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Abstract

This paper presents a new method called fazy moded ge e ration for implement-
g efficient theorem provers. The tasks of theorem proving based on madel
weperation wre e generation and testing of atoms that will be members af
a model. The generation process tends to fall into combinatorial explosion
whivh makes it difficalt to obtain proofs. Lazy model generation b= a metheod
aitned at avoiding an over generation of atoms that are irrelevant and nnnec-
essary for obtaining proofs. In fact, without serions consideration of laziness
in producing awd retaining information of any kind, theorem proving for hard
problems would never suceeed with a limited compotational resources. The
tary model generation method also allows the exploitation of parallelism with
fairly good loadl distribution.

1 Introduction

The aim of this research is to make high performance theoren provers for
first-order logie by using the programming technigues of a parallel logie pro-
gramting langiage, kL1

There are theorem provers using Prolog technology: PUTE by Stickel
[Stiss] and SETHED by Schumann [Sch¥9] which are backward-reasoning
tvpe provers hased on the model elimination method. and SATCHMO by
Wanthey aud Bey [MBXS], which is a forward-reasoning type prover based on
the model generation method.

As a lirst step lor developing kL 1-technology theorem provers, we adopted
the model generation method as the basis. The reasons are 1) SATCHMO's
property that unification is not necessary is very convenient for us for im
plementing provers in KL1L sinee KL1, a8 a committed choice language, does
nol support backtirackable “full” nnification, and 2) it is easier to incorporate
a wechanism for lemmatization, sabsumption test. and other deletion strate-
gies which are indispensable for solving difficult problems such as Lukasiewics
problems [Owvefil)].



In implementing model generation based provers, it is important to avoid
redundancy in the conjunctive wmatehing (defined later) of clauses against
atoms in model candidates. For this, we proposed RAMS method [FHO1]
and MERC method [Has01].

A more important issue with regard to the efficiency of model generation
based provers is how to reduce the total computation amount and memory
space required for prool processes, ['his problew becomes more critical when
dealing with harder problems which reguire deeper inferences (longer proofs)
such as Lukasiewice problems. In order wo solve this problem. it is important
to recognize that proving processes are viewed exactly as generation-and-fest
provesses and Lhal generation should be performed only when testing requires
in.

In the case of SATCHMO. model extension {generation) and model rejec-
tion (test] are completely synchronized by using assert/retract and sequential
control with backtiracking of the Prolog svstem. Hence, it is free from the
explosion of assertions die to the generation process. However, this control
makes it impossible to incorporate useful strategies such as weighting heuris-
tics which require items to be generated in aggregates and then sorted in
accordance with the weights caleulated lfor each item.

On the other hand, in the case of orthodox provers such as OTTER
(Mc (90}, thev are designed to be very general and flexible so as to incorporate
many strategies, However, they may sulfer from an explosion of generated ro-
solvents tor there usnally is no serions distinction between generation and test
in their implementation. Withoot the generation-and-test way of thinking, a
naive implementation would produce redundant computation in proving pro-
cesses. Even worse, the computation would cause an explosion of memory
space in a parallel environment.

In this paper, we propose a new method called Lazy Model (reneration in
which the idea of demand-driven or “generate-only-at-test” is implemented.

2 Model Generation Method

Throughout this paper. a clavse is represented in an implicational form:

where A1 < ¢ < n) and €'{1 < j < m) are atoms: the antecedent
i% a conjunction of 4y, A ... A, and the consequent 15 a disjunction of
O Oy 0 A clanse is said to be positioe if its antecedent is trueln = 0,
and negafive if its conzequent is falze(m = (). otherwise it is mired (v #
0,m £ 0},

The madel generation method has the following two roles:

¢ Model extension role:  If there is a clause, 4 — ', and a substitution
o such that Ae is satished in a model M and C'o is not salisfied in M,
then extend the model M by adding C'a into model M.,



e Model rejection rule: IF there s a pegative rlanse whose antecedent Ao
is satisfied ina model W then reject model A

We call the process of obtaining e o ronguaetioe matching (CIM] of
the antecedent literals against element= s model. Note that the antecedent
(brae) of a positive clanse is satisfied by any model

