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Abstract

In this paper we propose a model-based diagnostic
system for continuous physical devices such as a ther
mal power plant. The atm of model-based dingnosis
is to find faulty components m the medel from ob-
servations [symploms). The model-based diagnosis 15
well formabzed as the diagnosis from first principle by
Reiter [6]. Reiter proposed a method to caleulate di-
agnoses from first principle usang a theorem prover
In the continuous physical domamn ot 1z difficult to ob-
tain proper theorem prover. Sel-covering is another
appreach to get diagnosis when the causal relations be-
iween symptoms and disorders is clearly defined, Our
new method combines the model-based approach and
sel-covering appronch. We infroduce the Qualilafive
Causal Model{QCM) and define symploms and guali-
tattve disorders in QUM. The qualitative prepagation
on QCM and the BIPARTITE algorithm based on sel-
covering calenlates all the diagneses. Finally the pro-
posed method is proved to realize the diagnosis from
first principle in the continuous physical domain.

Al Topic: Model-Based Diagnosis; Qualitative

Causal Model; Set-Covering
Domain: Plant Diagnesis; Continuous Physical Device
Language: KL1 | parallel logic programming language )
Status:
Effort:
Impact:

4 man-years

The system can realize the diagnosis

from first principle in the continnous physical
domain efficiently,

1 Introduction

The aim of the model-based diagnosis is to deter-
mine which part of the model of a system has gotten
out of its normal functions or behaviors. Reiter Fﬁ] for-
malized the model-based diagnosis from first principle,
and he defined a diagnosis in a system as follows.

definition A system is a triple (5D, 0BS5S, COMP)
where

The prototype system is successfully developed.

5D is the system description.
OBS is a set of observations.
COMP 15 a set of components.
definition A diagnosis of (SD,0BS COMP) is a
minimal hitting set for the collection of all the
conflict sets for the system.

A conflict sel for (SD,OBS,COMF) is a subset
{e1,e2, .. cn} of COMP at least one component of the
egubset 13 abnormal, 1.e.

§DUOBS U{~AB(c1), ., ~AB(ex))
is inconsistent. AB(c) is a sentence suggesting that

component ¢ is abnormal.
Let .'5'.-51 < 1 £ n) be a conflict set and 5 =

{8, .5} be a collection of all the conflict sets. A
minimal hitting set H for 5 is 2 set such that
™
Hel s
=1

and,
Hns #{}foralli

A diagnosis corresponds to a minimal set of com-
ponents which has become abnormal simnultaneously,
so it represents multiple faults. Reiter proposed
the procedure to calculate a diagnosis according to
the definitions above, First, all the conflict sets for
(SD,0BS,COM P) are calculated by usintin theorem
prover as a consistency checker. Next, all the minimal
hitting sets for the collection of all conflict sets are
calculated using the H-P tree method. These pro-
cedures are shown in the left side of Figure 1{Reiter’s
approach). Because the calculation for all conflict sets
is so costly, Reiter proposed the DIAGNOSE algo-
rithm to obtain the minimal hitting sets by building
a search tres, ealled a pruned H-P tree, with a fre-
guent queries to the theorem prover in order to check
cansistency.

In order to apply Reiter’s diagnosis from first prin-
ciple to continuous physical devices, an appropriate
model and theorem prover are necessary to describe
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Figure 1: Model-Based Diagnosis
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system behaviors. The qualitative representation is
one way to make such a model, but it is difficult to
get a practical theorem prover for qualitative repre-
sentation. . T.Ng [4] used Kuiper's gualitative simu-
lator QSIM [5] as the thecrem prover, and oblained
the minimal hitting sets using the pruned H-P tree
method as Reiter did with frequent queries to QSIM
as a consistency checker. However building a search
tree with frequent queries to QSIM is too costly to
deal with real time problems.

