ICOT Technical Report: TR-724

TR-724
Algorithmic Leaming ol Formal Languages and
Decision Trees

by
Y. Sakakibara (Fujitsu)

January, 1992

€ 1992, ICOT

Mita Kokusai Bldg. 21F {03)13456-3191 3

1COT 4-28 Mita 1-Chome Telex 1COT 132064

Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology




Algorithmic Learning of Formal Languages and
Decision Trees

Yasubumi Sakakibara !

A dissertation submitt: 1 to the Department of Information Science
in partial satisfaction of the requirements for the degrec of

Doctor of Science

at the

TOKYQ INSTITUTE OF TECHNOLOGY

October 1991

I International Institute for Advanced Study of Social Information Science {ITAS-SIS)
FUJITSU LABORATORIES LTD.
140, Miyvamoto, Numazu, Shizuoka 410-03, Japan
E-mail : vyasufiias.flab.fujitsu.co.jp@uunet.uu.net



Abstract

We investigate the problem of designing efficient learning algorithms that identify certain
concepts from examples. In the first half of this thesis, formal languages are considered
as target concepts. We begin with the traditional learning model introduced by Gold,
and show that in learning context-free languages, it is useful to have information on the
erammatical structure of the unknown language. Indeed we show that while Gold has
shown that the class of context-free languages cannot be identified from positive presenta-
tions of strings (i.e., strings in the unknown languages), thereis a subclass of context-free
grammars that can be identified from positive prescutations of strings with grammatical
structure in polynomial time and can generate all of the context-free languages, where
a string with grammatical structure, called a structured string, is a string wilh some
parentheses inserted to indicate the shape of the derivation tree.

Next we study a learning situation in which the learning algorithm is allowed to make
queries to a teacher on the grammatical structure of the unknown language. We present
a learning algorithmn hat can exactly learn the whole class of context-free grammars
in polynomial time by making membership queries for structured strings and structural
equivalence queries. We also claim the importance of representations for the problem
of learning forinal languages. We introduce a new class of representations for formal
languages in the framework of Smullyan’s elementary formal systems and show that by
employing the representations, a larger class of formal languages than context-lree lan-
guages is efficiently learnable from some reasonable queries.

In the second half, we focus on learning decision trees in the presence of noise. We em-
ploy a probahilistic learning model due to Valiant and consider the noise mode] called elas-
sification notse process introduced by Angluin and Laird. First we presenl a polynomial-
time algorithm for learning decision lists in the presence of noise, where the decision list
is a restricted kind of decision tree introduced by Rivest to represent Boolean functions.
Next we extend the algorithm to a polynomial-time algorithm for learning decision trees
in the presence of noise. In the course of this study, we develop a technique of building ef-
ficient robust learning algorithms, called noise-tolerant Occam algorithms, and show that
using them, one can construct a polynomial-time algorithm for learning a class of Roolean
funetions in the presence of noise. Then we present a noise-tolerant Occam algorithm for

decision lists and extend it to a noise tolerant Occam algorithm for decision trees.
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Chapter 1

Introduction

Human beings have an ability to learn new concepts without explicit programming. Tn the
daily life, they often extract the general rules [rom observed instances. For example, the
child can learn his mother language and its grammar from sentences in his parents’ daily
conversations, and the scientist tries to find the general principle from observations in his
expericnce. In the machine learning literature, this ability is called inductive inference
or learning from eramples. Many researchers have worked on this subject to find its
mechanisms and make the machine have such ability. The purpose of this thesis is to

contribute the progress on the theoretical front for learning from examples.

1.1 Algorithmic Learning

Suppose that you are trying to learn a foreign language (suppose “Russian” for example)
with a very good teacher. The teacher will try to teach you the Russian grammar by giving
many lussian sentences rather than by telling the grammar itself explicitly. Thus you
can receive many grammatically correct sentences and incorrect sentences, together with
the indication whether they are correct or not. Sometimes you can ask some questions
to the teacher like “Is this sentence right?” or “Is this grammar correct?”, but you can
never ask the question “What is the correct Russian grammar?". The teacher gives you
the answer of “Yes" or “No” or a counter-example in the case that the grammar that you
conjecture is not correct. As the learning process proceeds, you can distinguish correct
sentences from incorrect ones more and more using the grammar that you have learned
at that point., With the teacher who never tells “Your grammar is correct” when you find
it, it is difficult for you to know which grammar is correct and when you have it so that

your learning continues infinitely or you may be satisfied with having an almost correct

1



2 CHAPTER 1. INTRODUCTION

grammar. With the teacher who kindly tells “Your grammar is exactly correct”, you may
finally find the correct grammar.

We are interested in studying such a learning problem formally. The subject of this
thesis is called algorithmic learning theory or computational learning theory. Algorithmic
learning theory is the theoretical portion of artificial intelligence that is concerned with
machine learning and represents a major theoretical component of machine learning work.
To study the subject on machine learning rigorously and precisely, the formal treatment
of it is necessary. Rivest suggests in [SloB9] the following seven questions that must be

answered to specify a learning problem well.

1. What is being learned ?

2. From what is it learned 7

3. What a priori knowledge does the learner begin with 7
4. How is what is learned represented 7

5. By what method is it learned 7

6. How well is it learned 7

7. How efficiently is it learned 7

In line with these questions, we define a mathematical model for the problem of learning

from examples.

What is being learned We assume a domain U on which the target class of concepts
to be learned is defined. In this thesis, we examine exclusively abstract mathematical
domains. Thus I/ may be the set of all finite strings over a finite alphabet ¥ or the set
of all truth assignments over n Boolean variables {0,1}" or the set of all ground atoms
over a first order language, i.e. the Herbrand base. We study these domains both because
they are interesting in their own right, and in the belief that they are rich enough to form
good mathematical models of real world problems.

In this thesis we focus on the learning problem where what is learned is just a subset
of I/. These subsets of [/ are called concepts and a learning problem for concepts is called
concept learning. Concepts may be formal languages or Boolean functions or Herbrand

models. We initially assume a target class of concepts C = {¢;,cz,...} of the domain U
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and assume Lhal the unkoown concepl ¢. Lo be learned is chosen from C. A target class
of concepts may be the class of regular languages or context-free languages or a class of

Boolean functions.

How is what is learned represented Those concepts are typically represented by
formal grammars, e.g. finite state automata or context-free grammars, Boolean formulae,
decision trees, or logic programs. These representations will be rigorously defined in later

sections hy using their alphabets to describe representations for concepts.

What a priori knowledge does the learner begin with An initial knowledge that
a learning algorithm may have ahead of time is that the unknown concept is chosen from
some particular class of concepts. More formally, we design learning algorithms that are
only guaranteed to work on the assumption that the unknown concept is chosen from
some particular class. For example, we will design a learning algorithm which can work

only for the unknown language chosen from the class of context-free languages.

From what is it learned, llow well is it learned Within algorithmic learning theory
there are three major established formal models for learning from examples or induetive
inference. They are the madel by Gold [Gol67], the one by Angluin [AngB8], and the one
by Valiant [Val84]. Each model provides learning protocol (This corresponds to “From
what is it learned 7".} and criterion of the success of learming. {This corresponds to “How
well is 1t learned 77.) We follow these models and their philosophies rather than make a
new learning model and work on 1t because they have already been established well and
many interesting results have been given so that we can easily compare our new resulls
with them. These models will be briefly introduced in the following sections and formally
defined in the main chapters.

How efficiently is it learned An important aspect of algorithmic learning theory is
to analyze the computational cost of a learning algorithm. One criterion of the efficiency
of a learning algorithm is whether its running time can be bounded by a polynomial
in the relevant parameters. For example, the relevant parameters are the number of
states of the minimum deterministic finite automaton for the unknown language, the
size of the unknown grammar, the maximum length of counter-examples, the number of
Boolean varables, and so on. Thus an efficient learning algorithm is required to usc only

polynomially bounded examples and computation resources.
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By what method is it learned The goal of algorithmic learning theory is to pose
interesting learning problems in line with the above questions, and to design algorithms
that solve those problems. In the search for polynomial-time learning algorithms for two
domains, formal languages (especially context-free languages) and Boolean functions, we

will show several results.

1.2 Learning Formal Languages from Queries

In this thesis, we will focus on two major learning problems, learning formal languages
from queries and learning decision trees from large data in noisy environment. A learning
problem is a pair (K, ), where I is a class of representations given some representation
language, and C' is a concept mapping from R to the target class of concepts C, that is,
for each r in R, C(r) denotes the concept represented by r. In the first half, we take
formal languages as the class C of learning objects, ask the learning algorithm to return
phrase-structure grammars (as K} to generate the language, and consider the situation in
which a tcacher is available and a learner can make questions about the unknown concept
(language) to the teacher.

A problem of inductive inference for formal languages has been long discussed in the
context of grammatical inference problem. The grammatical inference problem is the
problem of learning a “correct” grammar for the unknown language from finite examples
in the language. Gold [Gol67] originated this study and introduced the notion of identi-
fication in the limil. His motivation studying the problem is to construct a formal model
of human language acquisition. Identification in the limit views learning as an infinite
process and provides a learning model where an infinite sequence of examples of the un-
known language is presented to a learning algorithm and the eventual or limiting behavior
of the algorithm may be used as the criterion of its success. The criterion requires the
algorithm to produce a correct grammar in a finite time during the presentation of an
infinite sequence of examples and stay with this grammar from that point on. Although
the framework of identification in the limit have succeeded to get many interesting re-
sults (Angluin and Smith [AS83] have provided an excellent survey of these studies.), its
computational complexity has prohibited itself from further development. We employ
a problem setup in which besides given examples, various types of information on the
unknown language are available. First we show that in learning context-free languages
by using context-free grammars as the representations, it is useful to have information on

the grammatical structure of the unknown language.
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{ { the { big dog } ) { chases {(a {young girl})}))

Figure 1.1: A structural description for “the big dog chases a young girl”

In Cold’s criterion of identification in the limit [or successful learning of a formal
language, Gold [Gol67] has shown that there is a fundamental, important difference in
what could be learned from positive versus complele presentations. Examples of formal
languages are usually in the form of strings. A string that is in the unknown language is
called a positive erample and a string that is not i1s a negative example. A positive presen-
tation enumerates all and only strings in the unknown language to a learning algorithm,
while a complete presentation enumerates all strings, together with the information of
whether they belongs to the unknown language. Gold [Gol67] has shown thal learning
from positive presentations is strictly weaker than learning from complete presentations.
Intuitively, an inherent difficulty in trying to learn from positive rather than complete
presentations depends on the problem of evergeneralization. Gold has shown that any
class of languages containing all the finite languages and at leasl one infinite language
cannot be identified in the limit from posilive presenlatious. According to this result,

the class of context-free languages (even the class of regular languages) cannot be learned

from positive presentalions.

To overcome this essential difficulty of learning from positive presentations, we con-
sider the problem of learning from strings with grammatical structure, that is, we assume
example presentations in the form of strings with grammatical structure. A string with
grammatical structure, called a structured string or a struclurel description (of string),
is a string with some parentheses inserled to indicate the shape of the derivation tree

of a grammar, or equivalently an unlabelled derivation tree of the grammar, that is, a
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=

derivation tree whose internal nodes have no labels. (See Figure 1.1.) Thus we consider
the problem where the domain U is the set of all structured strings, the class of represen-
tations R is the class of contoxt-free graminars, and C{r) denotes the set of all unlabelled
derivation trees of the grammar r € R, while in learning regular languages, [ is the set
of all strings, R 1s the class of [inile automata, and for r € R, C(r) denotes the regular
language accepted by the automaton r. Hence this problem setting assumes that more
than the information of strings in the unknown language is available, that is, information
on the grammatical structure of strings is available to the learning algorithm. This setting
is also necessary to identify a grammar having the intended structure, that is, structurally
equivalent to the unknown grammar. Levy and Joshi [LJ78] have already suggested the
possibility of efficient grammatical inferences in terms of structured strings.

The problem is to identify context free grammars in the Limit from positive presenta-
tions of structured strings, called positive structural presentations, that is, all and only
unlabelled derivation trees of the unknown grammar. We show that there is a class of
context-free grammars, called reversible context-free grammars, which can be identified
from positive structural presentations. We also show that the reversible context free gram-
mar is a normal form for context-free grammars, that is, reversible context-free grammars
can generate all of the context-free languages. We present a polynomial-time algorithm
which identifies them in the limit from positive structural presentations. This implies
that the whole class of context-free languages can be learned efficiently from positive pre-
sentations of structured strings of reversible context-free grammars, Note that this does
not imply that the whole class of context-free grammars can be learned from positive
structural presentations. The class of reversible context-free grammars is a restricted and
proper subclass of context-free grammars.

Next we show that another useful information in the formal language learning is the
answer given by making queries to a teacher. We consider a learning situation in which
a teacher is available to answer some queries on the unknown concept. Angluin [Ang88]
has devised an elegant formulation of such a teacher and learner paradigm, illustrated in
Figure 1.2. In this setup, we can expect the learning algorithm be the ezact learning,
which means the algorithm outputs a correct grammar (i.e., a grammar that exactly
generates the unknown language) in a certain finite time. This is no longer a limiting
criterion of learning. In the exact learning model, a teacher is a fixed set of eracles that
can answer specific kinds of queries made by the learning algorithm on the unknown
concept ¢.. Angluin [Ang88| has considered several types of queries and examined their

effects for efficient exact learning. For example, the following two types of queries are
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Teacher

Queries “w € ¢,”” 1 I Answers “yes or ne”

Learner

U

Conjecture
Figure 1.2: A teacher and learner paradigm

typical:

1. Membership. The input is an element w € U and the output is yes if w € ¢, and

no if w & e,

2. Equivalence. The input is a representation r € R and the ontpnt is yes if C(r) =
€. (i.e., the representation r exactly represents the unknown concept ¢,) and no

otherwise. If the answer is no, an element w € (C(r) —c.)U (e, — C(r)) is returned.

For the equivalence query, Lthe returned element w is called a counter-example. A teacher
that can answer queries about 1 and 2 is called a minimally adequate teacher (MAT, for
short), and is considered by Aungluin Lo be a reasonable (not too strong and not too weak)
teacher.

A membership query returns one bil of information: whether or not the queried ele-
ment is a member of the unknown concept ¢,. Nevertheless it often plays an important
role 1n ellicient exacl learning. For example, certain membership queries can avoid a
lengthy computation in learning regular languages. The problem of learning regular lan-
guages from examples has been studied quite extensively [AS83, Pit89). Gold [Gol78]
has shown a hardness result for learning regular languages that the problem of finding
a deterministic finite automaton of a minimum number of states consistent with a given
finite set of positive and negative examples is NP-hard. This result is generally inter-
preted as indicating that even a very simple case of grammatical inference, identifying
deterministic finite automata from positive and negative examples, is computationally
intractable. Further recently Pitt and Warmuth [PW89)] have shown the stronger result
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that it is NP-hard to find a deterministic finite automaton of at most n'*®™ states con-
sistent with a given finite set of positive and negative examples for any constant € > 0,
where n is the number of states of a minimum deterministic finite automaton consistent
with the given set. Nevertheless Angluin {Ang87h] has shown that regular languages can
be learned by an algorithm if one is allowed to make queries above mentioned in time
polynomial both in the number of states of the minimum deterministic finile automaton
for the unknown language and in the maximum length of counter-examples returned for
equivalence guerics.

The guestion of whether there is an analogous result for the whole class of context-
free languages is very interesting and important, because the problem itself is theoretically
interesting and the class of context-free grammars is an important class from the prac-
tical point of view. The syntax of a programming language constitutes a context-free
language in principle and many tools for programming languages like a parser or a com-
piler are designed by means of context.free grammars. Recently Angluin and Kharitonov
[AK91] have investigated cryptographic limitations on learning context-free grammars
from membership and equivalence queries. They have shown that the problem of learning
the whole class of context-free grammars from membership and equivalence queries is
computationally as hard as the cryptographic problems such as quadratic residues mod-
ulo a composite, inverting RSA encryption, or factoring Blum integers, for which there is
currently no known polynomial-time algorithm.