The task of mode] geueration i to ey o constrnen a mode] for a given set
of clamses starting with a noll set as & oneeded candidares [ the clause set is
satishable, a model shonld be Tound. The metlod can also be used Lo prove
that the clavse set s unsatisliable, This is dowe by esploring every possible
model candidate to see that no model exists for the clanse et

2.1 Avoeiding redundancy in conjunctive matching

Imagine that we have aclause. € ol twaoditerals in the aptecedent. To perform
conjunctive matching for the clause. we need toomake a pair of atoms picked
ot of the current model camdiedare, U Doaeine also that, as a result of a
satisfiabibity check of the olause. we are 1o extend the model candidate with
Mowhieh is the atom o Lhe Conpseguent ol 1 he elase. O but wet in M. Then.
w the conjunctive matching for the clanse. € in the west phase. we peed to
ke a pair of aloms picked out ol 3+ A0 The innnher of pairs amounts to;

PMEAFE M M e A N W E A e A

IMxa

It shoukel be woted here that Yo W padrs bad aleeady boon considerad in
Lhe previons phase of conjunetive matebing. IThey were cliosen in this phase,
the result would contribute pothime sinee the wodel candidate need not he
extended with the same A, Henee, redundant consideration on M = M pairs
should be avoided at this tiwe. Iostead, we have to choose j1151- the |1'-'1;l‘.‘i
which contain at least one A, This discussion can be generalized for cases in
which we have mare than two antecedent literals, any number of vlanses, and
any number of model candidates.



The approach taken in the OTTER to avoid the above sart of redundancy
is as follows. For a clause,

B R L S TLE TRR e

first. we walch some 4; against a model extending atom. A, then, for the
rest of the literals,

we tateh each of thew agaionst an atom picked ont of A + A, where W s the
cirrent mode! candidate,

Note that the above methoed involves duplicated compuotation for a clause
wille more than two antecedent lilerals. Since a pair. < A 00 = 00 # ghis
matched against hoth < A M + A > and < M + A A 5. the conjunctive
matching of &+ A are duplicated. This redundancy can be removed with the
MERC method,

Iu the actual implementation, which we call the A-M method, we prepare
a pattern like:

{lACAL A MM AL

for clanses with two antecedent literals, and
HALACALTA AL M. [_’L Al _‘h],[.’l..'. A l-.].
_'_‘.. AL ;\I:.[.LI.A. .H]. [!..'. .U,.'L]}

for clavses with three antecedent lierals, and so forth,  Aceording o this
pattern, we enumerale all possible combinations of atoms for wmatching the
antecedent literals of given clauses.

The A-M method is similar to the MERC [Has91] method. The MERC
method. however, needs (o prepare multiple entrey clanses or copies of clanses
in place of the above pattern.

The RAMS method [FHOL] is another approach where every successful
result of watching a literal A, against nodel elements is memorized so as nol
tor rematch the same literal against the same model element. Both the A-)]
and the MERC method still contain a redundant compntation. For instance,
in the computation for [M, A A and [M, A M| patterns, the common sub-
pattern, [M. AL will be recomputed. The RAMS method can remmove this
sort of redundancy. However, it tends to require a lot of memory 1o store the
inforipation of the partial matching.

3 Algorithms for Model Generation

in this section and the next, we present several algorithms for model genera-
tion and compare them from a viewpoint of computation amount and wemory
space. In the following sections, we assume that problems are given with Hoen
clanses ouly to make the preseutation easy to understand. As 2 matter of fact,
most of the challenging problems we are attempting to solve are represen ted
only with Horn clauses, though they reguire very deep inference. The idea.
however_ can he generalized for problems with non-Horn clanses as well.



Moo=
Pha= 44 (teue — )€ aset of given clanses ) ;
while [ # o do begin
e = A
if O M A M 03 felse then returnfsuccess )
e AW et ML A
W= W+ A
e n = .-anb.*-rr.larlufrmrl:Hr . W+ D)
P £ 4 wees
end return [zl

Figure 12 Naive algorithm

3.1 Naive algorithm

Fignre | shows a vory naive aloorit b for the model generation method, This
is essentially the same algorithn as the one taken by OTTER [MeC00] .

