I the all case. a new set of constraints i= stored in the newly created context. And the
pewly created context is aet as The carrent context. A root of the context tree is called “o rood
corite

Several eommands are provided Lo manipulate contexts and the context tree: a command 1o
dis |,'|l.'|_r the contents aof 7 context, 2 command Lo sel a context as the enrrent contest, delete the
sub-tree of contexts from the context tree, amd of hers,

The following figure shows the CAL processor windows inchiding the current context window,
ahd the context tree window.

o algepeens 100, hennotriangied. 48 #i
et sesubnisy. Lononki WO g Tind] B Sed) alp constn el
R-fa"1)
Soll- o eeabe [9%5 H%a, T1ED TR R4S | [MaEE. 3T, PR2E, RS0, VTG
& - - DTN |
o0 Q000005

1

Bl -3

Sed [eemed | ON5, TRa SIRY. BT 345 | EE T TSR3 Aa60, S0y
CERER e |

4 A OnNeY

Fignre-3: (AL svitem windows

4 Application of CAL to Robotics

In this section. we will describe the application of CAL to handling robots.

A handling robot is a kind of industrial robot that picks up an ohiect with its end-effector
igrip} and changes its position and orientation by rotating itsh joints and changing the length
ol its arms. A typical 3-joint handling robot is shown in the following figure.

Figure 4: Handiing robot

Currently. the design of handling robots relies greatly ou human engineer’s effort. The desien
pracess for the structure of handling robots can be decomposed into the following sequence:

I. Determining the configuration of the handling robot.

2, Deriving the relationship among arm lengths, joint rotation angles. position of the end
effector. and its orientation.

3. Obtaining the Jacobian matrix of position parameters and orientation parameiers with
respect to joint rotation angles.

1. Obtaining singular points where the determinant of the Jacobian matrixis equal 1o (.
5. Evaluating the configuration.

In the following, we will consider two central programs in 2 of the abave, the = Kematies”
and “Staties” of handling robots. by using C'AL programs.

Kinematics represents the relation among the target position and the targer orientation of
the end-effector, and the extension of each arm and the rotation angle of each joint. Kinematics
consists of two problems: one is the calculation of the position and the orientation of the end
effector when the length of eacl arm and the rotation angle of each joint are given. The second
is the caleulation of the desired arm lengths and rotation angles to move the emd sifector 1o
given position with a given orientation. The former is called “direet kinematies”. Uhe latter i<
called “imverse kmematics”,

Statics represents the relation among the torque acting on each joint, the force acting on the
end-effector. and the position of each joint that represents the shape of the handling robol.

By applying constraint logic programming to this field of application. we can realize the
following advantages:

. A user writes a program by stating only the mathematical relationships among the position
and orientation of the end effector, arm lengths, and rotation angles.

2. Any type of handling robots, having any conliguration, can be handled hy a single program.
4. A single CAL program van handie both direet kinematics and inverse kinematics.

1. For staties. bi-direetional computation. the same as for the kinematics program. can be
emploved. That is. for example_ il the shape and the torque are given then the force working
on the end effector is determined. And if the shape and the force on the end effector are
given then the torgue is delermined. Furthermuore, if the force an the end-effector 1s given
then the relation between the shape and the torgee is obtained,

4.1 Kinematics

To formulate kinematies. the following matrix 1= used. This matrix is widely used in robotics,
and is eovered in detail v omany text books o the feld. We call it the posilion-oricntationn
madrie.

The position of an object is expressed by a veetor (pe.p,_p.) and its orientation is expressed
by two unit vectors (a.ay.a.) and (b b bo) perpendienlar 1o each olher. These two wnit
vertors are fixed on the object and their directions are changed by rotation.

_-"u]]:]ng the COT et af these vectors, the following relations hold.

0, +fJ_,,:*FJ_.1 = | il
h,'l i b,," + [IT'I = 1 (2
iy wb, +a,+b,ra.xbh. = 0 (1)

To represent position and orientation together. the lollowing position-onentation matrix

iahhreviated to p-o mafrir) [nr""] s n=edh.

T

|Pt-| Py iy '!"u
. ;J_ - ﬁ .

|

Anv position and anv orientation of the object can be represented by this matrix. Note that
there are three redundancies among the components af the orientation vectors hecause of the
above relations=hip.