Set-covering is another approach to caleulate the di-
agnesis from the symptoms when the causal relations
between the symptoms and the diserders are clearly
defined. We apply this approach to model-based di-
agnosis in gualitative representation. We introduce
a Qualitative Causal Model (QCM), define the symp-
toms and qualitative disorders in QCM, and define the
system behavior in the gualitative causal constramnts
between plant parameters in QCM.

Qur system has two sub-modules to calculate the
diagnosis from symptoms. The qualitative propaga-
tion module calculates the causal relations between
the symptoms and the gualitative disorders. The Bl
PARTITE module based on set-covering generates all
the diagnoses using these relations. These procedures
are shown in the right side of Figure 1.

In the following sections, we will explain the model
definitions, qualitative propagation, set-covering, and
the diagnostic strategy. The applicability of our sys-
temn is estimated in section 7 and 8.

2 Model Definitions
2.1 Qualitative Causal Model

The Qualitative Causal Model (QCM) represents
the physical behavior of the target system qualita-
tively, The QCM consists of the gualitative param-
eters and the qualitative causal constraints.

- Qualit.itive parametens
All the parameters in the plant are classified in
three types as follows,

- Input paramelers have direct relations to ex-
ternal environment or system design.
E"”' the temperature of sea water.}

~ Sensored parameters have sensors mmplying
that there exists qualitative variation on
that parameter.
S;:.g. the level of the tank.)

— Pathological parameters are neither input pa-
ramelers nor sensovred parameters.

We define the gqualitative parameters and the
symptoms.

definition < p,v > (p b5 parameter, v €
{[];J-],. -1, [Uﬁ:l is a qualitative parameter
which represents that the parameter p has
gualitative variation v compared to normal
"I'Fl.l'llE.

definition A symptom is a qualitative sensored
parameter which has [+] or [-] for its qual-
itative value.

« Clualitative causal constraints

A ‘jua]itative causal constraint represents the
qualitative causal relation between one parame-
ter and other parameters. All the parameters are
related to other parameters by the constraints.
Each constraint has a direct mapping to the com-
ponent of the target plant. If the constraint is
violated, it implies that the compenent is in fault.
We define the qualitative causal constraints.

definition A qualitative causal constraint r for
parameler p is expressed as follows,

rip e {{+ pn b= Pasriabml}} (1)

The left arrow is the causal direction. The con-
straint (1) means that the p and pi(1 < 4 €
m) have a causal connection via constraint r.
The qualitative effects on p by p;(1 £ § £ n)
are monotonic increase, and the effecis on p by
pi{n+1 < j <m) are monotonic decrease.

The qualitative causal constraint is a directed re-
lation from cause parameters (p;, ..., ) to an ef-
fecl parameter p. There are no constraints for an
input parameter and there is no constraint which
has a sensored parameter as ita cause parameters.
A simple example of the qualitative causal con-
straints is shown in Figure 2.

nesi o)
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Figure 2: An example of Qualitative Causal Con-
gtraints

2.2 Qualitative Disorder
Disorders are classified in the following two types



Type 1 Abnormal variation of the input parameters.
This disorder represents an external change in the
plant. (e.g. the temperature of sea waler is high.)

Type 2 Fault in plant devices.

This disorder represents an internal change in the
plant. (e.g. a pump has broken down.)

In QCM, a disorder corresponds to the gqualitative
variation [+] or [~] on a parameter. We define two
types of qualitative disorders (g) and (r,g) according
to above classification.

definition (g) where ¢ =< p,v > is a qualitative
disorder which represents an input parameler p
has qualitative value v and v is [+] or [=]. The
value is caused by an external change in the plant.
{E-.‘J- d} = {{ twater: [+] ::':I ,}

definition (r,¢) where g =< p,v > is a qualitative
disorder which represents a pathological or sen-
sored parameter p has v which is [+] or [=]. The
value is directly caused by a violation of the con-
straint + which is relevant to an internal fault in
a device.
(e.g. d2 = [Tpump: < Pour, -1>))

3 Qualitative Propagation

Each symptom is refated to a set of qualitative dis-
orders which have causal relations to the symptom
via relevant qualitative causal constraints. The qual
itative propagation on QUM caleulates these qualita-
Live disorders for a given sympiom. The propagation
mechanism is based on that of a search.