Lo the algenit b, M orepresents a mndel candidate {a et of atoms)p 1
represents aoset of atoms to beomchided o wode! candidares, and A represents
a subset ol F30 The fuindal values Toe Moand 3 are =e1 1o an empty sel and
a=et af consequent atoms of the positive clauses, Ooe evele of the algorithim
corprises ) choosing aosabset . A e D02 performing conjunctive matching
for the negative clanses, using A amd M3 ternnnating the algorithor when
refutation snceeeds, 1 performing conjunetive matehing lfor the miced clanses,
using X and Woand 3 perforining o subsumption test Tor newly genersted
Aalores., i :;l.gu,iu-—..l WoE B When [0 s e pby Al the }}E‘ginllillf_; of the t'}’i"|i-",
the algorichm rerminates due to refutation falure, or finding a model.

The conjunctive matehing and subsomption test are each represented by
a function on a set as follows:

CaM M A =
det b dad, —
Ao L, — e d{’s
o, =B H e My ANL <V )
Aol i et = ol H € A

siubspipphioni A, M) =46« A | THE M B dlosen 't subsuome 7))

3.2 Basic algorithm

Figure 2. which we vall a basic algorithm. shows a modified version of the

naive abgorithn.

"OFTTER 5 a bt wmore abvaced in that tests by anil negative clauses are performed for
every aton in o mediatels after their generation as in the basic algonthm sescribed
1 the est smbeec i,



M=
D= {A | (true — A} € a set of given clanses }:
while [} 2 ¢ do begin
1= 1) - A;
e = O Men e [MUAY
M= M4+ A
wew' 1= subswnplioni o MOF D
if O My e A M+ Donew’) 2 false then return|suceess):
D= D+ nea's
end returni fail)

Figiire 20 Basic algorithm

Its this algorithn, the conjunitive matching for negative rlanses is per-
formed after conjunctive matching for mixed clauses and the subsumption
test for the newly generated atoms. This modification seems to be quite
stall i appearance. but contribates, in Gact, a large iprovement Lo the 1o
tal amount of compotation and space. as described i the next section, The
point 15 as follows, Tests with negative clauses are performed for all of the
newly generated atoms e e mstead of X0 As a result, oo atom, say X, wihicl
can immediately satisfv the antecedent of any negative clause. is added inta
{). Therefore, we can prevent the generation of irrelevant atoms before X is

found.
3.3 Lazy algorithm

The basic algorithm can be improved by Dorther reducing the number of gen-
erated atoms that are irrelevant for the test by negative clanses. For this we
suppress the generation process sooas Lo make only a small number of atoms
At a time. accarding 1o the speed of the test process for negative clanses,

A naive implementation of conjunctive matehing in imperalive languages
wonld be similar to the following:

for ¢ =1 to | Mured( ' Inoeses | do begin
for L= 1 to |awteredeativlonse( ()} | do begin
for \:~ I to | M | do begin
tlo walebing literall L ol classel U against atow) L) ;
if & new atam, A, .. 1= generated then oatpat] A, ..
end end end

It 1= difficult to panse the iteration at an arbitrary point in the triple nested
for-loop and to resume from thal point allerward, To do this we ooght as
well reconstruct the iteration as follows:



while goal 15 not reached do begin
io= N oi* Noo ol atoms to be generated 1)
while 1 # 0 do begin
do matching literal] 1) of clanse| U} against atom{ A @
if a new atom. 4,,,. is generated then begin
oulput| A, .00 =1~ 1 end :
s LA = adranee [ 0L =)

end end

where adrranee] < LA =) wpdates o teiple of eouniers 5o a2 to enumerate
all the possible combinations of valnes for the counters,

L some functional languages. s delav and foree” mecharism may he avail-
able, which wonld make implementation of the lazy generation process simple
and rlear,

In parallel logic languages such as KLL we can represent generator and
tester as independently iterating processes and make them cooperate by using
a stream for interchanging information. Figure 3 shows an abstract algorithm
for implementing this idea. The stream. 5. 0= wsed for carrving incomplete
messages sent and received by the generator and the tester, The generator ah-
serves 5 and upon receiving an incomplete message it generates N atoms{new)
and puts the nnsnbsumed atoms (oee’)on 50 The tester, however, waits for
the message being completed by waif{comte i 510 and upon receiving the
Ay owritten by the generalor it creates @ new incomplete message on 5 hy
e e Regue st 5], after making tests with negative clanses,

This algorithin can be written v kL1 as demand-driven processes very
vasily as shown in Section 5.