The | and 0% in the lonrth row of the matrix are adided 1o make manipulation of rolation
amil straight movement casier

Note that anv transformation of the ohject in thres dimensional space can be expressed
bv a combination of straight movement and rotation. If the object of state [F77] is rotated
through anghe # aronnd an axis W (= (W, W0 throngh its eonter. then moved by o F
i= (e d, d)0 then the new oo maleir for the abject will he

(P = (M (4
TERITERAE I "
o — k. dFP ta Tar tan o dy
[‘” B a 1) - fa1 faz Eugn il .)

0o 1 |

The matrix [M] above is called a transformation matriz. This represents both straight
mavermmen! and rotation. A sub-malrix £, called the rotation matriz, in the transformation
matrix represents rotation. Its elements are determined by the rotation axis W and the rotation
angle 8.

Movement of the end cffector of a handling robot can also be represented by a combination
of straight movement and rotation. The transformation of an object that is held by the end
effector is also represented by the transformation matrix [M].

Generally. in a handling robot having m joints and m arms, resulting the p-o matriz can be
expressed as follows:

- .E.-'t P] f’."; I E, P: E,,, P,-,,, [i I!I-D
[P = (o)(l] l)"'({] I)(0 I)(l{r il':I 'l.'l)
= [M][M] L[] MG (6)

where £, is the rotation matrix of the i-th joint. % is the vector (P, P, . P..)of the i-th
arm before rotation. {7y is the initial vector of the end-effector (4 e 0020y by i Lhe initial
otientation of the end-effector, (ay.ay, . a-) (b, By Bep b i the mnnber of joints {rank
nuber),

We let W be the initial direction vector of the rotation axis of the i-th Joint (W, W, W,
and & be the rotation angle of the i-th joint.

Parameters 8., (W, H wi- W loand (R . R..,,:, 1) are called travsformalion matrir param-
eters because they determine the contents of each transfororatiens i,

4.2 Statics

We will now introduce the statics of handling robots, When a foree acts on the end effector.
tarque acts on the axis of each joiut. Thus, the motor shaft of each joint has to be rotated against
ihe torque acting on it. The calculation of the torque acting on each joint is an important jssue
since. if the turque is stronger than the torque generated by the motor at each joint. the joint
can not be rotated. The torgue acting on each joint can be expressed in terms of the position
of each joint. and the position of the end effector. Here. the anly foree we consider is the weight
ol the ohject.
The torque acting on the «-th joint 7, can he represented as follows:

I = zr' '{'r"h'l - P:-:' * F“l {7}

wlieri,

where Z ks the direction vector of the rotation axis of the i-th joiut. P, is the vector from
the root joint to the end-effector. P, s the vector from the rool joiet to the i-th joint. and £,
is the force vector arting on the end-effector.

4.3 Programming in CAL

We developed two CAL programs [8]. One is for kinewatics, the other for statics. T'he kinematics
program calculates the value of each transformation matriz parameter from the target position
and the target arientation parameters by applying the above oxpression. Then. the statics
program calculates the position of each joint and torgue acting on it from the values of the
transformation matrir parameters by applving the above expression.

11

4.3.1 Kinematics Program

As we deseribed, a Kinematics program can handle the direct kinematics and inverse kinematics
af any tyvpe of handling robot.
I the kinematics program. the head of the top level predicate is as follows.

robot(Mlist,Gx,Gy.Gz ,Ax0,Ay0,A=0,Bx0,By0,B20,Px,Py, P2, ,Ax Ay, Az ,Bx By JBz)
where Mliat ic the list of transformation maolriz parameters. as follows:

[[cosm, sinm, Bxm, Rym, Rzm, Wxm, Wym, Wzml,

[cas2, sinZ, Rx2, Ry2, Rz2, Wx2, Wy2, Wzi],
[cos1, sinl, Rxl, Ry1l, Rzl, Wxl, Wyl, Wz1ll

Other parameters are those defined above,

Sinee tronsformalion alric patameters can he expressed as hsts, the program can handle
any hapdling robot by manipulating their contents,

Lot us eonstder, for example, & robot having 3 arms and 4 joints, expressed by the veclor
sketeh 1 the following fignre,

Fint 1

jenmt
i i

5

[r—

Joant 3
Lirp

X
Fignre-5: Vertor sketoh of example robaot

The rohot can rotate each joint and change the length of cach arm. Therefore, the robot has
6 degress of freedom. [f we want to know the general relation among the target position and
the target orientation. and the rotation angle of cach joint and the length of earh arm. we can
obtain the resuli h_'.; IIH!-I]I!IIH the following Qquery.