‘T'o break this intractability of learning context-free grammars from queries, we again
assume that information on the grammatical structure of strings is available to the learning
algorithm. That is, we consider the problem where the domain I is the set of all structured
strings, the class of representations / is the class of context-free grammars, and C(r)
denotes the set of all unlabelled derivation trees of the grammar r € K. In this setup,
a membership query for a structured string w € U, called structural membership query,
returns yes if w € C(r.) for the unknown grammar r. and an equivalence query for a
grammar r € K, called structural equivalence query, returns yes if C(r) = C(r.), that is,
7 is structurally equivalent to r.. We show that the whole class of context-free grammars
can be learned from structural membership queries and structural equivalence queries
in a polynomial computation time. It is known that the set of derivation trees of a
context-free grammar constitutes a rational set of trees, where a rafional set of trees
is a set of trees which can be recognized by some tree automaton. Further the set of
unlabelled derivation trees of a context-free grammar also constitutes a rational set of

trees. Based on these observations, the problem of learning a context-free grammar from
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structured strings is reduced to the problem of learning a tree automaton. Then by
extending Anglun's eflicient learning algorithin for finite automata [Ang87b] to the one
for ‘ree automata, we present an eflicient learning algorithm for context-free gramunars
using structural membership and structural equivalence queries. Notice that the learning
algorithm can exaclly and cllicicutly learn the whole class of context-free grammars by
making structural membership and siructural equivalence queries while only a restricted
class of context-free grammars can be identified in the limit from positive structural
presentations.

We alzo claim the importance of representations (the class of representations R) for
what is learned. In the context of grammatical inference, formal langnages are typi-
cally represented as regular expressions, finite-state automata, context-free grammars,
or phrase-structure grammars. Sometimes these classical grammatical representations
are not adequate to design an efficient learning algorithm. We introduce a new class of
representations for formal languages in the framework of Smullyan’s elementary formal
systems [Smubl] for the problem of learning formal languages. The new class of represen-
tations is a natural extension of context-lree grammars, and the languages defined by the
representations lie between context-free languages and context-sensitive languages. We
demonstrate a polynomial-time algorithm for learning these representations using some
reasonable queries to a teacher. This implies that there exists a larger class of formal
languages than the class of context-free languages that is efliciently learnable by using

some reasonable queries.

1.3 Learning Decision Trees from Large Data in Noisy
Environment

So far we have considered learning problems of formal languages in two kinds of setting.
One is an on-line setting where an infinite sequence of examples of the unknown language
is presented to a learning algorithm and aller receiving each example in the sequence, the
algorithm updates its conjecture. The other is an interactive setting where a teacher is
available to answer some queries made by a learner about the unknown language.

In the second half, we consider the learning problem in a baleh setting from a large
armnount of examples which may contain some noise. A batch setting means a learning
situation in which a learning algorithm is not required to produce any output until the
end of a sequence of examples, at which time the algorithin outputs a representation as

conjecture. The study of learning from large data is motivated by the following obser-
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vation. Nowadays by surprising developments of the computer hardware technology, the
huge amount of computer resources can be provided for the user. In such circumstances,
the user will find some computer software useful if there exists a large amount of data in
the problem domain that cannot be dealt with by hand and the software can compute
those data very efficiently by using rich computer resources. For example, programs for
numerical calculations or the transaction of large data base are such softwares. We would
like to consider those problems concerned with large data and to develop some techniques
by which one can efficiently extract the general rules of the data

As an instance of such problems of learning from large data, we focus on the learn-
ing problem of Boolean functions represented by decision trees. Learning decision trees
[BFOS84, Pagh0] have been studied long with such a motivation and has the most suc-
cessful counterpart of practical applications. One famous and practical example of such
systems is [D3 by Quinlan [Qui86b). Decision trees are often used for classification tasks
and as the representation of acquired knowledge in a learning system. A classification
task is to assign an element of the domain to one of a specified number of disjoint classes.
For example, the diagnosis of a medical condition from symptoms is a classification task,
in which the classes could be either the varions disease states or the possible therapies.
1133 induces such decision trees from examples. Numerous applications based on ID3 have
also been investigated. In the decision tree learning problem, concepts are defined on a set
of objects in which the objects are described in terms of a set of atiribute-value pairs. In
the case where each atiribule is a Boolean variable (i.e., the value is 0 or 1), the problem
of learning decision trees can be formulated as the problem of learning Boolean functions.

When we study the problem of learning from large data, it is practical to assume that
the data contain some noise. Therefore we consider the problem of learning decision trees
in the presence of noise. Since the presence of noise prevents a learning algorithm from
exactly identifying the unknown concept, we employ a probabilistic learning model for
this problem.

More precisely, we consider the distribution-independent model introduced by Valiant
[ValBd], which is called probably approzimately correct learning (PAC learning, for short ).
In the PAC learning model, we assume thal random samples are drawn independently
from the domain I/ whose probability distribution D may be arbitrary and unknown. A
learning algorithm takes a sample as input and produces as output a representation in K.
The success of learning is measured by two parameters, the accuracy parameter ¢ and the
confidence parameter &, which are given as inputs to the learning algorithm. We define

a notion of the difference hetween two concepts ¢ and ¢ with respect to the probability
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distribution ) as

die,¢') = 3. Prp(w),

we o

where e¢ic’ denotes the symmetric difference of cand o and Prp{w) denotes the probability
of clement w € U with respect to L), The error of a representation r with respect to the
unknown concept ¢, is delined to be d{C(r),c.). A successful learning algorithm is one
that with high probability (at least 1 — &) finds a representation whose error is small (less
than ¢) and its running time is bounded by a polynomial in the relevant parameters (n,
1/¢, and 1/6). Thus in the PAC learning model, a learning algorithm is not required
to learn the unknown concept exactly, but only to find a representation that is a good
approximation of it with high probability. This model is naturally applied in our batch
setting from a large amount of examples in noisy environment.

The PAC learning model has been applied to the problem of designing and analyzing
algorithms for learning Boolean functions and some other functions. Several interesting
classes of Boolean functions have been proved to be or not to be polynomially learnable
in the PAC learning model [BEHWS9, KLPV87, PV84],

The problem of learning decision trees in the PAC learning model has also been studied
[Riv87, KHB9]. Rivest [RivB7] has introduced a class of representations, called decision
hists, for representing Boolean [unctions and shown that kDL (the class of decision lists
with conjunclive clauses of size at mosl k at each decision) 15 polynomially learnable
in the PAC learning model. The decision list is a useful way of representing Boolean
functions, and in fact the decision lists are an important class hecanse k-DL properly
includes other well-known techniques for representing Boalean functions such as k-CNF
(formulae in conjunctive normal form with at most k literals per term), and k-DNF
(formulae in disjunctive normal form with at most & literals per clause). Ehrenfeucht
and Haussler [RHHH] have introduced the notion of the rank of a decision tree and shown
that for any fixed r, the class of decision trees of rank at most r, denoted r-DT, is
polynomially learnable in the PAC learning model and Rivest's resnlt for decision lists
can be interpreted as a special case of their result for rank 1.

However, those works depend strongly on the assumption of perfect, noise-less exam-
ples. This assumplion is gencrally uunrealistic and in many situations of the real world,
we are not always so forfune, our ohservations will often be afflicted by noise and hence
there is always some chance that a noisy example is given to the learning algorithm. Few
works have suggested any way to make their learning algorithms noise tolerant and two

formal models of noise have heen studied so far in the PAC learning model for concept
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learning. One is the malicious error model initiated by Valiant [Val85] and investigated
by Kearns and Li [KL8g]:

Independently for each example, the example is replaced, with some small

probability, by an arbitrary example classified perhaps incorrectly.

The goal of this model is to capture the worst possible case of noise process by the
adversary. This model is also called adversarial noise process in [AL88]. The other is the

classification noise process introduced by Angluin and Laird [ALSS]:

Independently for each example, the label of the example is reversed with

some small probability.

The goal of this model is to study the question of how to compensate for randomly intro-
duced errors, or “noise”, in classifying the example data. We consider the classification
noise process to study the effect on the polynomial learnability of decision trees. In the
classification noise process, we assume that the rate of noise 7 is strictly less than 1/2
and there is some information about the noise rate 5 available to a learning algorithm,
namely an upper bound ny such that 5 < ny < 1/2.

We begin with the decision lists for the problem of learning decision trees in the
presence of classification noise. We present a polynomial-time algorithm for learning k-DL
in the presence of classification noise. Next we cxtend the algorithm to a polynomial-time
algorithm for learning r-DT in the presence of classification noise. More precisely, we
first develop a technique for building efficient robust learning algorithms in the presence
of classification noise. That is the technique of, rather than finding a Boolean function
consistent with the given sample, which is the well known technique used in learning in
the absence of noise, finding a Boolean function consistent with a large fraction of the
sample. We call a polynomial-time algorithm to find such a Boolean function a noise-
tolerant Occam algorithm, and show that using a noise-tolerant Occam algorithm for a
class of Boolean functions, one can construct a polynomial-time algorithm for learning
the class in the presence of classification noise. Next we present a noise-tolerant Occam
algorithm for k-DL and hence conclude that k-DL is polynomially learnable in the presence
of classification noise. This strictly increases the class of Boolean functions that are known
to be polynomially learnable in the presence of classification noise: the only example of
a class of Boolean [unctions is k-CNT that has been shown to be polynomially learnable
in the presence of classification noise [AL88] and k-DL properly includes k-CNF. Further
we exlend the noise-tolerant Occam algorithm for k-DL to the one for r-DT and conclude
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that r D1 are polynomially learnable in the presence of classification noise. Both results

can hold at a noise rate even close to 1/2.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows.

In Chapter 2, we present a polynomial-time algorithm which identifies in the limit
a class of context-free grammars, called reversible contert-free grammars, from positive
structural presentations. We describe a learning model introduced by Gold, identification
in the limit, and introduce its variant that is a model for identifying a grammar from
examples of structured strings. We state the relationship between context-free grammars
and tree automata, and show that the problem of learning a context-free grammar from
structured sirings can be reduced to the problem of learning a tree automaton. Then
by extending the efficient algorithm of Angluin [Ang82] which identifies finite automata
from positive presentations to the one for tree automata, we present a polynomial-time
algorithm which identifies reversible context-free grammars in the limit from positive
structural presentations. We also demonstrate several examples to show the learning
process of our learning algorithm and to emphasize how suceessfully and efficiently our
learning algorithm identifies primary examples of grammars given in the previous papers
for the grammatical inference problem.

In Chapter 3, we describe a learning model due to Angluin, eract learning, in which a
teacher is available to answer some queries about the unknown concept. In this learning
moadel we show that the whole class of context-free grammars can be learned from struc-
tural membership queries and structural equivalence queries in a polynomial computation
time. We also demonstrate that this algorithm can be applied to learning a class of logic
programs, called linear monadic logic programs, from membership and equivalence queries
in a polynomial time.

In Chapter 4, we address a problem of exactly learning a larger class of formal lan-
guages than the class of context-free languages by using some “reasonable”™ queries. We in-
troduce a new class of representations for formal languages in the framework of Smullyan’s
elementary formal systems and demonstrate a polynomial-time algorithm for learning
these representations using some “reasonable” queries to a teacher.

In Chapter 5, we describe a learning model due to Valiant, probably approzimately
correct learning, that is a distribution-independent probabilistic model of concept learning

from random examples and consider a formal model of noise, classification noise process,
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in the PAC learning model introduced by Angluin and Laird. We develop a techmique of
building efficient robust learning algorithms, calied noise-tolerant Occam algorithm, and
show that using a noise-tolerant Occan algorithm for a class of concepts, one can construct
a polynomial-time algorithmn for learning the class in the presence of classification noise.

In Chapter G, we define a class of representations for Boolean functions, decision lists,
introduced by Rivest. We present a noise-tolerant Occam algorithm for &-DI. and hence
conclude that k-DL is polynomially learnable in the presence of classification noise.

In Chapter 7, we define a class of representations, decision trees, and the notion of
the rank of a decision tree introduced by Ehrenfeucht and Haussler. We extend the noise-
tolerant Occam algorithm for decision lists Lo the one for decision trees and conclude that
the class of decision trees of rank at most r is polynomially learnable in the presence of
classification noise.

Finally, in Chapter 8 we conclude by summarizing the results presented in this thesis
and stating some future research.

Parts of this thesis have appeared else-where. The contents of Chapter 2 appeared
in [Sak89, Sak88a]. All scclions of Chapter 3 except Section 3.5 appeared in [Sak90c,
Sak88b]. Section 3.5 appeared in [Sak90b]. The contents of Chapter 4, 5, 6 appeared in
[Sak90e], [Sak90d], [Sak90a], respectively.
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Chapter 2

Learning Context-Free Grammars
from Positive Structural Examples

In this chapter, we introduce a subclass of context-free grammars, called reversible contert-
Sree yrammars, which 1s a normal form for conlext-[ree grammars and has a good property
[or learning from posilive presentalions. We show that the class ol reversible context-free
gramunars can be identified in the linil [rom (positive) presentations of structured strings
and indeed we present an efficient algorithm for it. This implies that the whole class of
context-free languages can be learned efficiently from positive presentations of structured

strings of reversible context-free grammars.

2.1 Identification in the Limit

Gold’s theoretical study [GolGT] of language learning introduces a fundamental concept
that is very important in inductive inference : i{denfification in the limit. Formally the
model of identification in the limit is defined as follows. An infinite sequence of examples
of the unknown language L is presented to the learning algorithm M that is attempting
to identify L. Examples of formal languages are usually in the form of strings. A posifive
preseniation of L is an infinite sequence giving all and only the elements of .. A complete
presentation of L is an infinite sequence of ordered pairs (w,I) from £* x {0,1} such that
! =1 if and only if w is a member of I, and such that every element w of £* appears
as the first component of some pair in the sequence, where ¥ is the alphabet which the
unknown language L is defined over. A positive presentation eventually includes every
member of L, whereas a complete presentation eventually classifies every element of L*
as to its membership in L. After receiving each pair of the presentation, M outputs next

conjecture. In the case of formal language learning, the conjecture is usually in the form

17
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of a grammar. If after some finite number of steps in a positive (complete) presentation
of L, M guesses a correct grammar for the unknown language L (i.e., a grammar & such
that L((G) = L) and never changes ils guess after this, then M is said to wdentify L in the
limit from positive {complele) presentations,

Gold [Gol67] has shown that there is a fundamental, important difference in what
could be learned from positive versus complete presentations and that learning from posi-
live presentations is strictly weaker than learning from complele presentations. Gold has
also shown that any class of languages containing all the finite languages and at least one
infinite language cannot be ideutified in the limit from positive prescntations. According
to this result, the class of context-lree languages (even the class of regular sets) cannot
be learned from positive presentations. In order to learn formal languages from positive
prescutations in Gold’s criterion of identification in the limit, we must avoid the prob
lem of “overgeneralization”, which means guessing a language that is a strict superset of.
the unknown language. Nevertheless Angluin [Ang80b] has shown various conditions for
correct identification of formal languages from positive presentations that avoids overgen-
eralization and presented nontrivial classes of formal languages that can be learned from
positive presentations. Recently Shinohara [Shi90] has shown that larger classes of formal
languages can be learned from positive presentations and those classes form a different
hierarchy of formal languages from Chomsky hierarchy. However no efficient algorithm
has yet been presented for learning those classes. In this chapter, we take a different ap-
proach to overcome this essential difficulty of learning from paositive presentations. That

is learning from structured strings.

2.2 Learning from Structured Strings and Related
Works

In learning from structured strings, examples are presented in the form of structured
strings, where a structured string is a string with some parentheses inserted to indicate
the shape of the derivation tree of a grammar. Thus the learning algorithm can enjoy
information on the grammatical structure of the unknown language. The primal concern
in this and next chapters is to see how the setting of learning from structured strings will
overcome essential difficulties in the problem of learning formal languages.

In this setup, the domain [/ is the set of all structured strings, the set of representa-
tions R is the class of context-free grammars, and C(r) denotes the set of all unlabelled

derivation trees of the grammar r in R.
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In a practical use of formal language learning (e.g. designing a parser), the above
assumption on availabilities of information on the grammatical structure of strings is
quite natural. The traditional grammatical inference problem is defined to identify a
grammar G from examples of the unknown language L such that G correctly generates
the language L, i.e., L = L(G). However for any context-free language L there exist
infinitely many grammars (7 such that I, = L((7). Furthermore, those grammars may have
different structures. Consider the following example. The grammar &; below describes
the set of all valid arithmetic expressions involving a variable “v™ and the operations of

multiplication “x™ and addition “4".