The propagation mechanism has three features.

+ Reverse propagation
Unlike usual qualitative propagation mechanisms
such as (SIM, the direction of propagation is
from effect to cause.

s Cualitative calculation rule
The qualitative valuc on one effect parameter of
a constraint is propagated to cause parameters
whose values are caleulaled by qualitative con-
straints. In general, plural possible combinations
af qualitative value [Po:r cause parameters can be
caleulated. As the propagation goes on, these
combinations on each constraint lead to combi-
natorial explosion.
To avoid this difficulty, we adopt a pew rule for
qualitative calculation. This rule does not con-
sider any combinations. In the example shown
in Figure 2, the cause of < a,[+] > on ry is cal
culated as either < b,{+] > or < ¢,{=] =. The
rule impliss that at least one of < b, [+] > or
< ¢, [=] > is occurring to cause < a,[+] > as
long as ry is not viclated.

» Qualitative disorders
The atm of propagation is to find all the quali-
tative disorders which are related to & symplom.
As defined in section 2, the qualitative disorders
are classified Into two types.
The qualitative input parameter is found when
the propagation reaches the input parameier
which has no next constraint.

The pair of a qualitative pathnlufinnl or sensored
parameter and a constraint is found when the
propagalion passes through the constraint.

A propagation starts with one symptom s and
expands its search tree on QCM until each branch
reaches an input parameter, and as a result returns
cause(s) as a set of qualitative disorders which could
cause the sympiom. A function PROPAGATE in Fig-
ure 3 is a pseudo algorithm which calculates cause(p)
for given symptom p.

For example, in Figure 2 the couse(< f,[=] >) is

cause(< f,[-] ») = {(ra.< f,[-] >} (ra, <[] >),
(<d,[=]>)(<e [+]2)}

function PROPAGATE(p, QCM}
D= {);
begin
if p is not an input parameter then
enstr := Constraint for p;
Para := Causes for p on crstr;
while Para £ ¢ do
7" = NextCause Gom Para;
N = PROPAGATE(y, QCM];
D= Dol
endwhile;
D = {(enstr.p)} U D;
else D :={({p)};
endif;
return [F;
end.

Figure 3: PROPAGATE

4 Set-Covering to Generate Minimal
Hitting Set
4.1 Qualitative Propagation and Diagno-
sie from First Principle

The set-covering is another approach to get the
minimal hitting sets when the relations between the
symptoms and their possible disorders are clearly de-
fined. The relation between cause(s) and the symp-
tom s calculated in qualitative propagation module
satisfies the relation in set-covering.

The cause(s) is also a conflict set in QUM because
if all the qualitative disorders included in cause(s) did
not occur, the existence of symptom # cannot be ex-
plained. In set-covering the explanations(minimal hit-
{ing sets) are calculated from the collection of cause(s)
by the BIPARTITE algorithm,-whereas in the diagno-
g3 from first principle, the minimal hitting sets are
calculated from the collection of the conflict set by
the H-Ptree method.



4.2 Basic Idea of Set-Covering

The basic idea of set-covering is as follows.

If cause(s;) and cause(s;) bave the same qualita-
tive disorder d then it is possible that both symptoms
5; and s; were caused by d. All the symptoms canp
be classified into several groups according to whether
they have same qualitative disorder or not.

Let G = {81,852, 5a} (5, N5 = ¢,5 # k) be
one classification of all the symptoms §. Each §; € C;
corresponds to one fault occurring which causes S,
The number of groups in C; corresponds to the number
of faults occurring simultanecusly.