7= robot:robot([[cos3, sin3, 0, 0, 23, 0, 0, 1],
[cos?, sinZ, %2, 0, 0, 1, 0, 0],
[cos1, =inl, 0, ©, z1, 0, 0, 111,
£,0,0,1,0,0,0,1,0,
P%,pY.PZ,aX,ay,az,cX, 0y ,C2) .

In the query. px. py. and pz represent the targel position. and (ax, ay. az). and {cx, cy, cz)
are two unit vectars that represent the ortentation of the end effector. sin’s and ces’s represent
the rotation angle of vach joint, and 3. x2. and z1 are the final lengihs of each arm. Note that
sinu and conn represent sin #,. and cos #, . respectively.

The answer Lo the query is as follows.

cos2”
cosl”
cosd”

px
F¥
p=
ax
ay

CX

<Y
cZ

2 = 1-gin2°2
2 = 1-gini”2
2 = 1=-g3ip3a~2
= -Decosl*aind=sinl+zd*sinZ+sinl+Secosdscosl+xxconl
= bS#cogd*sinl+xZesinl+bscosl*cos+sini-ziscoalikain?
= H#gind*gind+zl+z3*coz?
= -l1wcoaZ+aind*sinl+cosd+cos]
= cos3*ginl+cosl*cos2=sgini
= zin3*sin2
= =1l#cogli+sind-cosd*cos2#*sinl
= -{*gind*sinl+cos3scoslxcos?
= cogd*zind

In this case. the parameters of the target position and the target orientation are expressed
as functions of the length of each armn and the rotation angle of each joint.

Next. we can caleulate the values of the length of each arm and the rotation angle of each
joint when concrele values are assigned to all target position and target orientation parameters
by using Lhe same program. The query in this case is as follows.

= alg:set_ocut_moda{float),
alg:set_errorl(l/1000000),
alg:set_ error2{1/100000000),
robot:robot{[[cos3, sin3, 0, 0, =3, 0, 0, 1],

(cos2, sin2, x2, 0, 0, 1, 0, 0],
[ces1, =sint, 0, o0, =z1, 0, 0, 1]],
5, 0, 0, 1,0, 0,0,1, 0,
40, -30, 20, -1/3, 2/3, -2/3, 2/3, 2/3, 1/3).

alg:get_result{eqg,i,nonlin,Res),
alg:find(Res,501),
alg:constr(Sol).

In this gquery. the target position is {10, 30, 20). and the targel orientation is represented
by (-0/3.02/3.-2/3), and (2/3.2/3, 1/3). For this query, the followi ng two aswers are possible
according 1o the value of cost. Ohtaining these two answers was not possible in the orginal
version of CAL. This can be done by using the functions of current CAL: the approximation of
real roots, and the nmltiple conrext.

ginl = B 9442729954-1
8in2 = T 483R60829185e-1
5ind = -8 9442729351e-1
cogl = -4 4721364975a-1
cosd = 6. 6660666666Ta~-1
coEld = 4.4721364975e-1
z3 = 2.6al
x2 = -4 BIET433223Tal
z1 = g.0

ani,

12

-8.944372995a-1

-7 .453bE0ELE 1601
B, 94427299501a-1
4.4721384075e-1

6. 6666666666Ta-1
-4.47213649T75e-1
2.6el

4 B95T433223Tel
8.0

ginl
sin2
s1in3
cosl
coa?
cos3
z3
¥
2l

n

These two solutions represent two dilferent shapes of handling robot for which the position
and the arientation of the end effecror are identical.

4.3.2 Statics Program

We can ubapply the statics program to the results obained with the kinematics program.
L the statics progranme. the head of the top level predicate is as follows.

rebot2(Qlist Mlist, Tlist Gx,Gy,Cz,Pxm,Pym,Pzm,Fxm,Fym,Fzm)

where QLlist is the list of position parameters of each joint [[gxl,qy1,921], [qx2.qy2.q22].
oo, [gxm,qym,qzm]]. Mlist is same as for the kinematics program., Tlist is the list of torque
parameter [t1, 2, ..., tm) working on each joint, (Gx,Gy,Gz) is same as thal (or the
Kinematics program. {Pxm ,Pym Pzm) is the position of the end-effector, and (Fxm,Fym,Fzm) is
the foree acting on the end-effector.