S —=uv| Av
A—vt|vx|v+A|lvxA

(the grammar Gy)

However the structure assigned by the grammar & to sentences is semantically mean-
ingless. The same language can be specified by the grammar &, below in a meaningful
manner.

5+ F

E—-F|F+FE

Fav|lvx b

(the grammar G}

Here the phrases are all significant in terms of the rules of arithmetic. Although G, and G,
are equivalent (i.e. L(G;) = L((G;)), this [act is not very relevant from a practical point
of view since it would be unusual to consider such a grammar as ;. Thus in a practical
use like designing a parser, the structure of the learned grammar is more significant
because the learned grammar is intended for use in a practical situation entailing the
translation or interpretation of sentences in a compiler. However in the framework of
the usual grammatical inference, it is impossible to compel to identify such a grammar
(e.g. not the grammar & but G3) which has the correct (intended) structure. To do
s0, it is necessary for us Lo assume that information on the grammatical structure of
strings is available to the learning algorithm. This hypothesis is in agreement with studies
on natural languages by Chomsky in terms of the theory of phrase structure grammars
which claim that the availability of the grammatical structure of the unknown language
is prerequisite for language description, since there must be a partially semantic basis in

syntax acquisition.
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We state some related works on learning from structured strings and compare them
with our works described below. A related early work is Crespi-Reghizzi’s {CR72]. He has
described a constructive method for learning context-free grammars from positive samples
of structured strings. His algorithm uses a completely different method from ours and
learns a diflerent class of context-free grammars. The class of context-free ETAMMATS
that our algorithm learns can generate all of the context-free languages, while his class
of context-free grammars defines a subclass of context-free languages, called noncounting
contert-free languages [CRGMT78]. Since our formalization is based on tree automata,
one of merits of our method is the simplicity of the theoretical analysis and the ease
of understanding the algorithm, whereas the time efliciency of his algorithm [CR72] is
still not clear. Levy and Joshi [LJ78] have already suggested a theoretical framework for
grammatical inference and the possibility of efficient grammatical inferences in terms of
structured strings. Fass [Fas83] has given a theoretical basis for grammatical inference
problem of context-free languages from their structured strings based on the theory of
Levy and Joshi. However she has not given any algorithmic solution and any analysis of

its computalional complexity for the problem.

2.3 Basic Definitions of Tree

In this and next scctions, we give formal definitions of trees, tree automata, context-free
grammars, and some results about their properties and their relations.

Let N be the set of positive integers and N* be the free monoid generated by N, For
¥,z € N7, we write y < z if and only if there is a 2 € N* such that = — y-z,andy <z if
and only if y < r and y # =.

A ranked alphabet V is a finite set of symbols associated with a finite relation called
the rank relation ry € V x N. V, denotes the subset {feEVI(fin) €ry}of V. Let
m =maz{n |V, # 0}, ie, m =min{n|ry C V x {0,1,...,n}}. In many cases the
symbols in V;, are considered as function symbols. We say that a function symbol f has
an arity n if f € V; and a symbol of arity 0 is called a constant symbol.

A tree over V' is a mapping ¢ from Dom, into V where (1) the domain Dom, is a finite
nonempty subset of N*; (2) if 2 € Dom, and y < z, then y € Dom,; (3)if y-1 € Doy
and ¢ € N, then y -7 € Dom, for | < J =4, 7 €N;(4) t{z) € V,, whenever for i € N,
z-i € Domyg il and only if 1 <4 < n. An element of the tree domain Dom, is called a
node of £. If t(z) = A, then we say that A is the label of the node z of t. VT denotes the
set of all trees over V. [Dom,| denotes the cardinality of Domy, that is, the number of
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nodes in f.

Intuitively, trees are rooted, directed, connected acyclic finite graphs in which the
direct successors of any node are linearly-ordered from left to right. If we consider V
as a set of function evmbols, the trees over V can be identified with well-formed terms
over V' and written linearly with commas and parentheses. In particular, we identify a
single node tree & : {¢} — a(€ V). Within a proof or a theorem, we shall write down
only well-formed terms to represent trees. Hence when declaring “let { be of the form
flty, ..oty ). .7 we also declare that f is of arity n

Let ¢ be a tree over V. A node y in { is called a terminal nede if and only if for all
€ Domy, vy £ . A node y in ¢ is an internal node if and only if y is not a terminal
node. The frontier of Llom,, denoted frontier(LDom,), is the set of all terminal nodes in
Dom,. The interior of Dom,, denoted inferior( Dom,), is Dom, — frontier(Dom,). The
depth of r € Domy, denoted depth(z), is the length of r. For a tree t, the depth of { is
defined as depth(t) = max{depth(z) | r € Dom,}. The size of t is the number of nodes
in t.

Let § be a new symbol (e, § @ V) of rank 0. V! denotes the set of all trees in
(Vu {E}jr which contain exactly one $-symbol. Far trees s € 'i";r and ¢ € I:Vr u 1""'1], we

define an operation “#” to replace the terminal node labelled § of s with ¢ by
s(z) if z € Dom, and s(z) # §,
s#l{r) =
tly) fz==z-y, 3(2) =% and y € Dom,.

For subsets § C V,T and T C (VTU V:‘}, S#T is defined to be the set {s#t | s € Sandt €
T}

Let t € VT and ¢ € Dom,. The subtree tfr of t at z is a tree such that Domy,, =
ly |z -y € Do} and t/z(y) = t{x-y) for any y € Domyy.. The co-subtree t\z of ¢ at z
is a tree In Vfl such that Dompy, = {y |y € Dom, and z £ y} and

t(y) for y € Domp, — {2},

t\z(y) = {

$ for y = x.

Let T be a set of trees. We define the set Se¢(T') of co-subtrees of elements of T' by
Se(Ty={t\z [t €T and r € Dom,},
and the set Sub(T) of subtrees of elements of T' by

Sub{T)={t/z |t € T and z € Dom,}.
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/l\ —== 3(t) = /I\
/ N / N

Iigure 2.1: The skeletal (or structural) description of a tree .

A skeletal alphabet Sk is a ranked alphabet consisting of only the special symbaol &
with the rank relation rg C {0} x {1,2,3,...,m} for some m. A tree defined over SkU Va
is called a skeleton. Let t € VT, The skeletal deseription of ¢, denoted #(1), is a skeleton

with Dem,y = Dom, such that

) tH{z) if z € frontier(Dom,),
s{t)(z) = . L
a if x € interior(Dom,).
Let T be a set of trees. The corresponding skeletal set, denoted s(T), is {s(t) | te T}

Thus the skeleton is a tree which has a special label & for the interior nodes. It tells

us only the shape and terminal nodes of the tree.

2.4 Tree Automaton and Context-Free Grammar

Definition A nondeterministic (frontier-to-root) iree automaton over V is a quadruple
= (@, V,6,F) such that Q is a finite set (Q NV = @), F is a subset of Q, and
& =(b1,63,...,6m) consists of the following maps:

b Vi x (QU V)* — 29 (k=1,2,...,m).

@ is the set of states, F' is the sel of final states of A, and & is the set of state transition
functions of A. & is defined on V7 by letting :

U Olfiquy ) if k>0,
St .. ) = { UES(E1 )y EF(L)
{7} if k= 0.

The tree ¢ is aceepted by A if and only if 6(t) N F # 0. The set of trees accepled by A is
denoted by T(4) = {t e V7 | 6(t)n F # ¢).
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In our delinition, the Lerminal symbols on the frontier are taken as “initial” states.

Note that in our definition the tree automaton A cannot accept any tree of depth 0.

Definition A tree antomaton is deterministic if and only if for each k-tuple gy, ..., q €

Q UV, and cach symbol f € Vi, there is at most one element in &.(f, q1,--., &)

Note that we allow undefined state transitions in deterministic tree antomata.
Let Sk be a skeletal alphabet. A (deterministic or nondeterministic) tree automaton

over Sk UV is called a skeletal tree automaton.,

Theorem 2.1 ([TW68]) Nondeierministic tree automata are no more powerful than de-
terministic tree automata. That is, the sei of trees accepted by a nondeterministic iree

aulomaton is accepted by a deterministic free automaton.

Note that the deterministic tree automaton may have exponentially many more stales
than the nondeterministic one accepting the same set.
In this chaptler, unless otherwise stated, we will mean a “nondeterministic tree au-

tomaton™ by simply saying “trec automaton™.

Lemma 2.2 (replacement lemma) Let A = (@, V.8, F) be a delerministic tree au-
tomaton. For s, &' ¢ VT and t € VI, if 8(s) = 8(s'), then 8(t#s) = &(t#s").

Froof. It can straightforwardly be proved by induction on the depth of the node
labelled § in . m]

An alphabet is a finite non-empty set of symbols. The set of all finite strings of symbols
in an alphabet £ iz denoted £*. The empty string is denoted e. The length of the string
wois denoted Jw]. T X s a finite set, | X| denotes the cardinality of X

Definition A phrase-structure grammar is defined as G = (N, E, P, §) where N and
Y arc alphabets (of nonterminal symbols and terminal symbols respectively) such that
NNE =@, Pis afinite sct of productions of the form o — 3, where a € (NUZ P N(NUE)
and # ¢ (NVUZE)*, and S is a special nonterminal called the start symbol.

If @ — #is a production of P, then for any strings v and & in (N U E)*, we define
yab = v3¢ and we say that yaf directly derives ~38 in (7. Suppose that oy, @,...,0m
are strings in (NUXE)*, m > 1, and

] =+ kg, 3 = &3, ..., Op—] = 0.
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Then we say a; derives a,, in G and write a; = a,,. That is, = is the reflexive and
transitive closure of =. The finite sequence of strings ay,ay,..., @, is said to be a

derivation of a,, from a; in G and is also written
] = g = 0y -0 = Oy

The language generated by G, denoted L(G), is {w | w is in £* and § = w}.

A phrase-structure grammar G = (N, X, P, 5) is contezi-sensitive if each production
is of the form ady — afy, where A ¢ N, a,v € (NU E)y,and g € (NUE)*. A
phrase structurc grammar G = (N, X, P, §) is contert-free if each production is of the
form A — a, where A € N and a € (N U™

Two context-free grammars ' and G are said to be equivalent if and only if L( G)=
L{G"). Two context-free grammars (G = (N,X,P, S} and G' = (N',E, P, 5"} are said to
be isomorphie, that is, differ only by the names of nonterminals, if and only if there exists
a bijection ¢ of N onto N’ such that w(S) = & and for every A, By,..., B, € NU z,
A+ By--- By € Pif and only if #(A) = B --- B, € P' where B = (B} if B; € N and
Bi=B. B eXforl<i<k

Definition Let G = (N, E, P, 5) be a context-free grammar. For A in N UE, the set
D4(7) of trees over N U ¥ is recursively defined as ;

{a} ifA=aek,

D,yay =
Al: } {{A““..,,fﬂlﬂ—x M- B, LEDH.{G}{lEiEk” ifAe N.

A tree in D4(G) is called a derivation tree of G from A.

For the set Dg(G) of derivation trecs of G from the start symbol S, the S-subscript
will be deleted. Then s(D{()) is the set of skeletal descriptions of derivation trees of G.

Two context-free grammars 7, and (7, are said to be structurally equivalent il s( (G, ))
= s([(G3)). Note that if Gy and Gy are structurally equivalent, they are equivalent, too.

Given a context-free grammar G, we can get the skeletal alphabet which s(D(G)) 1s
defined over. Lel r be the set of the lengths of the right-hand sides of all the productions
m (7. Then the skeletal alphabet Sk for s(D(G)) consists of the singleton set {o] with
rsi = {o}xr. A structured string is a skeleton over SkUY. . For a skeletal tree automaton
A aver Sk UL, we denote it by 4 = (@, {e} UL, §, F) without confusion.

Next we show two important theorems which connect a context-free grammar with a
tree automaton. By a coding of the derivation process of a context-free grammar in the

formalism of a tree automaton, we can get the following result.
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Definition Let ¢ = (N, X, P, 5) be a context-free grammar. The corresponding skeletal
tree automaton A(G) = (2, {o} U X, 8, F) is defined as follows:

Q = *ﬂ"ri
F = {8},
S{o,By,....B}) = {A€ N|A— B,--- B, isin P}.

Theorem 2.3 Let (7 be a context-free grammar. Then T{A(G)) = s(ING)). That is, the
set of skeletons accepted by A(G) is equal to the set of skeletal descriptions of derivation
trees of 5.

Proof. We prove that s £ s([4()) if and only if §(s) 3 A for any skeleton s and
A € NUE. Then it immediately follows that s € s(I){(7)) if and only if é(s) 3 5. Hence
s(D(G)) = T(A(G)).

We prove it by induction on the depth of 5. Suppose first that the depth of 5 is 0, i.e.
s =a € E. By the definition of D4(G) and A(G), a € D4(G) if and only if A = aif and
only if 8(a) = {a} 3 A. Hence a € s(D4(G)) if and only if &{a) 3 A.

Next suppose that the result holds for all skeletons with depth at most b, Let s be a
skeleton of depth £+ 1, so that s = a{uy, ..., u;) for some skelelons uy, ..., uz with depth
at most h. Assume that u; € s(Dp(G)) for 1 <1 < k. Then

a{ug,.. . w) € s(D4(G))
if and only if there is the production of the form A — By --- By in P,
by the definition of D4{G),
if and only if defe, By, ..., Be) 3 A, by the definition of A(G),
if and only if éx{o, By, ..., Bi) 2 A and B, € 8{w,),..., By € §(us),
by the induction hypothesis,
if and only if é{a{u,...,ux)) 2 A

This completes the induction and the proof of the above theorem. O

Conversely, by a coding of the recognizing process of a tree automaton in the formalism

of a context-free grammar, we can get the following result.

Definition Let A = (@, {#} UL, F) be a deterministic skeletal tree automaton. The

corresponding context-free grammar (7(A) = (N, X, P, 5) is defined as follows:

N = QU{S}r
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P = {blo,q,....q) = q--- g4
[q1s--. q € QUE and (o, q1y...,qc) is defined)

S = g1~ qu | 6l0,qr, ..., q) € F}.

Theorem 2.4 Let A = (Q,{c} UL, F) be a deterministic skeletal tree automaton.
Then s(D(G(A))) = T(A). That is, the set of skeletal descriptions of derivation trees of
G(A) ts equal to the set of skeletons accepted by A.

FProof. First we prove that (i) é(s) = ¢ if and only if s € s(D(G(A))) forge QU E.
We prove it by induction on the depth of s. Suppose first that the depth of s is 0, ie.
s = a € L. By the definition of G(A) and D4(G), &(a) = ¢ if and only if g = a if and
only if @ € Dg(G(A)). Hence 6(a) = q if and only if @ € s(D,(G(A))).

Next supposc that the result holds for all skeletons with depth at most k. Let s be a
skeleton of depth h+ 1, so that s = o(uy, ..., uk ) for some skeletons uy, ..., u, with depth
at most h. Assume that §(u;) = ¢; for 1 <7 < k. Then

dla(uy, ... uy))=q

if and only if éx(e, 8(u1),...,6(w)) = ¢

if and only if 8¢(e,qry...,q4) = ¢

if and only if there is the production of the form g—+q - g in G(A),
by the definition of G A),

if and only if ¢ = ¢;++- g in G{A) and u; € 5(Dg, (G(A))),. .., uk € s( Dy, (G(A))),
by the induction hypothesis,

il and only if o(uy,...,u} € s(D,(G(A))), by the definition of D4(G).

This completes the induction and the proof of (i).

Secondly we prove that (i) s € s(Dg(G(A))) if and only if s € a(Dy(G(A))) for some
g € F. Let s be a skeleton of the form a(u,,...,u;) for some skeletons Uy, ... g s €
3(Ds(G(A)}), then since il u; € s(Dy,(G(A))), then ¢; = 6(s;) for 1 <i < k by (i), there
is the production of the form § — &(u;) -+ 6(us) in G(A) and §i(o, S(ug), ..., 8(u)) € F
by the definition of G(A). Then §(o(uy,...,u)) € F and so é(s) € F. Hence by (i),
s € s(D,(G(A))) for some g € F.