There may exist more than one possible classifica-
tion which can explain all the symptoms. For example,
a problem with three symptoms {£,, 52,53} is shown
in Figure 4. It is possible that all the symptoms relate
Lo one commmon group of disorders [E]EI-ESiﬁca.tlDﬂ Cy
in Figure 4: one group classiﬁcation]]. or it is possible
that all the sensors are abnormal (classification Cy in
Figure 4: three group classification). 1o this example,
the number of the possible classification is four 1.

possible problem
classifications r — Y
3 "
@ CRORE
508
Cl. Cy Cy Cy

Figure 4: FPossible Classifications

Set-covering caleulates all these possible classifica-
tions examining whether each cause(s) has some com-
mon gqualitative diserders or not.

4.3 Formalization by Peng and Reggia

Peng and Reggia justified the idea of sei-coveringin

4 Parstmonious Covering Theory” [8]. In their formal-
ization, set-covering deals with diagnestic problem
(D, M, C, M*) which is defined as follows.

M: manifestations

M*:. symptoms ( observed manifestations)

I fﬁﬁ[}r:]él‘ﬁ
(g relationship between M and D

C consists of 2 functions

muse(n;) ch me M
ef fect(d) C M de D
The solutien for a  diagnostic  problem

(O M,C, M*) is defined as fallows,

 1Because cause(s; ) Meouse(s1) is a subset of causelsz], the
two group classificaiion which implies thal s1, #23 is one group
and that = is anather, iz impossible.

definition The selution of a di ic problem
(D,M,C,M*) is the set of all ezplanations of
Mt
An explanation of M¥ for (D, M,C, M¥) is a set
{di,...da} C D where

| esf fect(di) > M*
=1
and no subset of {d;, .., d.} can explain M+ (min-

imal).

An erplanation corresponds to a minimal hitting
et in Reiter’s formalization. Figure 5 shows an expla-
nation for (D, M, C, M™).

e (BMCM")

n
M r!
___,_..-""" dlm -
effeciid; §
A

Figure 5: An erplanation for (D, M,C, M*)

The correspondence betwesn the definitions above
and our model definition in QCM is listed below.

' Fleggia’s definition ! QUM
M sensored parameter
Mt symptoin
D qualitative disorders
e {cause(s;)|s; is symptom}

4.4 BIPARTITE Algorithm

Peng and Reggia proposed an algorithm to caleu-
late all the erplanations for (D, M,C, M%) [8]. All the
erplanations are classified in the form of a gencrutor-
set as shown in Figure 6.

A generator G; 15 a combination of the groups
of qualitative disorders [J; and corresponds to ome
possible symptom classification via causal relations.
Each Dy € G; is D; = Necause(sy) sx € 5;, where
S; is one group of symptoms in the classification.
The class generated by Gi is defined to be [Gy] =
{{dlrdg,da,...d“}id- c D_f,ﬂj £ G{A. The ezpla-
nations related to ti:e symptom classification are the
class [C;].

Set-covering calculates all the possible classifica-
tions of the symptoms, so it calculates all the possible
generalors. A generator-set is the set of all the pos-
sible generators and contains all the ezplanations for
the symploms.
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Figure : A generator-set

function BIPARTITE{D, M, O, M*)
begin
Gs = {[ ]k
while M™ £ 4 de
m = Nezxtman from MY,
Gs := revisel Gs, cause(m));
endwhile;
return (s;
end.

Figure 7. BIPARTITE

The BIPARTITE algorithm caleculates a genergtor-
set for the symptoms M7 incrementally by usin
cause(s;) (5; € M*). Function revise/2 updates ol
generaior-sel with cause(s;) for newly input symptom
8y,

The advantages of this BIPARTITE method are
listed below.

+ The incremental diagnosis can easily be realized.
Funection revise/2 can update the generafor-set
for newly found symptom.

+ All the erplanations (minimal hitting set) can be
obtained systematically.