The program caleulates the valnes of the parameters in @list and Tlist from the values of
the parameters in Mlist, In the same way as in the Kinematics program, the statics program is
also structuee-free, and able 1o describe any tvpe of handl e ror ke h}' (']’Iullging the contents of
the query, We will consider the same robot as that shown in Figure-5. The parameters needed
tor execite the staties program are obtained by the kinematics program. Thus. the query and
answer in the same case as above are as follows,

- alg:set_out_mode{float),
alg:set_errorl(1/1000000),
alg:set_arror2(1/100000000},
robot:robot{[[cos3, =in3, @, 0, =z3, 0, 0, 11,

fcos?, sin2, x2, 0, 0, 1, 0, O],
[cesl, sinl, 0, 0O, =1, O, 0, 117,

&, 0, 0,1, 0,0, 0,1, 0,

40, -30, 20, -1/3, 2/3, -2/3, 2/3, 2/3, 1/3},
alg:get_result(eq,l,nonlin,Res},
alg:find({Res,3cl},
alg:constr(Sel),
rabet:robot2{[lqxl, qyi, g=zi]l,

[qx2, qy2, qz2],
[qx3, qy3, gqz3l],
[[cest, sinl, @, @, =1, @, o, 1],
[ces2, sin2, x2, 0, O, 1, 0, 01,
[cos3, sin3, 0, 0O, z3, 0, 0, 111,

()

[t1, t2, t3],
5, 0, 0, pom, pym, pzm, 0O, 0, fzm).

Then, there are two answers Lo this query. The following are fragments of answers including
valoes for Qlist. and Tlist.
The first answer is:

gzl = 0.0 tl = 0.0

qyl = 0.0 12 = 4.9193493737%a1*fzn
gzl = T.0el t3 = 1 B66666586884%fzn
qx2d = -4.99593988026

qye = -9.59998976052

gzl = 7.0el

qx3 = 4. 1666665668801

gyd = -3.33333325351el

gz3 = ¢,.33333333333e1

atidd Lhe second answer is:

qxl = 0.0 tl =0.0

qrl = 0.0 t2 = -4.9193483T370%eixfzn
gzl = T.0al t2 = 1.66666658684fzm
qx2 = -4 . 999994988026

qQy2 = -9.99999976062

gz2 = 7.0e1

gx3 = &, 166666566881

qy3 = -3.33333325351e1

qz3 = 2.33333333333e1

In this way. torque parameters are calenlated as functions of £zm, which is the weight of the
objert held by the end-effector.

5 Other Constraint Solvers

Besides the algebraic constraint solver described in the previons seclions, CAL version 2.1 fea
fures several constraint solvers for different domains.

L. Boolean Solver emploving Boolean Buchberger algorithm [0, 1. 7).
1.Humpm1ﬂduwpnmkwmﬁjuﬂfnnumeUMHnrﬂnumaﬁm:n@mfmm[ﬂ
3. Linear Solver employving Stmpler method. and

4. Set Solver emploving gencralized Boolean Buchberger algorithn [10)

Baolean constraints can be represented in terms of a polynamial ring of Boolean algebra
{0. 1}. The “Hoolean Buchberger algorithm™ is a variant of the Buchberger algorithm [9] which
calenlates Grobuer bases of this polynomial ring.

Another voustraint solver for the truth values employs a new algorithm called the “incre-
mental Boolean eluningtion algoritho’™ 6], This algorithm is based on a concept similar to that
of Boolean unification. but introduces no extra variables. This algorithm can obtain different
cannonical forms from Boolean Grobner bases.

For linear equations and lincar inequalities. we have the “lincar solver™ that employs the
Simplex method. in much the same way as other CLP langoages.

The “(ieneralized Boolean Buchberger algorithm™ [10] for the set solver is also an extension of
the Boolean Buchberger algorithm, itself a variant of the Buchberger Algorithm. Its domain is
a Boolean Algebra of finite sets and co-finite sets. The solver deals with any kind of coustraints
expressed in terins of equations of Hoolean algebra. It can handle variables both for sets and
oloments,

6 Conclusion

We have described the current status of the constraint logic programming language CAL devel
oped at [COT and its application to handling robots,

Hasically. CAL can be regarded as a scheme for constrinnd logic programming. because a
nser can allach his/her own constraint solver that Felleww s oonr regniremaants of constrain solvers
[7] for a CAL laignage processor,

CAL has several standard constraint solvers such as the algebraic solver that enploys the
Huchberger algorithm, the Boolean solver that enplovs the Boolean Hachberger algorithm.
the ineremental Boolean elimination method. a lnear solver for lincar equations and linear
inetpualities. and a set solver which employvs a generalized Boolean Bochberger algorithm.