Incidentally. in SATCHMO. the same offect as the lazy algorithm is at-
tained by alternating assertion of a new fact and testing with a negalive clause.
I'he ennmeration for every possible generation of facts can be performed hy
using backtracking,

3.4 Optimization
The three algorithms mentioned above can be further improved if there are
unit pegative clauses in the given clanses, There are two ways to do this.

One is a dvnamic way called the lookahead method. The idea, here,
is to over generate atoms for testing with anit negative clauses. Namely,
immediately after generating wow, we el her generate new,,. ., which was
supposed 10 be generated in the wext phase, T'hen we test new, . with the
unit negative clauses. If the test suceeeds. we can terminate the algorithm
withour storing mew ns woll s wean, .

< M.A = ogenerate] Ay, Ay — ) = new
= Monew == geacrate Ap Ay — ) 2 neiges

e,y = fest A — false)



.-'lf'f =

M=
D= {4 | (true — 4] € a set of given clauses}:
A=y

N Ntreeao:
coetralized < O L, A >
do in parallel
| while request comes in 5 do begin (* generation *}
ii= N new =0
while / # [l do begin
do matching literal (L) of clause{ ') against atom{ A} :
if a new atom, A, is generated then begin
put{new. b 1= 1= | end ;
< (LA sis adranee{< O LA =)
if CJM for A rompleted then begin
=1 —- A
if ' = ¢ then begin
if e = 3 then return {fail) ;
=10
end
else begin
M= M+ A A= subset| )
end
end
end :
new’ = subswmption{ wew, M+ D
Pl Y, ne w'y: = B+ new's
end ||
| do forever begin {* test *)
Mg o= wait|contents{ S
i CIMyp el My, Ap) 3L
then return(success);
My = My 4+ Ay
new Regue st %)
end |

Figure 3: Lazy algorithm



Fvery ane of new ., which does pot mateh any unit negative clanse 5
discarded. 15 all of newy,. . fails the test. then Lhey are regenerated in the
next phase. This itplies thal some conjunctive matching may be performed
twice for the same information, This increase of computation, however, is
negligibly small compared to the significant reduction of total computation.
Vhe detail is disenssed in the next section.

Another i= a static way using pactial evalnation. Namely, we unify nega-
tive clanses with consequents of wived clauses to oblain partially evaluated

notnit pegative clanses,

(remerator s Ay Ay — O
Froil teater s A — falsre,
Partiadiy coaluated tester o adp oy — false,
where 7 =7

i this method. the computation amonnt for eonjuncetive matching is the
same as that of the lonkahead method, However, this method is simpler than
the lookahead method since the prover itself need not bhe maodilied n this
method. In addition. whereas the lookahead method can reach the goal only
ane pliase earlier. the partial evaluation allows. in principle. the goal 1o be
reached more Uhan one phase earlier ny partially dedocing between clatses al
suitable degree of depth, In doing so. it may also he possible to prune search
spaces owing to the propagation of nseful information inherent in the negative
clanses (poals). There may. however. be some demerits since Lthe namber ol
clauses tends to increase after partial computation.

The two methads are both effective [ur achieving further mprovement
in the presence of unit negative clauses. One may choose the mos! suitable
ane of the two in accordance with the assessment on Lhe problew and on the
merits and demeritz of the melhods,

4 Complexity Analysis

I this section. we disvuss the computational amonnts and memory space
required by the above proposed algorithms.