5 Diagnostic Strategy and Character-

istic Disorder
We adopt a diagnostic strategy to select the most
probable generator with a single group of the quali-
tative disorders from the genersier-set. This strategy,
called the single fauli strategy, is based an the fact that

in real world problems, independent multiple faults
scarcely occur. In cases, multiple faults have
some causal relations. If there is no generutor with a
single group, then a generator with the least number
of groups is selected.

Though the most probable generatoris selected us-
ing the single fault siralegy, this generalor can gener-
ate plural explanafsons. The selection of one disorder
from D) is necessary in order to select a single expla-
nation {Imm the generaior. )

We introduce the characteristic disorders to deal
with this difficulty. The qualitative disorders in Dj;
also have causal relation with each other. There exists
one qualitative disorder {r,d;} € D; which satisfies
fallowing condition.

causeld; )N {(r,d;)} = Dy

The characteristic disorder d; is the most probable
disarder in [; because there are no other symptoms
which narrow the I and yield another characteristic
disarder on the cause side of d;.

In this way, we can select one qualitative disorder
from D, and can select one explanation for one gen-
eraler.

6 Implementation

Our system has been implemented by using the par-
allel logue programming language KLI [ﬁ] on the par-
allel inference machine MuﬁLil- SI which has 18 pro-
r.F.=.5'mg elements.,

The QCM is implemented as the qualitative causal
network. The network consists of snodes, p-nodes,
-nodes, and arc. A s-node represents symptom, a
p-node represents one qualitative causal constraints,
and an i-node represents one input parameter. The
nodes have their own data base for the constraint and
communicate with each other via arc. Figer B is the
getwurk for the QCM of the example shown in Figure

8 symlom (p-node (Ji-noda

Figure & Qualitative Causal Network

The qualitative propagation is realized by the com-
munications between the nodes in the network.

The BIPARTITE module calculates the generator
set (3s using the relations obtained by the propagation
maodule

The system selects a.generetor & from G's using the
single faull strategy. Finally the system selects the
most probable ezrplanation {diagnosis) from G using
the characteristic disorders.



7 Experiments

We applied our diagnostic system to a thermal
power plant, and through experimentation, we esti-
mated its applicability.

The scale of the mode] for the plant was as follows:

plant devices @ 20
parameters ¢ 175
constraints ;100
SENSOrS ;30

The qualitative causal network of the condenser and
its q;:alitativt: causal constraints are displayed in Fig-
ure 9.

We made some experiments with this QUM under
the condition that [a) the causes of the symptoms were
known in advanee and [} the number of symptoms
were variable.

The explanation obtained in experiment 1 which
dealt with one symptom is the error in the sensor of
the symptom. In experiment which dealt with 4 with
four symptoms, we were able to get an explanation
which corresponded to the csuse known in advance.

In order to apalvee the dependence of processing
time and diagnostic efficiency on the number of sensors
{svmiptoms), we sumrmarized the results into Table 10.
This table contains the number of symptoms (S), the
number of combinations of the qualitative disorders (
IGs]l), the number of the qualitative disorders in the
most probable combination (||G]]), and the processing
time {Time).

5 T1iGsll [IGI | Time (sec)
experiment 1 | 1 1 151 210
experiment 2 | 2 2 139 212
experiment 3 | 3 4 110 2L5
experiment 4 | 4 10 105 210

Figure 10: Experiments in the thermal power plant

The relation between [[G‘u and S is monotonic-
decreasing. It shows that the number of the fault
candidates decreases as the number of the available
sensors increases. T'ime does not depend on S, which
shows that the processing time does nol increase even
Lhough the nmber of the available sensors is increased
to narrow the range of the fault candidates.

& Discussion

We can estimate the diagnostic efficiency of the sys-
tem using both the processing time (Time) and the
number of fault candidates in & ([|G]]).