Conversely if s € s(D,(G(A))) for some ¢ € F, then §(s) = Sploydlu), ..., 0(ux)) € F
by (i). By the definition of G({A), there is the production of the form § — Brey) -« 8(uy)
in G{A). Since u; € s{Dyu)(G(A))) for 1 <1 < k by (i), é(uy,.. i) € s(Ds(G(A)).
Hence s € s(Dg(G(A))).
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Lastly it immediately follows from (i) and (ii) that &(s) € F if and only if s €
s{D(G(A))). Hence T(A) = s(D(G(A))). a

Therefore the problem of learning a context-free grammar from structured strings can

be reduced to the problem of learning a tree automaton.

2.5 Basic Idea of Learning

Angluin [Ang82] has introduced a subclass of finite automata and the corresponding class
of languages, called zero-reversible automata and zero-reversible languages respectively,
that can beidentified in the limit from positive presentations. She has also presented an
efficient algorithm for it.

A zero-reversible automaton is a deterministic finite automaton with at most one final
state such that no two arrows entering any state are labelled with the same symbol. The
class of zero-reversible languages defined by zero-reversible automata is a proper subclass
of regular languages.

We extend this notion to skeletal tree automata, and further to contexi-free grammars.
We call such a skeletal tree antomaton a reversible skeletal tree automaton and the corre-
sponding conlext-fres grammar a reversible conlerl-free grammar, which will be formally
defined in the next section. The class of reversible context-free grammars is a proper
subclass of context-Tree granmears, but can generate all of the context-free languages.
In Section 2.7, we will extend Angluin’s efficient algorithm for identifying zero-reversible
antomata to the one for identifving reversible skeletal tree antomaton in the hmit from
positive presentations and hence for identifying reversible context-free grammars in the
limit from positive presentations of structured strings.

In this section, we give an informal example of learning process by our algorithm.
A context-free grammar ¢ = (N, X F,5) is said to be reversible if (1) A —» o and
B — win P implies 4 = B and (2) A — aBF and 4 — o3 in & implies B =
C'. The learning algorithm takes as input a finite set Sa of structured strings. First
the algorithm constructs a context-free grammar (v, that precisely generates the set Sa,
that is, s(D(Gy)) = Sa. Next the algorithm merges nonterminals and generalizes it to
get a reversible context-free grammar G such that s(D(G)) = min{s(D(G")) | Sa C
s(I)G')),and (' is a reversible context-free grammar}.

Suppose that the following set Sa of structured strings is given to the learning algo-

rithm.
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Sa = {((ab){c)), ((afab)b)(cfe))) ({ab)(c(e)))}

The algorithm constructs the following grammar G, such that s(D(Ge)) = Sa:

S—= AR
A= ahb
bB—«¢
S0 0
C—=al’h
" —ab
=Y
D — e
S=FF
EF—=ab
FaeF
F' = .

Then nonterminals 4, €', and E in (g are merged and nonterminals B, D' and F'in

Gy are merged to satisfy the condition (1).

55— AB
A—akb

B—=e

S=CD
C—adb
D= ¢ B
5= A4AF
F—eB.

Again to satisfy the condition (1), nonterminals I} and F are merged.

S—AB
A—akb

B—=r¢

SwCD
C—=aAdb
D—=eB
5= 4 0.

To satisfy the condition (2), nonterminals B and D are merged and nonterminals A

and C are merged. Finally the algorithm outputs the following reversible context-free

grammar;
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5= AH
A—ahb
A—adb
H—=«¢
I — e B

2.6 Reversible Context-Free Grammars

We introduce a subclass of skeletal tree automata, called reversible skeletal tree automata,
and the corresponding subclass of context-free grammars, called reversible context-free
grammars, and show that it is a normal form for context-free grammars (i.e., any context-
free grammar has an equivalent reversible context-free grammar) and has a good property

for learning from posilive presentations.

Definition A deterministic skeletal tree automaton A = (Q, {c} U L, 8, F) is reset-free
if and only if for no two distinct states g, and g; in @) do there exist a state g; € @,
positive integers &, 2 (1 < 1 < k), and & — 1-tuple wy,...,ue_; € ¢ U ¥ such that
Sl oty ey Uy Gy Uy ooy tigy ) = g3 = Sl g, oo 8, Gas Uiy o ooy g1 ). The skeletal
tree automaton is said to be reversible if and only if it is deterministic, has at most one

final state, and is reset-free,

The idea of the reversible skeletal tree automaton comes from the “reversible automa-
ton” and the “reversible languages” in [Ang82). Basically, the reversible skeletal tree

automaton 1s the extension of the “zero-reversible automaton” in [Ang82].

Definition A contexi-free grammar G = (N, E, P, S) is said to be invertible if and
only if A — o and B — o in P implies 4 = B.

The motivation for studying invertible grammars comes from the theory of bottom-up
parsing. Bottom up parsing consists of (1} successively finding phrases and (2) reducing
them to their parents. In a certain sense, each half of this process can be made simple
but only at the expense of the other. Invertible grammars allow reduction decisions to
be made simply. Invertible grammars have unique righthand sides of the productions so
that the reduction phase of parsing becomes a matter of table lookup. Gray and Harrison
[GHT2| proved that for any context-free language L, there is an invertible grammar G
such that L{G) = L. That 1s, the invertible grammar is a normal form for context-free

ETAIMINATS.
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Theorem 2.5 (Gray & Harrison [GHT2]) For each conlezl-free grammar G there is
an invertible contexi-free grammar G so that L(G') = L(G). Morcover, if G is e-free then

s0 is G,

Note that this result is essentially the same one as the determinization of a frontier-to-
root tree automaton, and suffers the same exponential blowup in the number of nonter-
minals in the grammer. It however preserves structural equivalence. (This needs a slight
modification of the definition for context-free grammars. Sec also [McN67].)

Definition A conlext-free grammar G = (N, E, P, §) is reset-free if and only if for any
two nonterminals B,C and o, 8 € (NUX)", 4 - aBf and A — &Cf in P implies
B=0C.

Definition A context-free grammar G is said to be reversible if and only if G is in-
vertible and reset-free. A context free language L is defined to be reversible if and only if
there exists a reversible context-free grammar G such that L = L(G).

Example 2.1 The following is a reversible context-free grammar for a subset of the syntax

for a programming language Pascal,

Statermnent — Ident 1= Expression
Staternent — while Condition do Statement
Statement — if Condition then Statemnent
Statemcent — begin Statementlist end
Statementlist — Stalernent : Statementlist
Statementlist — Staternent

Condition — Ezpression > Ezrpression
Ezxpression — Term + Frpression
Erpression — Term

Term — Factor

Term — Factor x Term

Factor — Ident

Factor — ( Expression ).

Even if we add the production “Ezrpression — Term — Ezpression” or “Term —
Factor [ Term” to the above grammar, it is still reversible. However if the production
“Factor — Number™ or “Factor — Funetion” is added, it is no longer reversible.

Definition Let A = (@, {0} UX, 8 {qs}) be a reversible skeletal tree automaton for a
skeletal set. The corresponding context-free grammar G'(A) = (N, T, P, §) is defined as
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follows.

N = @,
5 = qn
P = {logy...oq) a1
| 71y qe €EQUE and &u(a,q1,.. ., qx) is defined}.

By the definitions of A(() and G'(A), we can observe the following.

Theorem 2.8 [fG 15 a reversible conlezt-free grammar, then A{G) is @ reversible skeletal
tree aulomaton such that T{A(G)) = s(IMG)). Conversely if A is a reversible skeletal
tree automaton, then G'(A) is a reversible contezi-free grammar such that s(D(G'(A)))
= T(A).

Therefore the problem of learning reversible context-free grammars from structured
strings is reduced to the problem of learning reversible skeletal tree automata.

Next we show some important theorems about the normal form property of reversible
context-free grammars. We give two transformations of a context-free grammar into an
equivalent reversible context-free grammar. The first transformation adds a number of
copies of a nonlerminal that derives only ¢ Lo the right-hand side of each production to

make each production unique.

Theorem 2.7 For any contert-free language L, there is a reversible conlex!-free grammar

(¢ such that L(G) = L.

Proof. First we assume that L does not contain the empty string. Let G' = (N, E, P/, §")
be an e-free context-free grammar in Chomsky normal form (see [HUTY] for the definition
of Chomsky normal form) such that L(G') = L. Index the productions in P’ by the
integers 1,2,...,|P']. Let the index of A — a € P' be denoted I{A — a). Lel Rbea
new nonterminal symbol not in N’ and construct G = (N, I, P, ') as follows:

N = N U{R},
P = (Aol |A—=a€Pandi=I{4— a)}
U-[R—rt}

Clearly & is reversible and L(G) = L.
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lfe€ L,let L' = L—{c} and &' = (N, L, P, 5') be the reversible context-free grammar
constructed in the above way for L' . Then G = (NU{§},5, PU{S - §'.5 — RR}, S)
is reversible and L(G) = L. =

The trivialization occurs in the previous proof because e-productions are used to en-
code the index of the production. We prefer to allow e-production ouly if absolutely
necessary and prefer e-free reversible context-free grammars if possible because e-free
grammars are important in practical applications such as efficient parsing. Unfortunately
there are context-free languages for which there do not exist any e-free reversible context.

free grammar. An example of such a language is:
{a' [i21]U(¥ |j>1}U{e)

However if a context-lree language does not contain the empty string and any terminal
string of length one, then there is an ¢ free reversible context-free grammar which generates
the langnage. The second transformation achieves this result by means of chain rules with

new nonterminals.

Theorem 2.8 Let L be any contexrl-free language in which all strings are of length at
least two. Then there is an ¢-free reversible context-free grammar G such thet L(G) = L.

Proof. We construct the reversible context-free grammar G = (N,L,P,S) in the
following steps.

First by the proof of Theorem 2.5 in [GH72], there is an invertible context-free gram-
mar G" = (N', X, P', §) such that L(G") = L and each production in P’ is of the form

1. A— BC with A,B,C € N' = {§')} or
2. A—awithAe N - {S}andae X or
3.5 — Awith A e N'— {5').

Since all strings in L are of length at least two, P’ has no production of the form 4 — a
for A€ N' — {5} and a € T such that &' - A ¢ P'.

Next for all productions in P’, we make them reset-free while preserving invertibility.
P is defined as follows:

1. For each A € N' — {§'}, let

{ﬂ—bn],ﬁl-—vag,...,d—l&n}
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be the set of all productions in P’ whose left-hand side is A. P contains the set of

productions
{.‘1. —+ i1, -4- —+ X.-‘h'rx.-ﬂ.] * a?1x.-l-| —* Xﬂ?'l res \Xﬂ..‘_| - ﬂ'ﬂ}:
where X4, Xa,, ..., X4,., are new distinct nonterminal symbols.

2. Let
I = {S=BY:|A— BCe€ P and §— Ac F},

where § and each Yo is new distinet nonterminal symbols. Let us denote {S — 5; |

I <i < n} for the set I. P contains the set of productions
{§ = 51,5 = Xg,, Xg, = 2, Xy = Xy, Xy — B},
where Xs,, Xs,,...,Xs,_, are new distinct nonterminal symbols.
3. P contains the set of productions {Yo — C | C € N' = {5'}}.

Let G = (N,L, P, S), where N = (N' - {S'NU{X 4, , Xuyy.. . Xy, |AEN = {5'}}U
{Yo|Ce N - {5} U[Xs, Xs, .o X, JU{S}
Now we begin the proof that G is reversible, ¢-free, and L(G) = L(G").

Claim 1 G is reversible.

Proof. Since G' is invertible, each production of the form A — BC, A — a, X4, — BC
or Xy, — a for A/B,C € N'" and a € ¥ in P has the unique righthand side by the
construction 1 of P, and each production of the form S — BYy or X5, — BYg in P also
has the unique righthand side by the construction 2 of P. By the constructions 1, 2 and
3 of P, each production of the form A — B for A, B € N in P has the unique righthand
side. Hence (7 is invertible.

Foreach A € N, by the constructions 1, 2 and 3 of P, there are at most two productions
whose left-hand side is 4 in P. Furthermore they have different forms, that is, A — BC
or A— a and A — B, where A, B,C € N and ¢ € £. Hence & is reset-free. Therefore

(7 is reversible.

Claim 2 L(G") C L{G).

Proof. By the construction 1 of P, for each A € N'={5'}, A — a in G’ implies A = a
in (7. By the construction 2 and 3 of P, §' = A = BC in G’ implies § = BYy = BC
in G. Hence for each w € £*, §' = w in G’ implies § = w in G.
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Claim 3 L(G") 2 L(G).

Proof. First we prove by induction on the length of a derivation in ' that for each
AEN - {5} and each v € B°, A= wor X4, = win & implies A = win G Suppose
first that A = wor X4, = win G. Then 4 — wor X4, — wis in P. By the construction
Lof P, A— wisin P'. Hence 4 = win G'.

Next suppose that the result holds for all derivations of the length at most m. Let
A= BC = wor Xy, = BC = w (B,C € N'} be a derivation of length m + 1 in G.
This implies that 4 — BC or Xy — BC isin P and BC = w is a derivation of length
m in G. By the construction 1 of P and the induction hypothesis, 4 — BC is in P’ and
BCZ2winG' Hence A > win . Let A= X = wor Xo, > X2>w(XeEN)bea
derivation of length m + 1 in G. By the construction 1 of P, this implies that X = X,
A= X4, or Xa, = Xy, isin P, and X, S w is a derivation of length m in G. By the
induction hypothesis, A = w in G". This completes the induction.

Suppose that § = w in G. By the constructions 2 and 3, this implies that § =
BYe = BCin G, 8'= A= BCin (7, and BC = win G for some B,C € N’ — {87}.
By the above result, BC = w in G'. Hence &' = w in G’. This completes the proof of
Claim 3.

By Claim 2 and 3, L(G") = L(G). To finish the proof, note that 7 is efree. o

We analyze how much the transformation used in Theorem 2.8 blows up the size of
the grammar. Let G' = (N', X, P', §') be any invertible context-free grammar such that
each production in /' has the form given in Theorem 2.8 and ¢ = (N, E, P, S) be the
resulting equivalent reversible context-free grammar by the transformation. Then |N| <
2|N'| 4+ 2|P'| -3 and |P| < 4|P’| + |N*| - 3. Thus this transformation polynomially blows
up the size of the grammar. However the transformation of any context-free grammar
into an equivalent one that is invertible suffers the exponential blowup in the number of
nonterminals in the grammer.

Note that while the standard transformation to make a context-free grammar invertible
preserves structural equivalence (see [McN67| for example), the transformations used in
Theorem 2.7, 2.8 to achieve reset-freeness in general does not, and cannot always, preserve
structural equivalence, although it preserves language equivalence. This is because some
sets of skeletons accepted by skeletal tree automata are not accepted by any reversible
skeletal tree automaton, which is the eorrect analog of the theory in the case of finite

automnata, where not all regular languages are reversible.

Definition A context-free grammar ' = (N, £, P, §) is said to be ertended reversible
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if and only if for P'= P—{§ —w a|a € L}, G' = (N, E, P, 5] is reversible.

By the above theorem, reversible contexi-free grammars can be easily extended so
that for any context-free language not containing ¢, we can find an extended reversible

context-free grammar which is ¢-free and generates the language.

Theorem 2.9 Let L be any context-free language not containing €. Then there is an

e-free exlended reversible context-free grammar G such that L(G) = L.

2.7 Learning Algorithms from Positive Presentations

In this section we first describe and analyze the algorithim RTA to learn reversible skeletal
tree automata from positive presentations. Next we apply this algorithm to learning
context-free grammars from positive presentations of structured strings. Essentially the
algorithm RTA is an extension of Angluin’s learning algorithm [Ang82] for zero-reversible
automata. Without loss of generality, we restrict our consideration to only e-free context-
{ree grammars.

First we give several definitions about some basic operations of set and tree automata,
which we will need to describe and analyze learning algorithms in the sequel.

A partition of some set S is a set of pairwise disjoint nonempty subsets of 5 whose
union is 5. If 7 is a partition of S, then for any element s € S there is a unique element of
= containing s, which we denote H{s, ) and call the block of = containing s. A partition
7 is said to refine another partition =, or 7 i8 finer than =', if and only if every block of
m' is a union of blocks of 7. If 7 is a partition of a set § and 5’ is a subset of S, then the
restriction of = to S’ is the partition =’ = {BN S |Ber, BN S5 # 0} of 5. The trivial
partition of a set S is the class of all singleton sets {s} such that s € 5.