' make discnssion as simple as possible, we make several assumptions
as follows: 1) the problem incindes mixed clanses with only two literals in
the antecedent. and negative clauses with a maxinm of two literals. 2] i
assmined to be a single atom. 33 nnification never fails conjunctive mateh-
ings. 1) newly generated atoms can never he suhsumed by older atoms. These
imply that as a result of the conjunctive matching for the th atom picked
out of £ and 4 = 1 wumber of atoms in M, 20 — | number of new atois are
eenerated and the total nnmber of atoms generated hecomes it
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Figure 4 Complexity of the naive algorithm

4.1 Naive Algorithm

Figire | depicts the computational amount and wemory space of the naive
algorithm. The left square arca represents the number of ronjunctive match.
ings performed in a generator clause, which is equal o the total number of
generated atoms, Uhe right square area represents the piinber of conjunctive
matchings performed in a tester clause with two literals, whereas the length
of the line under the square represents= that in a tester with one literal.

In the left square, the area indicated by M represents that the conjunctive
matchings for generation between the atoms in M have been completed and
that false checks have been completed for the atoms in M. The area indicated
by L) represents that neither conjonctive matehing for geveration for false
checks has been completed vet,

When the generation for the m*-th element (m? % m?) is completed, m?
number of the generated atoms are stored in AT and the rest (17— m? number)
ol the atoms are stored in 1) X is a falsifving atean that matches against
cne of the tester clauses. Let X he generated as the mé-th atom as a result
of the conjunctive matehing for the m-th atom, P. In the naive algorithp.
tests with negative clauses are performed on A, but not on wew. Namelv,
false( L) is not derived iinmediately after X is generated. The falsity is not
recognized until all the atoms in I generated before X are picked out of D
and conjunctive matchings for them are completed. Therefore. when X s
tested. st number of conjunctive matchings and subsumption tests will have
been completed hoth in the generator and the tester claises. Also the same
number [m?*} of aloms are retained in D,

Thus, the romputational amonnt and the memory space required for the

Lo
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Fignre 5 Complexity of the basic and the lazy algorithm

paive algorithon s Q')
1.2 Basic algorithm

Figinre 5 is for the basic algorithm. The meanings of o X and M oare Lhe
samee as iy the naive algorithoe, The meaning of 12, however, differs in that
falee checks have hoen eompleted althongh the conjnnetive matchings have
ot Tacen Ll.rlllplF"le.]. .

b the basic algonthm. flse cheek is male for newe, obtained by the con-
junctive matching in the generator instead of A Thus, falsity can he rec-
cenized innmediately afrer the falsifving atom. X, is generated. Therefore.
although the monber of conjunetive matchings in the tester i the same as
that of the naive algorithm. the number of conjunctive matchings and sub-
sumption tests in the generator and the memory space for storing generaked

atoms are reduced Trom me? toowmd,

4.3 Lazy algorithm

The lazy algoritlim can be applied both to the naive algorithm and to the
basic algoritlin.

b the lazy algorithm. atoms are generated one at a time upon requests
issued by the tester, The generated aton goes through false tests and sub-
siumption rests nsing M and . which are sets of atoms already goncerated.
The atoms that survived both the tests are stored in [,

When we apply the lazy algorithm to the naive algorithm . the complexity
of the naive-lazy algorithn i= the same as that of the basic algorithm shown
in Figure 5. since tosts for atows are performed immediately after their gen-
eration and the algorithm can terminate as soon as the falsifving atom. X, is
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Figure 7: Effect of the partial evaluation {Basic and Lazy)

generated and tested. Hegee, the order of the computation amount and the
memory space of the naive-lazy algorithm will be improved to the same as
that of the hasic. nawely. from Oy to O m?®).

On the ather hand. the basic algorithm, if used 10 a sequential execution
euvironment. will not be improved by applying the laey algorithi. This is
hecanse the required computation to reach the falsifying atom, Y, cannot he
reduced simply by the laziness of its generation, However, when the basic
algorithne runs in a parablel execution environment. the generation process
might overrun and make a lot of unnecessary atoms before the falsilving atom.
N, is recognized unless the process s properly controlled. In soch a case,
Lhe lazy algorithm gaturally makes it possible to avoid having the generator
orvertun. thereby keeping the order of computation amount and memory space
as it should be, namely (4 m?).