Time does not depend on 5, although the caleula-
tion cost of the BIPARTITE module depends on 5 on
the order of ¢¥. This result shows that the calenlation
of the present implementation of the system 13 not yet
aptimized, for the followmg reasonar

1. "I'he processing time in the gualitative propaga-
tion module does not depend on S, because in

present implementation all the sensor data includ-
g normal value (< p,[0] >) are propagated in
QCM.

2. The processing time of the qualitative propaga-
tion module is much longer than that of the Bl
PARTITE module.

For these reasons, the total processing time does not
depend on 5. In order to give our system a real-
time facility, we should improve the processing time
in both.modules. We are developing a paral'lgl pro-
cessing mechamsm with the parallel inference machine
Multi-PSI1. The qualitative propagation of each symp-
tom can be executed in parallel, and the set caleulation
in the BIPARTITE module can be executed, not only
in parallel, but also in a pipeline manper,

The diagnostic efficiency can be measured by the
narrowing rate of the fault candidates. This range of
the fault candidates is ||7|| Comparing the results
of experiment 1 and experiment 4, the range of the
fault candidates in experiment 4 s narrowed about
1.5 times that of experiment 1. Although this result
proves that our diagnostic system can be improved
by using more symploms, the improvement so far s
not enough, because the causal relations in a farget
plant with circulating flows often make a large loop
as a whole in the QUM. In this plant, the intersection
of causels;) and couse(s;) (i # j) covers almost the
whoale af the QCM. In nrée: to resolve this problem, it
is mecessary to nerrow the region of the propagation.

As for related works, although HT Ng [4 proposes
a diagnostic system which 15 based on Kuipers's Q5IM
5] and Reiter's H-P tree method [6], the queries to

SIM are costly and it is difficult to realize a real-time
dizgnosis. ONS [3] is one typical diagnostic system
using the qualitative causal model. The system geo-
erates fault candidates by decision tree at first, and
these candidates are verified in the qualitative simuola-
tion modile. The consequences of the qualitative sim-
ulation are compared with the observations to check
the validity of the fault candidates. ATMS[2] is used
to manage different diagnestic hypotheses. This ap-
proach is based on the generate and test method. Our
approach is the reversal of this approach, because the
qualitative propagation starts with the symptoms (ob-
servations) to get the faults while QSIM starts with
the faults and caleulale observations. Qur approach
iz more efficient because the propagation mechanism
is much simpler than the qualitative simulation ap-
proach with ATMS. Peng and Reggia (8] propose a
causal net for the problem, but in QCM the patho-
lnfiml cansal relations could become disorders them-
selves. Wu's [7] symptom clustering is equivalent to
set-covering. The idea of symptom clustering corre-
spends to symptom classification. The main differ-
ence is the algorithm to reach the goal. Set-covering
has a much simpler algorithm, and because it is de-
fined declaratively, the implementation in logic pro-
gramming is much easier,

9 Coneclusion
In this paper we proposed a new model-based diag-
nestic system which combines the technigues of qual-



condenser

r: an_p < {{+:p_cndLi-}
r3: p_end <- [{+:p_gasp_sath{-}}
r4: p_gas <- {{+:m_gas,_cpt_end},(-}}

rB: t_cnd

5: p_sat <- {{+:it_cnd} -} F1: g_lk

1: m_gas < {{+:p_gas,g_lk}{-:g_out,p_cnd}}

<- {{+:g_cndi,h_endi},{-:g_lk.d_cp,h_cp.hl}
<- {{+:g_cndi),(-:p_cndl}

Figure 9: The Qualitative Qausal Network for the Condenser

itative propagation and set-covering. This method
proved to realize the diggnosis from firsi principle in
continuous physical devices. The qualitative propaga-
tion module and the BIPARTITE module are imple-
mented by using parallel logic programming language
KLI, and the applicability to real world problems has
been verified in the thermal power plant.

The improvement of the parallel processing mech-
anism to deal with a real-time problem and the im-
provement of the diagnostic efficiency by narrowing
the region of the propagation are lef '}::: {ulure work.
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