Definition Let 4 = (Q,V,& F) be any Lree automaton. If = is any partition of @, we
define the tree automaton A/m = (@', V., &, F') induced by 7 as follows: Q' is the set of
blocks of 7 (i.e. Q' = 7). F' is the set of all blocks of » that contain an element of F
(ie. F'={Bex|BnF #0}). &Iisa mapping from Vi x (v U V)* to 27 and for
By.....,B,c Q@ UV, and [ ¢V, the block B is in &L f, 8, ..., Be) whenever there exist
ge Band g; ¢ Bcwor g, =H €V, forl <1< ksuchthat g€ &e(f,qu.--..q)

Lemma 2.10 Lei A = (Q,V,8, F) be a tree aulomaton and x be a partition of Q. Then
T(A/x) 2 T(A), T(A/x) = T(A) if 7 is the trivial partition of @, and T(A[7) C T(A/x')

if # refines =,
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Definition Let Sa be a finite set of trees of VT, We define the base tree automaton for
Sa, denoted Bs(Sa) = (Q,V,§ F), as follows :

Q = Sub(Sa) -V,
F = 8Sa,

Se(forn, ... ug) = flug, ... ug)
whenever uy, ..., ux € QU Vg and fluy,...,u) € Q.

Note that Bs(Sa) is a tree automaton that accepts precisely the set Sa.

Definition A positive sample of a tree automaton A is a finite subset of T'(4). A
positive sample Sa of a reversible skeletal tree automaton A is a characteristic sample
for A if and only if for any reversible skeletal tree automaton A', Sa C T(A’) implies
T(A)C T(A").

2.7.1 The Learning Algorithm RTA for Tree Automata

The input to RTA is a finite nonempty set Sa of skeletons. The output is a particular
reversible skeletal tree automaton A = RTA(Sa). The learning algorithm RTA begins
with the base tree automaton for Sa and generalizes it by merging states. RTA finds
a reversible skeletal tree automaton whose characteristic sample is equal to the input
sample,

On input Sa, RTA first constructs A = Bs(Sa), the base tree automaton for Sa. It
then constructs the finest partition m; of the setl Q of states of A with the property that
A/ is reversible, and outputs A/ .

To construct my, RTA begins with the trivial parlition of Q and repeatedly merges
any two distinct blocks By and B; if any of the following conditions is satisfied,

1. By and B; both contain final states of A,

2. There exist two states ¢ € By and ¢’ € B; of the forms ¢ = o(uy,...,u;) and
¢ = ofu),...,u}) such that for 1 < j < k, u; and u; both are in the same
block or the same terminal symbols.

3. There exist two states q,¢" of the forms ¢ = o{u,, ..., ug) and ¢ = o(uy, ..., ul)
in the same block and an integer | (1 < { < k) such that w; € By and «} € B,
and for 1 <7 < kand j # 1, u; and ), both are in the same block or the same

terminal symbaols.
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When there no longer remains any such pair of blocks, the resulting partition is my.

To implement this merging process, RTA keeps track of the further merges immediately
implied by each merge performed. The variable LIST contains a list of pairs of states
whose corresponding blocks are to be merged. RTA initially selects some final state ¢ of
A and places on LIST all pairs (g, ¢') such that ¢' is a final state of A other than g. This
ensures that all blocks containing a final state of A will eventually be merged.

After these initializations, RTA proceeds as follows. While the list LIST is nonempty,
RTA removes the first pair of states (g1,q2). If g and g2 are already in the same block
of the current partition, RTA goes on to the next pair of states in LIST. Otherwise, the
blocks containing ¢, and ¢, call them I} and I3;, are merged to form a new block Ba.
This action entails that LIST be updated as follows. For any two states ¢,¢' € @ of the
forms g = o(uy,...,u) and ¢' = efu),...,u}), if g and ¢ are not in the same block and
u; and u} both are in the same block or the same terminal symbols for 1 < j < k, then the
pair (g,q") is added to LIST. Also for any ¢ € By, ¢ € B; of the forms ¢ = o(my, ..., u)
and ¢’ = a(u},.. ., u}) and an integer | (1 <[ <k}, if u; and uj are states of A and not in
the same block and u; and ) both are in the same block or the same terminal symbols
for 1 <j < kand j # [, then the pair (u;, u;) is added to LIST. After this updating, RTA
goes on to the next pair of states from LIST.

When LIST becomes empty, the current partition is =y RTA outputs A/x; and halts.

The learning algorithim RTA is illustrated in Figure 2.2. This completes the description

of the algorithm RTA, and we next analyze its correctness.

2.7.2 Correctness of RTA

In this section, we show that RTA correctly finds a reversible skeletal tree automaton
whose characteristic sample 1s equal to the input sample.
For any t € V7, we denole the guotient of T and t by

y {u|ueVTand ufpt e T} ifte VT =V,
it =
=1, if t e V.

Lemma 2.11 Let A be a deterministic tree automaton. If 8(1,) = 6(ta), then Uppay(ty) =
Urgay(ta).

Proof. It is straightforward from the replacement lemma. O

Let T be a set of trees. We define the partition mr of V7 associated with T by
Bit,,n7) = B(ts, n7) if and only if Up(t;) = Ur(tz).
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ALGORITHM RTA

Input: A nonempty positive sample Sa.
Output: A reversible skeletal tree automaton A.
Procedure: '
%% Initialization
1 Let A=(Q,V,6,F) be Hs(Sa);
2 Let mg be the trivial partition of Q;
3 Choose some g € F;
4 Let LIST contain all pairs (¢, ¢') such that ¢ € F' - {q);

5 Let i = 0;
%% Main Routine
%% Merging
6 While LIST+# @ do
7 Begin
8 Remove first element (q, g2} from LIST:
9 Let By = B(q,m) and B, = B(gy,7.);
10 If B, # B, then
11 Hegin
12 Let m4; be 7 with B and B, merged;
13 p-UPDATE(mi;) and s-UPDATE(m;,, B, );
14 Increase § by 1:
15 End
16 End

%% Termination
17 Let f =i and output the tree automaton A/,
%% Sub-routine

I8 where

19 p-UPDATE(#x;,) is :

20 For all pairs of states o(uy,...,u:) and ofu}, .. Lt ) in @ with
Bluj,7m4,) = B{u;,r,-“] or u; = u; ceXforl<j<k
and Blo(uy, ..., uz), mi4) # Blo(ul,... JuL), Tigr)

21 do

22 Add the pair (o(u, ..., u), o(ul,...,u})) to LIST;

23 s-UPDATE(m; 41, By, By) is :

24 For all pairs of states a(uy,...,u,) € B, and o(u),...,u,) € B, with

up,up € @ and B(uy, miy) # B(u}, 74,) for some [ (1<1<k)

and B{u;, m4;) = Buj, m4q) or uj = u;€Bforl1 <j<kandj#l
25 do
26 Add the pair (ug, uf) to LIST.

Figure 2.2: The learning algorithm RTA for Reversible Tree Automata
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Lemma 2.12 Let T be a set of trees. Forti,u; € VT(1 <i < k) and f € Vi, Blti,77) =
BE'I-I.‘, ) impHes B{f{!;, P ik:l,ﬂ']":l = B(f{lh, . ,ﬂ*], Tr).

let A = (Q,V,6 F) and A" = (', V, &, F') be tree automata. A is isomorphic to
A’ if and ouly if there exists a bijection ¢ of Q onto @' such that ¢(F) = F' and
for every qu,....q € @U Vg and f € Vi, wlbe(fign,..-sqe)) = &(f.q,-..q:) where
g=plg)ifgcQandg =qifgelpfollisk

Let A be a deterministic tree automaton which accepts a set of trees 7. A is minimum
if and only if A has the minimum number of states among all deterministic tree automata
which accept T. The minimum deterministic tree automaton is unique up to isomorphism
|Bra6s|.

Definition Let A = (Q,V,6,F) and A" = (', V, &, [} be tree automala. A’ is a tree
subautomaton of A if and only if Q' and F' are subsets of @@ and F respectively and for
every g},....q, € QU Vpand [ € Vi, 8i(f g0, qi) © Selfoghse oo gi)-

Clearly T(A") C T(A).

Definition Let A = (Q,V,§, F) be a trec automaton. If Q" is a subset of @, then
the tree subautomaton of A induced by Q" is the tree automaton (Q",V,é", F"), where
F" is the intersection of Q" and I, and ¢" € &/(f.q'\...,q}) if and only if ¢" € Q",
@ gr € QUVy, and ¢" € &(fiqls .- q0)

A state ¢ of A is called useful if and only if there exist a tree ¢ and some address

1 € Doy such that ¢ € §(t/x) and &{t) N F # 0. States that are not useful are called
useless. A tree automaton that contains no useless states is called stripped.

Definition The stripped tree subautomaton of A is the tree subautomaton of A induced

by the useful states of A.
The “stripped tree subautomaton” in fact contains no useless states, that 1s, stripped.

Definition Let 7' be a set of trees accepted by some tree automaton. We define the
canonical tree automaton for T, denoted C(T) = (Q,V, 4, F), as follows :

Q = {Ur(u)|u€ Sub(T)— Va},
F o= {Ur(n)|teT),

6, Ur(uw), .. Ur(us)) = Ur(f(wry.-oyw))
if uy,... ue and f(ug,...,ux) are in Sub(T).
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Since I' is accepted by some tree automaton, the set {Uy(u) | u € Sub(T) — Vol is
finite by Lemma 2.11. Since Ur(1u,) = Up(uy) implies Ur(t#u1) = Ur(t#us) for all trees
t in V§", this state transition function is well defined and C(T) is deterministic. C(T)
15 stripped, that is, contains no useless states. C(T') is the minimum deterministic tree
automaton.

A tree automaton A is called canonical if and only if A is isomorphic to the canonical

tree automaton for T(A).

Lemma 2.18 Let Sa be a positive sample of some tree automaton A. Let w be the par-
tition wr4) restricted lo the set Sub{Sa) — £, Then Bs(Sa)/x is isomorphic to a tree
subautomaton of the canonical tree automaton C(T(A)). Furthermore, T(Bs(Sa)/w) is

contained in T'(A).

Proof. The result holds trivially if Sa = 0, so assume that Sa # B. Let Bs(Sa)/m =
(@, V.8, F) and C(T(A)) = (Q", V, &, F'). The partition x is defined by B(t,, 7) = Bty 7)
if and only if Urq)(fi) = Uray(ta), for all 1,1, € Sub{Sa) - E. Hence h(B(t,x)) =
Ura)(t) is a well-defined and injective map from Q to Q'. I B, is a final state of Bs(Sa)/m,
then By = B(t,n) for some t in Sa. and since T'(A) contains Sa, Uri4)(t) is a final state
of C{T(A}). Hence h maps F to F".

Bs(Sa)/x is deterministic because for flty, .. te) and f(uy,...,ue) in Sub(Sa),
B(t;, ) = Blug, =) if t;,u; € Sub{Sa) — ¥ and #; = w; il t;,u; € & (1 <i<k)im-
ply B(f(tr, ... te),7) = B(f(us,...,u), ) by Lemma 2.12. For 1, € QU Y and
fevV,

h(B(f(ty,....t), 7)),

where B(t;, 7} = q;ifg €Qand t;, =g, if g € £ (1 <i < k),
= Uray(f(ts,. .., t))
= §lf, Uriay(ta), . . -, Urgay(te))-

Thus k is an isomorphism between Hs(Sa)/x and a tree subautomaton of C(T(A)).
O

h'l:ﬁk(f:a‘?h :q.':”

Lemma 2.14 If A is a reversible skeletal tree automaton and A' is any tree subaulomaton

of A, then A" is a reversible skeletal tree automaton.

Lemma 2.15 Let A = (Q,5k U E,6 {q;}) be a reversible skeletal tree automaton. For
t € (SkUR){ and uy,u; € (SKUZ), if A accepts both t#u; and t#uy, then 8uy) = §(ug).
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Proof. We prove it by induction on the depth of the node labelled § in t. Sup-
pose first that ¢ = §. Since A has only one final statc gy, d(uy) = é(i#u) = g5 =
§(t#u;) = 6(uy). Next suppose that the result holds for all t € (Sk U Z){ in which the
depth of the node labelled § is at most h. Let ¢ be an element of (Sk U Y38 in which
the depth of the node labelled $ is h + 1, so that ¢ = t'#e(sy,... 521, 8, 8,...,81)
for some 8,,...,801 € (SkUX)T, i € N and ¢’ € (SkUZ){ in which the depth of
the node labelled § is h. If A accepts both {#u; = t'#o(sy,...,8 1,81, 8., Sket)
and f#us = U'H#o(81. ..., 51,2, 80y ny Sk )y then Sol(sy, ..., 5oy, u, 80, ..., 8k1)) =
S(er(s1,. ..y 8i 12 Uzy 8y 2oy k1)) by the induction hypothesis, So

ék(ﬂ] ‘5{5]}1 s ,6{55_1:], 5{1.!1}1_ '5(5':'7' *r 5{3,,4 l”
= 6(0,6(s1)s. s 6502, Bua), 6(53), .. -, 6(58-1)).

Since A is reset-free, §(u;) = &{us), which completes the induction and the proof of

Lemma 2.15. O

Lemma 2.16 Suppose A 15 a reversible skeletal tree automaton. Then the stripped tree

subautomaton A" of A 5 canonical.

Preof. By Lemma 2.14, A’ is a reversible skeletal tree automaton, and accepts 1' =
T(A), If T'= @, then A’ is the tree automaton with the empty set of states and therefore
canonical. So suppose that T £ @ Let O(T) = (Q, 5k U X, 8, {g}) and A" = (Q', Sk U
Y, 8, {q5}). We define h(q') = Ur(u) il 8(u) = ¢’ for ¢' € . By Lemma 2.11, his a
well-defined and surjective map from @' to ¢, Let qi and q; be states of A’, and suppose
that Up(u;) = Ur(uz) for u; and uy such that &'(u;) = ¢ and &{uz) = ¢5. Since A’ is
stripped, this implies that there exists a tree t € (Sk U E)T such that t#u; and {#u, are

in T. Thus, by Lemma 2.15, ¢{ = g;. Hence h is injective. Since §'(u) = ¢ foranyu € T,
h maps {Q}} o {";'f} For ‘?ia--'a"ﬁ: € Q"U E:

WYty dl)) = A (o))
where §(u;) =g/ for 1 <i < k,
= Uplofuy, ..., ux))
= Sloy Up(uy), ..., Ur(ue)).
Thus h is an isomorphism between C(T') and A’. Hence A’ is canonical. o

Lemma 2.17 Suppose that A is a reversible skeletal tree antomaton. Then the canonical

tree automaton C(T(A)) is reversible.
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Proof. By the above lemma and Lemma 2.14, the siripped tree subautomaton A’ of
A is canonical, reversible, and accepts T(A). Thus, since C'(T(A)) is isomorphic to A’
C(T(A)) is reversible. O

Lemma 2.18 Let Sa be any nonempty positive sample of skeletons, and 7y be the final
partition found by RTA on input Sa. Then r; is the finest partition such that Bs(Sa)/x;

15 reversible.

Froof. Let A4 = (Q,{e} UL, F) be Bs{Sa). If the pair (q,,q;) is ever placed on
LIST, then ¢, and g, must be in the same block of the final partition, that is, B(g,, e
B{qa, ;). Therefore, the initialization guarantees that all the final states of A are in the
satne block of 7y, so A/xy has exactly one final state. For any B,,..., B, € U Y, all the
elements of éi{o, By, ..., By) are contained in one block of 7y, Thus A7, is deterministic.
Also, for any block B of y, any pair of states ¢, q; € B of the forms g, = a{uy, ..., u;) and
g2 = o(uy,...,u;) and any integer [ (1 <1 < k), if Blu,,7;) = Bluj,mr)oru; = uj €L
for 1 < j <k and j # [, then both u; and u} are in the same block or the same terminal
symbols. Thus Afx is resct-free. Hence A/ 7, is reversible.