4.4 Optimization



L the fookabead optimization. with the corrently generated aloms. new. it
descendant atowns. mewy,, . are generated in the same phase. These new,,
are lested |:'." the woit m-gﬂ.liu} clauses, and if 1he test suceeeds, the Fl.lgcrrithﬂl
can terminate at once. Otherwise, neaw,, ¢ are discarded. and the algorithm
enters the nexl phase of generalion,

This lookahead effect enables to make the nntested set of atoms. [, be
tested.  bor the naive algorithm. £ in Figuee | represents the antested sel
of atoms, Sioee this area can be discarded by performing the lookahead. the
computational amonnts and the memory space are reduced from Ofm*} 1o
l,()"[ui"l':l_ Fiar the basie and the I.-u_r ulgm'i,rhm!-., I3 in I'"If_:ur:-‘ 5 represents the
teated set of atoins. However, (3 should have boen anrested at the previ-
pis phase of geperation. aod it shogld have heen discarded at the previons
phasze. T'hus. the lookahead has an effect in this case as well leading to an
improvemen! from (4 m"} Lo O we).

O the other hamid. in the partial evalnation optiniization. when the me-th
atonn. £ 05 generated. falsity is detected by the partially evalualed negalive
clanses having two Bterals, Uhe task of conjunctive matching with tweo literal
negative clauses i= equivalent to the generalion of e, and lest of them
with unit wegative clanses i the lookahead optimization. In addition, the area
specified by W is recompuied twice for both optinnzation methods, Therefore,
the lookahead and the partial evaluation methods are equivalent in terms of
connputational amonnt and memory space.

With these oprimization methods, in the case of the hasic or the lazy
algorithm. we can reduce the complexity from {m?) 1o O{m*) for the tester
amdd Trovn €4 m'i]- o LM ney Tore the geperalor as shown in F"l:h‘:lll'!' fi apdd .

5 Implementation of Lazy Conjunctive Matching in KL1

This seciwn shows how to jmplement a lazy conjunctive matching program,
which is the kernel part of lazy model generation. in kLT A lazy conjunetive
|||.'a11'hi||g [HrOg T is derived from an l"il._lg:l'l' rnnjlllu'li\'ﬂ |||3-|.I-L'|‘Li||’,g'| |rrﬂﬁl‘:l1n.

We consider conjunctive matching of a elavse ¢ having only twao an-
tecedent literals Ay Ay — () to make the program simple. o this case,
the necessary combinations are A = W M = A0 A = AL

5.1 Eager Conjunctive Matching

We first show an eager comjunctive maiching program in Figare 8,

Fredicate clause/S performs conjunctive maiching of an element in M{M)
and X DM) against a literal of the antecedent part. 1t retorns a list of the con-
sequent part of success combinations iv conjunctive patehing as d-list (Ui ,Uo)
style.

I'te predicate ante/4 anilies M or A with & literal Lis in accordance
with its first argument,

13



clausa(M,DM, C, Ui,Uo) :-
ante( [{DM,AL} ,{M,A2}], C, Umi,Ua), ¥ delta = M
antel [{DM,A2F,{M,A81}], €, Um2,Uni), % M * dalta
ante([{DM,AL1},{DM,A2}], €, Ui, Um2}). % delta * delta

ante(R, C, Ui, Ua) .-
new_envil, Env), ¥ create wariable environment
artel(R, Env, C, Ui.Uo).

antel([], Env, C, Ui,Us) :-
assignValueToVariable(Cl, Env)}, Uo = [C1|Ui].

antel{[{M,Lis}|R], Env, &, Ui,Ua) :-
literal{M,Lis, R, Env, C, Ui,Ual).

literal(M.Lis, R, Env, C, Ui, Uo) :- getNext(M, E, M1},
(fe ¥ ig empry »/ =>» Uo = Ui;
/# E is a element of M =/ -> unify(Liz,E, Env,NEnv),
(/% unification fail =/ ->
literal(Ml,Lis, R, Env, C, Vi, Us);
/* unification success #*/ -»
antal(R, MNEnv, C, Um,Uc),
literal(Mi,Lis, R, Env, C, Ui, Um))J)..