I the algebraic solver. we have incorporated the funetionalities that load and save constraint
sets. approximate real roots of univariate equations. and handle contexts, with several meta-
predicates for constraint sets,

At TCOT. the overall direction of research on CLEP language processor is now shifting from
sequential processing fowards pnr.‘.llg-l processing, We are now inpleaenting Lhe first trial of
i parallel constraint logic programming language named GDOC{ Grarded Defroeite Clanse with
omstraind), with parallel implernentation of the Buchberger algorithm as the parallel algebraic
solver amnd the parallel Boolean solver on top of onr multi-processor machine. named Multi- P51
using kL1 language.

Handling robat applications will also be shifted Trom CAL to GDROC, We are now aiming to
develop a handling robot design support svstem based on the two CAL prograis presented in
this paper.

As deseribed in the section 1, the design process of stracture Tor handling robots can be
decomposed into the following sequence:

I, Determining the confignration of the handling robot.

2. Deriving the relationship among arm lengths. joint rotation angles. position ol the end
effector. and ils orientation.

3. Obtaining the Jacohian matrix of position parameters and onentation parameters with
respect to joint rotation angles.

1. Obtaining singular points where the determinant of the Jacobian matrix is equal to 0.

5. Ewvalnating the coufiguration.

The two CAL programs presented in this paper can help the second stage of the support
process presented in section 4. The Jacobian matrix and its determinant can also ebtained usiug
(C'AL. Therefore. the whole design process except the analysis of the Jacobian matrix can bhe
supported in the context of the constraint logic programming. This analysis can be performed
by introducing factorization.

Through this research work. we are aiming at a practical, efficient constraint logic pro-
gramming language within the framework of parallel processing based on onr experience gained
through the research and development of ('A L.

Finally. we would like to note that the CAL Version 2.1 system is now implementing on ESP
language that runs on UNIX environment called Common FSP (CESP).

Acknowledgements

The anthors arc indebtled Lo many people who have contributed this work over several vears.
We especially thank Dr. Kazuhiro Fuchi who gave us the opportunity of working on Constraint
Logic Programming at ICOT. Dr. Ryuzo Hasegawa who gave us contenions encouragement to
CATTY oUl our research activities, Woe also thauk all other members in the fourth research laba
ratory of [COT who took charge of various research themes on Constraint Logic Programming.

References

[1] A. Aiba, K. Sakai. Y. Sato. D, J. Hawley. and R. Hasegawa. Constraint Logic Prograim
ming Language CAL. In Proceedings of the Inte riational Conference on Fifth Generation
C'omputer Systems (959, November [085,

[2] Takashi Chikavama. Unigue features of ESP. In Frocesdings of FOOSS] pages 292295,
1684

(3] A. Colmerauer. Opening the Prolog I Universe: A new generation of Prolog promises
some powerful capabilities, BY TE, pages |77 182, August [9%7.

[4] Institute for New Generation Compnter Technalogy., Cantramte Avee Logigue version 2,120
['ser’s neanual, in preparation.

5] . Jaffar and J-1. Lassez. C'onstraint Logic Programming. In fth [EEE Sympostuin on
Logic Programining, 1957,

(6] 5. Menju. K. Sakai, Y. Satoh, and A, Aiba. A Study on Boolean Coustraint Solvers.
Technieal Report TAM 1008, Institute for New Generation Computer Technology. Febrnary
1991

i7] K. Sakai and A Aiba. CAL: A Thearetical Background of Constraint Logic Programming
and its Application. Journel of Symbolic Compntation, 561589 603, Decomber (989,

(8] 5. Sato and A, Aiba. An Application of CAL to Robotics, Technical Report TM 1032,
Institule for New Generation Computer Technology, February 1991,

{9 Y. Salo and K. Sakai. Boolean Grébner Base. Fehruary 1952, LA-Sywposiom in winter.
RIMS, Kyoto University,

[10] Y. Sato, K. Sakai. and S. Menju. Solving constraints over sets by Hoolean Giribner hases
(Iu japanese). In Proceedings of The Logic Programming Conference 01, September 1991,

16

1) M. H. van Emden and R. A Kowalski. The Semantics of Predicate Logic as a Programming
Language. Jowrnal of the 4CM, 230 1). October 1976.