Next we show that if = is any partition of @ such that A/ is reversible, then Ay
refines #. We prove by induction that =; refines 7 for i = 0,1.... f. Clearly mq, the
trivial partition of @, refines x. Suppose that Tos M1y .-, W all refines = and myy, is
obtained from ; by merging the blocks B(g,, #;) and B(qz, ;) in the course of processing
entry (qu, g2) from LIST. Since #; refines =, B(q, =) is a subset of B(gi,7) and B(g, ;)
is a subset of B(g, ). So in order to show that 7,4, refines m, it is sufficient to show that
Hig,w) = Blgy, 7).

If (g1, q2) was first placed on LIST during the initialization stage, then g, and ¢; are
both final states, and since A/x is reversible, it has only one final state, and so B(q,, T =
B(gy,m). Otherwise, (¢1,¢2) was first placed on LIST in consequence of some previous
merge, say the merge to produce r, from 7,,_,, where 0 < m < i. Then either g and gy
are of the forms a(u,;,...,u) and afu),..., u}) respectively and Bluj, mm) = Blu,7y,)
or u; = uy € ¥ for 1 £ j < k, or there exist two states ¢| in the block B, and 7y in the
block B; of the forms o(uy,...,u_1. ¢, ul, .. cupoy) and o(uy, .. u)_ g, ga g, .. ) y)
respectively for some [ (1 <[ < k) such that B{u;,m,) = B(u},7m) or u; = uj € ¥ for
1 =7 <k—1, where B, and B, are the blocks of m,,_, merged in forming %.,. Since m,,
refines = by the induction hiypothesis and A/r is reversible, B(q,,x) = B(gy, 7). Thus in

either case 7, refines m. Hence by finite induction we conclude that w g refines r. o
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Theorem 2.19 Let Sa be a nonempty positive sample of skeletons, and Ay be the skeletal
tree automaton output by the algorithm RTA on input Sa. Then for any reversible skeletal
tree automaton A, Sa © T{A) implies T(Ay) C T(A).

Proof. The preceding lemma shows that A is a reversible skeletal tree antomaton such
that 7(As) 2 Sa. Tet A be any reversible skeletal tree antomnaton such that T(A) 2 Sa,
and 7 be the restriction of the partition mr(4) to the set Sub{Sa) — E. Lemma 2.13 shows
that Bs(Sa)/= is isomorphic to a tree subautomaton of C(T(A)) and T(Bs(Sa)/x) is
contained in T(A4). Lemuna 2.17 shows that C(T(A}) is reversible, and therefore by
Lemma 2.14, Bs(Sa)/x is reversible. Let ; be the final partition found by RTA. By the
above lemma, 7, refines 7, so T'(Hs{Sa)/r¢) = T(Ay) is contained in T(Bs(Sa)/=) by
Lemma 2.10. Hence, T(A;) is contained in T(A). o

2.7.3 Time Complexity of RTA

Theorem 2.20 The algorithm RTA may he implemented to run in time polynomial in
the sum of the sizes of the inpul skeletons, where the size of a skeleton {or tree) t is the

number of nodes in 1, 1.e. |Domy|.

Proof. Let Sa be the set of input skeletons, n be the sum of the sizes of the skeletons
in Sa, and d be the maximum rank of the symbol ¢ in §k. The base tree automaton
A = Bs(5a) may be constructed in time O(n) and contains at most n states. Similarly,
the time to output the final tree automaton is O(n). The partitions x; of the states of A
may be queried and updated using the simple MERGE and FIND operations described
by Aho, Hoperoft and Ullman [AHUS3]. Processing each pair of states from LIST entails
two FIND operations to determine the blocks containing the two states. If the blocks
are distinct, which can happen at most n — 1 times, they are merged with a MERGE
operation, and p-UPDATE and s UPDATE procedures process 2(d + 1)n(n — 1) and at
most 2dn{n — 1) FIND operations respectively. Further at most n — 1 new pairs may be
placed on LIST. Thus a total of at most 2n(n — 1)+ (n—1) pairs must be placed on LIST.
Thus at most 2({2d + 1)n(n — 1) + 2n + 1)(n — 1) FIND operations and n — 1 MERGE
operations are required. The operation MERGE takes O{n) time and the operation FIND
takes constant time, so RTA requires a total time of O(n?). 0

2.7.4 Identification in the Limit of Reversible Tree Automata

Next we show that the algorithm RTA may be used at the finite stages of an infinite
learning process to identify the reversible skeletal tree automata in the limit from positive
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presentations. The idca is simply to run RTA on the sample at the nth stage and output

the result as the nth guess,

Definition For an infinite sequence s, s,, 54,. .. of skeletons and an infinite sequence

Ay, Ag, Ag, ... of skeletal tree antomata, if
A; = RTA{{s1,83,...,8]})
holds, then we write RTA, ({51, 52,83,...}) = {41, Az, A5, ..}

Definition  An infinite sequence s,,s;,s3,... of skeletons is defined to be a positive
presentation of a skeletal tree antomaton A if and only if the set {51, 52,353,...} is precisely
T(A). An iulinite sequence of skeletal tree antomata Ay, Ay, Ay, ... is said to converge
to a skeletal tree automaton A if and only if there exists an integer N such that for all

t = N, A; is isomorphic to A.

We will show that the output of RTA_, on a positive presentation converges to the
correct guess after a finite number of stages. The following result is necessary for the
proof of correct identification in the limit of the reversible skeletal tree automata from
positive presentation. We extend § ta (V U Q)" by letting 8(q) = ¢ for ¢ € @, where @
is considered as a set of terminal symbols. In this definition. if q = &{u) for ¢ € Q and
u € VT, then §(t#q) = §(t#u) for t € VT,

Theorem 2.21 For any reversible skeletal tree automulon A = (@, {e}UX, 8, {gs]}), there

effectively exists a characteristic sample.

Proof. Clearly, if T{A) = @, then CS = @ is a characteristic sample for A. Suppose
T{A} # 0. For each state ¢ € @, let ufq) be a tree of the minimum size in Sub(T(A))
such that 8(u(q)) = ¢, and v(g) be a tree of the minimum size in Se(T(A)) such that
b{v(q)#q) = q;. For each a € I, let u(a) = a. Let CS consist of all skeletons of the form
v{g)#ulqg) such that ¢ € Q and all skeletons of the form v(g)#ea(u(q), ..., u(g)) such
that ¢;,...,q € QU T and ¢ = Seloygry. .. qe). Tt is clear that CS C T(A). We show
that €5 is a characteristic sample for A,

Let A’ be any reversible skeletal tree automaton such that T(A"Y D C5. We show
that Urgan(t) = Urgan(u(q)) for all skeletons t € Sub(T(A)), where g = 5(t). We prove
it by induction on the depth of . Suppose first that the depth of 150, ie. t =g € E.
Since ufa) = a, it holds for the depth 0. Next suppose that this holds for all skele-
tons of depth at most &, for some A > 0. Let ¢ be a skeleton of depth A + 1 from
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Sub{T(A)), so that t = a(s,, ..., s;) for some skeletons sy,. .., 5; € Sub(T(A)) with depth
al most k. By the induction hypothesis, Urian(s:) = Upan(u(g)), where ¢; = 6(s;) for
1 < i < k. Thus, Uran(t) = Urayle(siy. o)) = Urgan(ofu(g), sz, ... 8)) = - =
Urian(o(u(gs), .. u(ge—1), 51)) = Uranlofulgr), ... u(@)). ¢ = 8lovgr,... @) =
§(t), then v(g')#u(q’) and v(¢')#o(ulgi), . ., u(qx)) are both elements of C'S. So v(¢')#u(q’)
e T(A") and v(¢")#o(ul(q), ..., ulg)) € T(A'). By Lemma 2.15, Urganl(o(u{g), ..., u(qe)))
= Urpan(u(q')). Hence Urgaq(t) = Urpany(ulq')), which completes the induction.

Thus for every t € T(A), Urpan(t) = Uran(ulgy)). Since v(gs) = 8, u(gy) € CS and
so u(gs) € T(A’). This implies that § € Upian(ulgs)) = Urean(t). Thus t =S4t € T(A').
Hence T{A) is contained in T(A’). Therefore CS is a characteristic sample for A. o

Then we conclude the following result.

Theorem 2.22 Let A be a reversible skeletal tree automaton, s;,8g,5s,... be a posi-
live presentation of A, and A,, Az, As,... be the output of RTA,, on this input. Then
Ar, Az, Az, ... converges to the canonical skeletal tree automalon A’ for T{A).

Proof. By Theorem 2.21, there exists a characteristic sample for A. Let N be suf-
ficiently large that the set {s;,s3,...,5x) contains a characteristic sample for A. For
any reversible skeletal tree automaton A’, {sy, s2,...,8,} € T(A’) implies T'(A;) C T(A"),
by the definition of HTA., and Thearem 2.19. Thus for 1 = N, T'(A;) = T(A), by the
definition of a characteristic sample. Moreover it is easily checked that the skeletal tree
automaton output by RTA is stripped, and thercforc canonical, by Lemma 2.16. Hence
A; is isomorphic ta C(T(A)) for all i = N, s0 Ay, Az, As, ... converges to C{T(A)). m

We may modify [{TA by a simple updating scheme to have good incremental behavior
so that A,., may be obtained from A; and s;1,.

2.7.5 The Learning Algorithm RCFG for Context-Free Gram-
mars

In this section, we describe and analyze the algorithm RCFG using the algorithm RTA to
learn reversible context-free grammars from positive presentations of structured strings.

A positive structural sample of a context-free grammar G is a finite subset Sa of
s{D(G)). A positive structural sample Sa of a reversible context-free grammar Gisa
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ALGORITHM RCFG

Input: A nonempty positive structural sample Sa.
Cutput: A reversible context-free grammar G.
Procedure:

I Run RTA on the sample Sa;

2 Let G = G'(RTA(Sa)) and output the grammar G.

Figure 2.3: The learning algorithm RCFG for Reversible Grammars

characteristic structural sample for G if and only if for any reversible context-free grammar
G', Sa C s(D(G")) implies s(D{G)) C s(D(G')).

The input to RCFG is a finite nonempty set of skeletons Sa. The output is a particular
reversible context-free grammar G = RCFG(Sa) whose characteristic structural sample
is equal to Sa. The learning algorithm RCFG is illustrated in Figure 2.3.

The following theorems of the correctness, time complexity and correct structural
identification in the limit of the algorithm RCFG are siraightforwardly derived by using
Theorem 2.6 from the corresponding results for the algorithm RTA described in Sections
2.7.2, 2.7.3 and 2.7.4.

Theorem 2.23 Let Sa be a nonemply positive siructural sample of skeletons, and G,
be the output of the context-free grammar by the algorithm RCFG on input Sa. Then
Gy is reversible and for any reversible contezt-free grammar G, Sa C s(D(G)) implies
s(D(Gy)) € s(D(G)).

Theorem 2.24 The algorithm RCFG may be implemented to run in time polynomial in
the sum of the sizes of the input skeletons.

Define an operator RCFC,, from infinite sequences §,, $5, 35, .. . of skeletons to infinite

sequences (7y, (73, (+1,.. . of context-free grammars hy
i = RCFG({sy,82,...,5]}) for all ¢ > 1.

An infinite sequence s, 53,53, ... of skeletons is defined to be a positive structural pre-
sentation of a context-free grammar G if and only if the set {s;, s;,53,...} is precisely
s{D{G)). An infinite sequence Gy, Gy, Gy, . .. of context-free grammars is said to converge
to a context-free grammar G il and only if there exists an integer N such that for all

t = N, Gy is isomorphic Lo G.
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ALcorlTHM ERCFG

Input: A nonempty positive structural sample Sa.

Output: An extended reversible context-free grammar G.

Procedure:

1 Let Sa' = Sa— {#{a) |a € E};

2 Let Uni = San {o(a) | a € X);

3 Run RCFG on the sample Sa’ and let G' = (N, E, P,§) be RCFG(Sa');
4 Let PP={5 — alola) € Uni});

5Lel G =(N,E,PUF, 5) and output the grammar G

Figure 2.4: The learning algorithm ERCFG for Extended Reversible Grammars

Theorem 2.25 For any reversible contert-free grammar G, there effectively erists a char-

acteristic structural sample.
Now we have the following.

Theorem 2.26 Let G be a reversible contexi-free grammar, s;, sz, 83,... be a positive
structural presentalion of G, and Gy,G3,Ga, ... be the output of HUF G, on this in-
pul. Then Gy, Gq,Ga, ... converges to a reversible context-free grammar G' such that

s(D(G")) = s(D(G)).

We modily the algorithin RCFG to learn extended reversible context-free grammars
from positive struciural samples. We can easily verify that given a positive structural
presentation of an extended reversible context-free grammar (7, the algorithm ERCFG,
illustrated in Figure 2.4, converges to an extended reversible context-fres grammar which
is structurally equivalent Lo G and runs in time polynomial in the sum of the sizes of
the input skeletons. This implies that the whole class of context-free languages can be
learned efficiently from posilive presentations of structured strings of extended reversible
context-free grammars.

Note thatl this result does not imply that all context-free grammars can be identified
in the limit from posilive structural presentations, because even if a source of structural
examples is available for some context-free grammar, that context-frec grammar may
not have any structurally equivalent reversible context-frec grammar, and the proposed
algorithms RCFG, ERCFG may fail. We illustrate this point by the following example
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in which the positive structural presentation is drawn from a non-reversible context-free

grammar and the algorithm RCFG fails.

Example 2.2 Consider the following context-free grammar G:

S—=ab
S—=adb
A—ab

Then L(G) = {ab,aabb}, s(ING)) = {o(a,b), a(a,o(a,b),b)}, G is not reversible, and
there is no reversible context-free grammar structurally equivalent to 6.

Given the positive structural sample {o(a,b), a(a,o(a,b),b)} of @, the algorithm
RCFG outputs the following reversible context-free grammar G";

S—ab
S—uafSh

However L(G") # L(G) (s(D(G')) # s{D(G))) and hence the algorithm RCFG fails to
identify G.

2.8 Example Runs

In the process of learning context-free grammars from structured strings, the problem is
to reconstruct the nonterminal labels because the set of derivation trees of the unknown
context-free grammar is given with all nonterminal labels erased.

The skeletal descriptions of derivation trees of a conlext-free grammar can be equiv-
alently represented by means of the parenthesis grammmar. For example, the structural
description in Figure 1.1 can be represented as the fullowing sentence of the parenthesis
grammar (see [McN67] for the definition of parenthesis grammar):

{ { the { big dog ) } ( chases { a { young girl ) ) } )

In the following, we demonstrate three examples to show the learning process of the
algorithm RCFG. Three kinds of grammars will be learned, the first is a context-free
grammar for a simple natural language, the second is a context-free grammar for a subset
of the syntax for a programming language Pascal, and the third is an inherently ambiguous

context-free grammar.
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2.8.1 Simple Natural Language

Now suppose that the learning algorithm RCFG is going to learn the following unknown

context-free grammar Gy for a simple natural language:

Sentence — Noun_phrase Verb phrase
Noun_phrase — Determiner Noun_phrase2
Noun_phrase2 — Noun

Noun_phrase2 — Adjective Noun_phrase2
Verb phrase — Verb Noun_phrase
Determiner — the

Determiner —+ a

Noun — girl

Neoun — cat

Noun — dog

Adjective — young

Verh — likes

Verb — chases.

First suppose that the learning algorithim RCFG is given the sample:

( { {the) { {girl) ) ) ( (likes) { (a)} { {cat) }}})
{ { (the} { (girl) ) ) ( (likes} ( {a) { (dog) } } ) )

RCFG first constructs the base context-free grammar for them. However it is not

reversible. So RCIG merges distinet nonterminals repeatedly and outputs the following

reversible context-free grammar:

S— NT'1 NT2
NT1 — NT3 NT4
NT4 — NTS
NT2 — NT6 N1'T
NTT7T — NT8 NT9
NT9 — NT10
NT3 — the

NT5 — girl

NT6 — likes

NT& — a

NTT0 — cat
NT10 — dog.