Figure 8: Fager Program




5.2 Lazy Conjunctive Matching

I'wo lazy conjunetive matching programs are presented. Oneisacon Eiation
hased program in Figure 9. and the other is a process oriented program which
ig auitable for a concurrent onvironment.,

5.2.1 Continuation Based Implementation

Ve seen from Fignre = and Figure 9. the differsnce between the cager
program and the contivnation hased program is that the lazy program con
tains a continnation stack S for the lugy mechanism and a specified number
L which indicates the wumber of clements to he created. The continuation
stack corresponds to a triple of counters in soction 3.3

The continuation stack containg goals whose execution is delayed to exe-
cute individaally. Far example, in the case of clause/7. two body goals are
pushed onto the stack and these executions are delaved. These delayed goals
are popped one by one and foreed to execute al the terminal condition of the
Progran.

This progras is defined as a function which returns a continnation stack,
sor that it is necessary for the calier to manage the continnation stack and call
clause/7 with the stack when it needs elements,

5.2.2 Process Oriented Implementation

In 5.2.1. clause is defined as a function. However, the provess oriented pro-
gram is suitahle in a concurrent environment, With process ortented progra,
we make the generator clause and the tester rooperate by using a comini-
nivation channel,

A provess oriented program is made by adding an exira argument to the
continuation hased program, The extra argument BL represents a commnni-
cation channel between the generator and tester,

When the generator generates the required number of elements, it waits
for the next demand [rom the fester,

antel(L,NL, [], Env, €, 5,N5, Us) :-
assignValueToVariable(C1, Env), Uc = [C1|Ui], L1 :=L - 1,
(L1 =0 =-» Ui = {Uii}, % mark Lth element
(NL = {LL,NLL} =>» % wait for the next L and NL
clausesCont (LL ,NLL, 5, Uiil);

When the tester needs more elements. it sends the next demand to the
generator.

. NL,..., Us,...)} :- Uo = {Ucck | % reach Lth element
NL = {LL,NLL}Y, % send the next L and ML




clause(L, M,DM, C, 5,85, Ua) :-
31 = [ante([{DM,a2}.{M,A1}], <3,
antel [{DM,AL1},{DM,A2}], CJI5],
ante(L, [{DM,&1},{M.a2}], C, S1,NS, Us).

ante(L, R, C, 5,N5, Ug) :=-
new_env({C, Env), antei(L, R, Env, C, S.NS, Uc).

antal(l, [1, Env, C, 3 ,NS, Ua) :-
assignValueTcVariable(C1, Env),
Us = [C1iUi), L1 := L - 1,
(L1 =0 -» N8 =35, Ui = [];
Li » 0 -* clauseCont{L1, 3,NS, Ui)).
antel(L, [{M,Lis}IR], Env, C, S,NS, Ua) :-
literal(L, M,Lis, R, Env, C, 5,NS, Ua).

literal{L, M,Lis, R, Env, C, 5,NS, Uo) :- getNext(M, E, M1},
(/= M is empty =/ -> clauseCont(L, 5,NS, Us);
/* E is an element of M =/ —» unify(Lis ,E, Env NEnv),
(/* unification fail =/ =-»
literai(L, M1,Lis, R, Env, C, 5,N5, Ua);
f* ynification success *f =»
31 = [literal(Mi,Lis, R, Env, C)I|3],
antel{l, R, NEnv, O, S1,N5, Usl)).

clauselont(L, [ante(R,C}|3],NS, Uo) :-
ante{L, R, C. 3,N5, Uo).

clauseCont(L, [literal(M,Lis, R, Env, C)|38],N3, Us} :-
literal(L, M,Lis, R, Env, C, 5,N5, Uo).

Figure % Continnation Based Program
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6 Experimental Results

6.1 Features of hard Horn problems

Before presenting experimental resails for the proposed algorithms, we briefiy
describe the problems we are trving to solve,
All of the problems are given as a set of Horn clanses only. as follows.