RCFG has learned that “cat” and “dog” belong to the same syntactic category. How-
ever RCFG has not learned that “girl” belongs to the same syntactic category (noun) as
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“cat” and “dog”, and “a” and “the” belong to the same syntactlic category (determiner).
Suppose that in the next stage the following examples are added to the sample:

( {{a) ((dog) } ) ( (chascs) ( (the) ( (girl) ) )} )
({(a) { {dog) ) ) { (chases) ( (a) ( (cat) })) )

Then RCFG outputs the reversible context-frec grammar:

5= NT1 NT?2
NT1 — NT3I NT4
NT4 - NT5
NT2—= NTea NT1
NT1 — NTT NTR
NT8 — NT9
NT3 — the

NT5 — girl

NT6 — likes

NT6 — chases
NTT —a

NT9 — cat

NT9 = dug_

RCFG has learned that “likes” and “chases” belong to the same syntactic category
(verb) and “the girl", “a dog” and “a cat” are identified as the same phrase (noun_phrase).
However RCFG has not learned vet that “a” and “the” belong to the same syntactic
category. Suppose that in the further stage the following examples are added to the

sample:

({{a) ((dog) ) ) ( (chases) ( (a) { (girl} } )} )
{ { (the} ( (dog) ) } ( (chases) { (a) { (young) { (girl) ) })))

RCFG outputs the reversible context-free grammar:

S —= NT1 NT2
NT1 - NT3 NT4
NT4 = NT5

NT4 - NT6 NT4
NT2 - NTT NT1
NT3 — the
NT3I—a

NT5 = girl

NTH — cat

NT5 — dog

NT6 — young
NTT — likes

NTT — chases.
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This grammar is isomorphic to the unknown grammar Gy.

2.8.2 Programming Language

Suppose that the learning algorithm RCFG is going to learn the following unknown
context-free grammar Gy for a subset of the syntax for a programming language Pas-

cal:

Staterment — v = FExpression

Stutermnent — while Condition do Statement
Statement — if Condition then Staternent
Staterment — begin Statementlist end
Statementlist — Statement ; Statementlist
Statemenilist — Statement

ondition — Erpression > FEzrpression
Ezpression — Term + FExpression
FErpression — Term

Term —+ Factor

Term — Factor = Term

Factor — v

Factor — ( Expression ).

First suppose that RCFG is given the sample:

(v o= ( ()} + ({(e}))))
(v = (({o} x ()} )))
(v o= () + (({v) x (D))
Co = (00 CHD) + ()2 ) x (vl )

RCFG outputs the following reversible context-free grammar which generates the set
of all assignment statements whose right-hand sides are arithmetic expressions consisting
of a variable “v”, the operations of addition “+” and multiplication *x” and the pair of

parentheses “(" and “)":

5 —=v :=NT1

NT1 = NT2

NT1 = NT2 + NT1
NT2 — NT3

NT2 = NT3 x NT?2
NT3I = v

NT3 = ( NT1).
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Next suppose that RCFG is given four more examples:

( while { {{{))) > (({v} x {(t}})) ) do{v = ({{v})) + ({{v)})}))
CIECUN) > () x () ) then (v = (((v)) + (((v}))) ))
(begin ( {v == ({{v)) + (W) {{v = {{{v) x (()})}) ) end)
( begin { (v := ({{v) x ((v))))) ) end )

RCFG outputs the following reversible context-free grammar isomorphic to the un-
known grammar (7y;:

S—=v =NT1

5 — while T4 do §
S —if NT4 then 5

S5 — begin NT'5 end
NT1 = NT2

NT1 = N1I2 + NTI
NT2 = NT3

NT2 = NT3 = NT?2
NTY — v

NT3—=( NT1)

NT4 = NT1 > NTI
NTE = §

NTsS = 5; NT5,

2.8.3 Inherently Ambiguous Language

Suppose that the learniug algorithm RCFG is going to learn the following unknown
context-free grammar Gy for the language {a™"c"d® | m > I,n > 1} U {a™bremd™ |
m = 1,n 2 1} which is known to be an inherently ambiguous context-free language

([HU79)):

S—= AR
S—=aCd
A—ab
A—=adlb
B=ed
B—=c¢Rd
C—= D
D—sald
D= E
E—=be
E—=bLEec
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First suppose that RCFG is given the sample:

({ab) (cd))
{{a{ab)b) {c(cd)d))
{{a b) (c(cd)d})

RCFG outputs the following reversible context-free grammar which generates the lan-
gnage {a™bed® [m = 1,n =1}

S — NT1 NT2
NTl—ab

NT1 —a NTL b
NT2=ed

NT2 — e NT2 d.

Next suppose that RCFG is given three more examples:

fa{{(bc)})d)
{a ({a{{b{bc)c))d))d)
(a({{b{bec)e)))d)
RCFG outputs the following reversible context-free grammar isomorphic to the un-

known grammar (p:

5= NT1 NT2
S—=aNT3d
NT1—ab

NT1 —=a NT1 b
NT? — e d
NT2 e NT2d
NT3 — NT4
NT4 = NT5
NTA = a NT4d
NTs = he
NT5 = b NT5 c.
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Chapter 3

Learning Context-Free Grammars
from Structural Queries

In this chapter, we consider the problem of learning the whole class of context-free gram-
mars [rom struclured strings using queries. We present an efficient algorithm for it using
two types of queries: structural membership queries and structural equivalence queries.
The learning protocol is based on what is called “minimally adequate teacher”. We show
that a grammar learned by the algorithm is not only equivalent to the unknown grammar
but alse structurally equivalent to it. Furthermore, the algorithm runs in time polyno-
mial both in the number of states of the minimum tree automaton for the set of skeletal
descriptions of derivation trees of the unknown grammar and in the maximum size of
counter-examples returned for structural equivalence queries.

We also demonstrate that this algorithm can be applied to learning a class of logic

programs, called linear monadic logic programs.

3.1 Learning from Queries and Summary of Recent
Results

Angluin [Ang88| has considered a learning situation in which a learning algorithm has
access to a fixed set of oracles that answer specific kinds of queries about the unknown
concept. Several efficient learning algorithms using such queries have been investigated.
Especially finding interesting domains which can be learned from equivalence queries and
membership queries in polynomial time is one of main interests in dlgorithmie Learning

Theory.
In this framework of learning from queries, Angluin [AngB87b] has shown that the reg-

ular languages can be learned by an algorithm using membership and equivalence queries

55
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| | class of languages learning protocol i

Angluin [Ang87b| regular MAT
(1987)
Bermann & Roaos one-counter MAT
[BRST] (1987)
Takada [Tak8&] even linear MAT
(1988)
Ishizaka [Ish90] simple deterministic MAT
(1959 |
Angluin [Ang8Ta) contexi-free MAT +
(1987) nonterminal membership query
Chapter 3 context-free MAT +
structured string
Chapter 4 a subclass of MAT + &
context-sensilive
Nishino [Nis90] a subclass of MAT + o
(1990) context-sensitive
{777 N | context-lree | MAT ]

Figure 3.1: Summary of recent results for polynomial-time language learning.

in time polynomial both in the number of states of the minimum deterministic finite
automaton for the unknown language and in the maximum length of counter-examples
returned for equivalence queries. It is still an open question whether there is a polynomial-
time algorithm using membership and equivalence queries for learning the full class of
context-free languages (up to the equivalence of context-free grammars). Recently An-
gluin and Kharitonov [AK91] have investigated cryptographic limitations on the power
of membership queries to help with concept learning. They have shown that assuming
the intractability of quadratic residues modulo a composite, inverting RSA encryption, or
factoring Blum integers, there is no polynomial-time algorithm for learning context-free
grammars from membership and equivalence queries. That is, the problem of learning
the whole class of context-free grammars from membership and equivalence queries is
computationally as hard as those cryptographic problems, for which there is currently no

known polynomial-time algorithm.

Some recent results for polynomial-time learning of formal languages using queries are

summarized in Figure 3.1.
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3.2 The Learning Algorithm using Queries

3.2.1 Basic Idea of Learning

Angluin [Ang8Th] has presented an algorithm that learns deterministic finite automata
using membership and equivalence queries and runs in time polynomial both in the num-
her of states of the minimum deterministic finite automaton equivalent to the unknown
automaton and in the maxirmum length of counter-examples returned for equivalence
queries. We will extend it to the one for learning skeletal tree automata and apply it
to learning the whole class of context-free grammars from structural membership and
structural equivalence querics in polynomial time.

The important data structure used in Angluin’s algorithn is called an ebservation
table. An observation table is a two-dimensional matrix with rows and columns Jabelled
by strings. The entry is 0 or 1, and the intended interpretation is that the entry for row
s and columnu ¢ is cqual to 1 if and only if the string s - € is accepted by the unknown
automaton. Two specific observation tables are defined, which are called elosed and
consislent. When we have a closed, consistent observation table, we can construet the
minimum deterministic finite automaton consistent with the data contained in the table in
time polynomial in the size of the table. The algorithm is going to find a closed, consistent
ohservation table by asking membership queries to fill the entries. In the next section,
we will extend the ohservation table to the one for skeletal tree automata. The extended
observation table has rows labelled by skeletons and columns labelled by elements of
(SkU I);. The intended interpretation is that the entry for row s and column e is equal
to 1 if and only if the skeleton s#e¢ is a structured string of the unknown grammar G.

The idea of the observation table is also related to the state characterization matrix
by Gold [GolT78].

In this chapter, unless ctherwise stated, we will mean a “deterministic tree automaton”

by simply saying “tree automaton”.

3.2.2 Observation Tables

We extend the observation table. An observation table is the data structure used in the
learning algorithm to organize the information about a finite collection of skeletons with
the indication whether they are structured strings of the unknown grammar or not.

Let B be a finite sct of skeletons with depth at least 1 and C be a finite subset of
(SkUE). B is called subtree-closed if s € B implies that all subtrees with depth at
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E
T €
s s 1 (= T(e#s))

X(8)

Figure 3.2: Observation table (S, E, T').

least 1 of s are elements of B. C is called $-prefir-closed with respect to B if e € C — {§}
implies that there exists an ¢ in C such that ¢ = &'#a(s,,..., 51,8 3,,.. .y 851 ) for

S0TNE $1,...,8,1 € HUX and 1 € N.

Definition Let S be a nonempty finite subtree-closed set of skeletons with depth at least
L, X(S) = {o(w,...,w) | 0 € Ski, uy,...,u. € SUYL and o(u,.. ug) € Slor k =1},
E be a nonempty finite subset of (Sk U E)f which is $-prefix-closed with respect to S,
and T be a function mapping (E#(S U X(5))) to {0,1}. The interpretation of this is
that T(s) is 1 if and only if s is a structured string of the unknown grammar G. An
observation table, denoted (S, E,T), is a two-dimensional matrix with rows labelled by
elements of (§ U X(5)), columns labelled by elements of E, and the entry for row s and
column e equal to T(e#s).

An cbservation table can be visualized as in Figure 3.2, The learning algorithm uses
the observation table to build a skeletal tree automaton. Rows labelled by elements of
S are the candidates for states of the skeletal tree automaton being constructed, and
columns labelled by elements of £ are used to distinguish these states. Rows labelled by
elements of X(S5) are used to construct the transition function.

If 5 is an element of (SUX(S)), row(s) denotes the function f from E to {0,1} defined

by fle) = T'(e#ts).

Definition  An observation table (S, E, T} is called closed if every row(z) of z € X(5) is
identical to some row(s) of s € 5. An observation table is called consistent if whenever s,
and s; are elements of S such that row(s,) = row(s;), row(e(uy, ..., u_1, 51, u,... , Uk—y))
= row(o(uy,. .., Ui, 52, U5, ...,ue_q)) forall o € Sk, uy,...,up, € SUT and 1 <i < k.
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Definition Let (5, E,T) be a closed, consistent observation table. The corresponding
skelelul tree automaton A(S, E,T) over SkU Y constructed from (S, E, T') is defined with
the state set @, the set of final slates F, and the state transition function & as follows.

Q = frou(s) | s € 5,
F = {row(s)|s e S and T(s) =1},

S, row(sy),. .., row(s)) = row(o(s,...,5)) for s, ...,s0 € SUL,

where the function row is augmented to be row(a) = a for a € L.

We can see that this is a well-defined (deterministic) skeletal tree automaton. Let
sy and s, be elements of § such that row(s;) = row(s;). Then since E contains §,
T(s;) = T($4s,) and T(sy) = T($#s,) are defined and cqual to each other. Hence F is
well-defined. Since the observation table (5, E,T) is consistent, for uy, ..., uz 1 € SUEL,
row(a(ty, ... i1, 81, Uiy Up1)) = Tow(o(ug, .o tioy, S2, U4, k) (0S4 S k),
and since it is closed, this value is equal to row(s) for some s in 5. Hence § is well-defined.

The lemmas and theorems that follow are analogous to Angluin’s resulis.

Lemma 3.1 Suppose that (S, E,T) is a closed, consistent obscrvation table. For the
transition function & of the skeletal tree antomaton A(S, E,T) and for each s in (SUX(5)),

we have §(s) = row(s).
Proof. 1t is clear from the definition of A(S, E,T). i

Lemma 3.2 Suppose thal (5, E,T) is a closed, consistent observation table. Then the
skeletal tree automalon A(S, E,T) is consistent with the finite function T. That is, for
every s in (S U X(S)) and e in E, §(e#s) is in F if and only if T{e#s) = 1.

Proof. We prove it by induction on the depth of the node labelled § in €. When ¢ is
$ and s is any element of (§ U X(5)), by Lemma 3.1, §(e#s) = &(s) = row(s). If 5 is in
S, then by the definition of F, rew(s) is in F if and only if T(s) = 1. If s is in X(5),
then since (S, E,T) is closed, row(s) = row(s’) for some &' in §, and row(s') is in F' if
and only if T(s") = 1, which is true if and only if T'(s) = 1.

Next suppose that the result holds for all ¢ € E in which the depth of the node labelled
$ is at most h. Let e be an element of E where the depth of the node labelled $ is b + 1.
Since E is §-prefix-closed with respect to §, ¢ = ¢'#o(s1,...,8i-1,%,5,..., 8k1) for some
S1,...,8%k_1 € SUT, i € Nand ¢ € E in which the depth of the node labelled § is h. For
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any element s of (5 U X(S5)}), since (S, E,T) is closed, there is an element &' in § such
that &(s) = 8(s'). Therefore

bledts) = ble'#olsy, ..., 81,8, 8;,...,50_1)#s)
= ﬁ{Ei#ﬂ'{S[, ...,3;_1,$1.‘I1‘,.. e Bk_1 }#S‘}‘
by the replacement lemma

= &lFolsryen 81,8 8000 861)).

By the induction hypothesis, §(e'#o(s1,... 81,5, 5,...,8,_1)) is in F if and only if
T(eHa(ss, ..., 8i1,8' 0, 541)) = T(e#ts!) = 1. Since row(s) = row(s”), T(eds’) =
T{c#ts). Hence &{e#s) is in F if and only if Tle#s) = 1. O

Lemma 3.3 Suppose that (S,E,T) is a closed, consistent observation table, and the
skeletal tree automaton A(S,E,T) = (Q,{e}UX,§,F) has n states. If A' = (', {a} U
X, 8, F') is any skeletal tree automaton consistent with T' that has n or fewer states, then
A" is isomorphic to A(S,E,T).