Thearem 4 { XGkR [Ovedl})

gl X oplei ALYl — j.l{||'.}.
brae —  ple{ Xl Yol ZO NNl ALY T
ploletefmw ethoeiboeethoanlby - Todse

Theorem & [ Lukasiowics)

Mo XY TR
frue —  pta N YOV L
frae —  pdal 0Ny oaldl YL A X. 20
Prae —  plii XY LY A A Y. NN
Fiue oA Y Y e YN
plit e b dte ) e iy = falsr

Besides full unification with oceurs check, we need varions henristics suech
as the weighting and deletion of some complex resolverts. and a control mech-
anisin that alternates hetween breadth first and depth-first search strategies.
Incidentabls . Theoren b has a very shor proof and cap he proven easily with
just the breadih-first search strategy. Theorem o however, is winch harder
and its prool = longer,

These problems have the Tollowing characteristics:

o The number of conjunetive matchings and subspmption rests is enor-

s,

o The size of model candidates becomes very ange.
e, When ten thonsand atoms are generated. conjunctive matching will
amemnt tor ane hundred million.

6.2 Performance measurement,

We show some cxperimental resnlts in Fable |

b the O'TTER algorithm. the basic algorithin is perlormed for upit false
clauses and the naive algorith is applied for non unit false clanses. A nu miber
in parentheses is the result of applving partial evaluation to unit false clanses.
As for the unify entries. to the left of the plus sign is the number of conjunctive
matchings performed by the tester, to the right is that for the generatar. The
naive algorithm canoot reach the goal within | hours of rminning withowt

partial evaluation.



Table 1@ Performance results {'Thearem 4}

Naive Lazy Lagy+LA Otter

tinwe [sec) = R 407 577 210448 4089161
{Ahd A5m) {R1.824) [H 1 fR) el

nnify 1656+-TATET RLO5644005 [ G556+ TAR00)
Clabs ] 742540 | (A308 1 44 158]) | (4308 144005) (AR T+ T4204)

snbsuniption ' hiAR 5O TR
fera (T4 I 1343) BLTEY

M L6510 272 25
(272) {272 (272 (27

(b] - | =4

[ 1570 {1375}

The lazy algoritho. however, can solve it in abont 100 secomnds, Cuonipar-
ing the naive and lazy. the number of unifications performed by the rester are
the same. However, the number of generator unifications anmil subsuiaption
tests in Lhe lazy is less than one teath of that in the naive, Also. the lazy
algorithin requires less memory than the naive, Partial evaluation is efective
for the naive, lazy, and lazy+ 1 A(lookahead ). but ot Tor the OTTER. T his is
hecause the (FUTER has already employed the basic algorithm for unit false
clanses, so that it is equivalent to emploving lazy, and becanse. for non-unil
vlanses. the O'ITER is comparable to the naive.

7 Conclusion

It is importani 1o avoid computation and space explosion in proving hard
theorems which require deep inferences, For this we proposed the lazy ool
generalion method,

When we use a sequential warhine, it is saflicient to use the hasic algo-
rithm presented i This paper sinee it has a similar effect 1o the lazy algorithm
with respect to the order of computational amount and memaory sparce, | he
by algorithne has the most effect when it is used on a parallel machine, We
can incorporate this mechanism to OTTER-like provers based on the naive
algorithm. This would improve the efficiency to the saine degree as in the
hasic algorithm,

Experiments show that significant compntational amounts and memory
space can he saved by vsing the laey algorithm,

The lazy model generation method can be easilv extended from Horn
clauses 1o non-Horn clauses. The idea is also applicable to hyper-resolution
and other provers using set-of-support strategies in general.

Whereas the lazy model generation achieved “generate-only-at-testing . it
is lmportant to consider the more general slogan. “generate-only- for-testing”,
By this term we mean search-pruning strategies such as magic sets and rel-
cvancy testing [WLSY]. We believe that these strategies wonid fit well with

| =



the lazv model generation method for it has very simnple vontrol stricture,

We are now developing a parallel prover hased on lazy model generation.

This result will be reported in a forthcoming paper.
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