Proof. We prove it by exhibiting an isomorphisim  from A(S, E,T) to A’. First define
for any s € §U X(5) p(row(s)) = §(s). Since A’ is consistent with T, ¢ is one-to-one
mapping from @ to @". Hence 4’ has n states and  is a bijection. We must verify that it

preserves the transition function, and that it carries F to F'. For each s,,...,5, € SUX,

?fék(a,rmﬂ[.ﬂll coyrow(se))) = plrow(o(ss,... k)
= {?[:I!T{Si, vy Sij}‘

Also for g; = p(row(s;)) if s; € Sand ¢, = s, if s, € T (1 €4 < k),

EL{J,QI.....11]'J:] = ﬁ’k{i}',ﬁ’[sl}, ik .lﬁr{Sj,-”
= &lo(s1,...,8)).
Lastly since A’ is consistent with T, for s € S, row(s) is in F if and only if T(s) = 1

if and only if &(s) is in F if and only il p(row(s)) is in F’. Thus @ maps ¥ to F'. Hence
we conclude that the mapping i is an isomorphism from A(S, E,T) to 4", 0

3.2.3 The Learning Algorithm CFGQ

Now we describe and analyze the algorithm CFGQ to learn context-free grammars

from structured strings using queries.
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ALcoriTHM CFGQ
Input: Oracles that answer s-m queries and s-e-queries about Gy.
Cutput: A conlext-free grammar G.
Procedure:
1 S:=d;
2 E:={§};
3Let G= ({5}, ¥, ¢,5);
(i.e., G is the conlext-free grammar with the empty set of productions);
4 Make an s-e-query proposing (7,
5 While the reply is no
6 add the counter-example t and all its subtrees with depth at least 1 to 5;
7 extend T to E#(5 U X(5)) using s-m-queries;
While (5, E, T'} is not closed or nol cousistent;
If (S, E,T) is not consistent then
10 find s, and s in S, e € E, uy,...,up; € SUL, and 1 € N such that
row(s ) is equal lo row(s;) and

Tleda(ty, ... i1, 81ty ... tpeg)) # Tledtoluy, oo oy, Sa,ti, -0 ) )

B
9

1L add efoluy, ... uimy, $uy . uen ) to B

12 extend T to E#(5 U X(5)) using s-m-queries;

13 If (5§, E,T) is not closed then

14 find s; € X(5) such that row(s,) is different from row(s) for all s € &;
15 add s, to 5;

16 extend 7' to E#(5 U X(5)) using s-m-queries;

17 end:

18 Once (5, E,T) is closed and consistent, let G:=G{A(S, E,T));
14 Make an s-e-query proposing (¥,

20 end;

21 Halt and output &;

where
the operation of “extend 1" to E#(S5 U X(S5)) using s-m-queries” means the operation

to extend 71" by asking s-m-queries for missing elements.

Figure 3.3: The learning algorithm CFGQ for Context-Free Grammars
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Suppose Gy is the unknown grammar to be learned (up to structural equivalence).
We assume that the terminal alphabet I and the skeletal aiphabet Sk for Gy are known.

A structural membership query (s-m-query, for short) proposes a skeleton s and asks
whether it is in s{D(Gy)). The answer is either yes or no. A structural equivalence query
(s-e-query, for short) proposes a grammar G’ and asks whether s(D(Gy)) = s(D(G")).
The answer is yes or no. If it is no, then it provides a counter-erample, that is, a skeleton
s in the symmetric difference of s(D(Gyp)) and s(D(G")).

Note that the problem of structural equivalence of context-free grammars is solvable,
whereas the problem of equivalence of context-free grammars is unsolvable. Further the
problem of testing two context-free grammars for structural equivalence may be solved
by a computation polynomial in the sum of their sizes. So there is a computable imple-
mentation of a minimally adequate teacher for these two types of queries.

The learning algorithin CFGQ is illustrated in Figure 3.3.

Note that in the skeletal tree automaton, the transition function must specify the state
assigned to cach d-tuple of elements from @ U Vp, that is, at least n? different d-tuples.
In practice, the transition function is likely to be “sparse” in the sense that it assigns
the “dead state” to most of these combinations. However the learning algorithm in its
present form does not take advantage of sparsity. Perhaps it is possible to construct a

more efficient version of the learning algorithm CFGQ to take advantage of the sparseness.

3.3 An Example Run

Suppose that the unknown context-free grammar is Gy = (N, X, P, S ) which generates
the set of all valid arithmetic expressions involving a variable “v”, the operations of

multiplication “x™ and addition “+7, and the parentheses “[* and “]" :

N = {S5E F},
E o= {v.x,+[]H
= {S—=E

E — F,
E—F+E,
F —uv,
F—=uvxF,
F — [E]}.
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X —— = —3

.—-"""-,
[ -
|

= -—q—q/

Figure 3.4: The structural descﬁpﬁcm for “v x [U + U]“.

FFirst the learning algorithm CFGQ proposes the context-free grammar G = ({S},L, ¢, 5)
and we assume that the counter-example shown in Figure 3.4 is returned for the s-e-query.
This is the skeletal description of the derivation tree for the sentence “v x [v+v|" assigned
by Gy.

CFGQ adds all subtrees with depth at least 1 of it to § and divides them into two
parts; one for those s € 5 with row(s) = 0 and the other for those s with row(s') = 1,
by asking s-m-queries.

Next CFGQ tries to make a closed, consistent observation table by asking s-m-queries.
In this process, CFGQ finds the observation table to be not consistent once, and hence
it adds the element o($) to E. Then CFGQ eventually makes the closed, consistent
observation table shown in Figure 3.5 and outputs the first conjecture of the context-free
grammar Gy shown in Figure 3.6.

The derivation tree for the sentence “v x [v + v]” by G is shown in Figure 3.7.

However G, is not structurally equivalent to Gy, and a counter-example is returned
for the s-e query. In this case, we assume that the counter-example a(o(o(a(o(a(v))))))
is selected; it is in s(D(Gy)) but not in s{IGy)). Then CFGQ eventually makes an-
other closed, consistent observation table shown in Figure 3.8, and outputs the second
conjecture whose reduced version (3 is shown in Figure 3.9 by eliminating the meaning-
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X(s)
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T 3 a(¥)
i a(v) 0 0
a(a(v)) 0 1
o(o(v), +,0(o(0))) 0 T
o([,o(a(v), +,a(a(v))),]) 0 0 |
o(v, %, a([,a(a(v), +,a(a(v))), ])) 0 0
olo(v, x,a([.o(a(v), +,a(a(v)}),]))) 0 1
o(o{o(v, x,a([,a(a(v), +,a(a(v))}, 1)) 1 0 f

Figure 3.5: Observation table.

Gy = (N,E P,S)
Moo= {{10},{01), {00},
P o= {{00) — v,

(01} — {00},

{01) = (00) + {01),
(00) — [{01)],

{00) — v x {00},
(10) = (01),

Sy — (01},

{00) — (10,

{(00) — v x {ﬂ'l:l-,“ -}

Figure 3.6: The first conjecture G,.



3.4. CORRECTNESS AND TIME COMPLEXITY OF CFGQ 65

5y
I
(00)
— | H\'““{an}

v (00)

Figure 3.7: The derivation tree for “v x [v + v]" by G.

less nonterminals and all productions including them. The grammar G5 is structurally
equivalent to Gy,

In this example run, the value a{a($, +,a(a(v)))) is taken as the third column of
E. However this is one possible choice of a distinguishing environment. The simpler
environment o{e($)) would also work.

The derivation tree for the sentence “v x [v + v]|” by 7y is shown in Figure 3.10.

3.4 Correctness and Time Complexity of CFGQ

Now we will see that CFGQ eventually terminates and makes a correct conjecture, that is,
outputs a grammar structurally equivalent to Gy. It is clear that if CFGQ ever terminates,
its output is a grammar structurally equivalent to Gy, Let Ay be the minimum skeletal

tree automaton for s(D{Gy)) and n be the number of states in it.

Lemma 3.4 The conjectures G(A(S, E,T)) that the algorithm CFGQ makes are consts-
tent with T. That is, for every s in (S UX(S)) and ¢ in E, efts € s(D(G(A(S, E, T))))
if and only if T(e#s) = 1. (See Section 2.4 for the definition of ((A) for a deterministic

skeletal tree automaton A.)
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T § | a(8) | olo(8,+,0(a(v))))

olv) 0 0 1
alo(v)) 0 1 0

7(o(o), +,o(o(v))) HE 0 ,,
o([.o(o(v),+ 7 (2))),]) o | o ]

o(v,x,0(l,o(a(v), +.ale@)).]) | 0 | 0 i |
a(o(v, x,o(,0(o(v), +,ala)),))) | 0 | 1 0
olo(o(v, x,o(l,a(a(v), +.ale)) ) | 1 | 0 0

a(a(a(v))) 1 0 0 g
o(a{a(a(v)))) 0 | o 0
o(a(a(a(a(v))))) o | 0 0
o(o(a(a(#(v))))) 0 0

Figurc 3.8: Observation table,

Gz = {.E"Hrg,E,Pj,Szj
Ny = {{100), {010}, (001)},
Py = {(001) - v,

(010) — {001),

{010) — (001) + (010},
(001} — [(010)],

(001} — v x (001},

Sy — (010} }

Figure 3.9: The second conjecture Gs.
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Slu
(ﬂi']}
{001)
// | M\-—‘\{ﬁal}
4 b

[ {010} ]
(01) 4 (010)

(001)

i

v

Figure 3.10: The derivation tree for “v x [v + v]” by G5,

Froof. Firstly we show that 5 is always subtree-closed and E is always 3-prefix-closed
with respect to §. In CFGQ, there are three operations which extend 5 or £. When t and
all its subtrees with depth at least 1 are added to 5, S5 obviously remains subtree-closed.
If {S,E,T) is not consistent, then for some e € £, uy,...,ug1 € SUE and 1 € N,
efta{uy, ..., ui_y, 5, ... ue_y)) is added to E. In this case, E remains $-prefix-closed
with respect to §. If (S, E, T') is not clased, then for some uy, ..., ux € SUE, o{uy, ..., u)
is added to 5. In this case, § remains subtree-closed.

Whenever CFGQ makes a conjecture, the observation table (5, E,T) is found to be
closed and consistent. Hence by Lemma 3.2 and Theorem 2.4, G(A(S, E, T')) is consistent
with T. U

Lemma 3.5 The algorithm CFGQ lerminales.

Proof. Firstly we show that whenever an observation table (S, E, T} is not consistent
or not closed, the numhber of distinet valnes row(s) for s € § must increase. If (S, E,T')
is not consistent, then since some two previously equal row values arc no longer equal
after F is angmented, the number of distinct values row(s) increases by at least one. If
(S, E,T) is not closed and some element ¢ in X(S) is added to S, then since row(t) is
different from rew(s) for all s in 5 before S is augmented, the number of distinct values

row(s) increases by at least one.
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Next we will show that whenever a counter-example ¢ and all its subtrees with depth
at least 1 are added to S because G(A(S, E,T)) is incorrect, the skeletal tree automaton
A(S', E', T") for the next conjecture G(A(S', F', T')) must have at least one more state
than A(S, E,T). Since A(S', E',T") is consistent with T and inequivalent to A(S, E,T)
(since they disagree on t by Theorem 2.4), by Lemma 3.3, A(S', E',T,) has at least one
more state than A(S, £E,T).

Since Ay is always consistent with T, by Lemma 3.3, the number of distinet values
row(s) cannot be more than n. Thus CFGQ always eventually finds a closed, consistent
observation table and makes a conjecture. Furthermore a counter-example is added to S at
most n times. Ience the algorithin CFGQ terminates after making at most n conjectures

and by Lemma 3.4, outputs a correct conjecture. 0

Next we will analyze the time complexity of the algorithm CFGQ. That depends partly
on the size of the counter-examples returned for structural equivalence queries, where the
size of a counter-example ¢ is the number of nodes in ¢, i.e. |Dom,|. We will analyze
the running time of the the algorithm CFGQ as a function of the number n of states in
the minimum skeletal tree automaton for s(D(Gy)) and the maximum size m of counter-
examples returned for structural equivalence queries during the running of CFGQ. We
will show that its running time is bounded by a polynomial in m and n. Let k be the
cardinality of the terminal alphabet ¥, [ be the cardinality of the skeletal alphabet Sk
(that is the number of distinct ranks of the symbol &) and d be the maximum rank of the
symbol o in Sk.

Whenever (5, E,T) is found to be not closed, one clement is added to S. Whenever
(5,E,T) is found to bhe not consistent, one element is added to E. For each counter-
example of size al most m returned for a structural equivalence query, at most m subtrees
are added to S. Since the observation table is found to be not consistent at most n — 1
times, the total number of elements in F cannot exceed n. Since the observation table is
found to be not closed at most n — 1 times, and since there can be at most n counter-
examples, the total number of elements in S cannot exceed 1 + mn. Thus, the maximum
cardinality of E#(S U X(5)) is at most

(n+mn)+ln+mn+k)¥n = O(min®).

Now we consider Lhe operations performed by CIFGQ. Checking the observation table
whether it is closed and consistent or not can be done in time polynomial in the size of

the observation table, and must be done at most n times. Adding an element to § or E
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requires at most O(m“n?) structural membership queries to extend T for missing elements.
When the observation table is closed and consistent, A(S, E,T) and G(A(S, E,T)) may
be constructed in time polynomial in the size of the observation table, and this must be
done at most n times. A counter-example requires the addition of at most m subtrees to
S, and this can also happen at most n times. Therefore, the total running time of CFGQ

can be honunded by a polynomial function of m and n. Thus we have the following results.

Theorem 3.6 Using structural equivalence and structural membership queries for an un-
known context-free grammar Gy, the learning algorithm CFGQ eventually terminates
and outputs a grammar structurally equivalent to Gy. Moreover, the total running time
of CFGQ is bounded by a polynomial in m and n, where n is the the number of states
of the minimum skeletal tree automaton for s(D(Gy)) and m is the mazimum size of

counter-examples relurned for structural equivalence quertes,

A parenthesis grammar is a context-free grammar G = (N, I, P,S) such that the
productions in P are restricted to the form A — (a), where ( and } are special symbols
not in & and e contains neither { nor }.

Since the structural information can be obtained from strings of a parenthesis gram-
mar, we can apply the result to the learning problem of parenthesis languages.

Corollary 3.7 There is an algorithm such thal for any parenthesis grammar G it learns
a parenthesis grammar equivalent to G by using equivalence and membership queries and
it runs in time polynomial both in the number of stules of the minimum skeletal tree

automaton for s(D(@F)) and in the mazimum length of counler-examples.

3.5 Application to Learning Logic Programs

In this section, we argue that the algorithm CFGQ can be applied to learning a class of
logic programs, called linear monadic logic programs, from membership and equivalence
queries in a polynomial computation tirne.

The study of learning logic programs from examples was initially and mostly done by
E.Shapire and his work is known as Model Inference System [Sha82, Sha81]. He devises
a program that identifies first order sentences (Horn clauses) from examples of their
logical consequences. The target of the inference is an Herbrand medel. Thus Shapiro’s
algorithm (especially the diagnosis algorithm) deeply depends on the theory of predicate
logic and logic programming. In the theory of logic programming, the least Herbrand
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model NM(LF) of a logic program LFP is taken as the mathematical semantics, called
model-theoretic semantics, for it. This semantics provides the denotation of a predicate

symbaol p in a logic program LP :
Dip) = {(txs....te) | p(t1, ... . tx) € NM(LP)}.

D(p) is the denotation of p as determined by model-theoretic semantics. Thus model-
theoretic semantics gives a characterization of the set of terms compnted by a logic pro-
gram.

On the other hand, algebraic semantics which connects between the theory of tree
languages and the semantics of programming languages is now well known and recently
introduced to logic programming in [MP83]. It studies the use of tree languages in the
semantics of logic programming. In algebraic semantics, the set of lerms computed by
a logic program LP can be viewed as a tree language. For example, the denotation of
a monadic predicate p, D(p) = {t | p(t) € NM({LP)}, is viewed as a tree language.
From the result in [MP83], a set of trees is rational if and only il it is computed by a
linear monadic logic program, where a rafional set of trees is a set of trees which can be
recognized by some tree aulomaton and a linear monadic logic program is a class of logic
programs defined by syntactic resirictions such that predicate symbols are monadic, the
height of terms involved is less than or equal to 1 and no variable in a term has more than
one occurrence. Therefore, the denotation of p can be written as D(p) = {t | t is accepted
by the tree antomaton about p in LP}. Based on such an algebraic semantics, we can
establish a new learning schema of logic programs so that the problem of learning logic
programs is reduced to the problem of learning tree automata. Then by employing the
learning algorithm CFGQ for tree automata, we can get an efficient algorithm for learning
the class of linear monadic logic programs from membership and equivalence queries. Our
learning algorithm also gives a partial solution to the problem of the “Theoretical Terms”

in Model Inference Systermn. See [Sakdib] for more details.



Chapter 4

Learning Elementary Formal
Systems from Queries

In this chapter, we introduce a new class of representations for formal languages in the
framnework of Smullyan’s elementary formal systems [Smu61] for the problem of learning
formal languages. The new class of representations is a natural extension of contexi-free
grammars, and the languages defined by these representations lie belween context-free
languages and context sensitive langnages and contain some important classes of formal
languages such as Angluin's pattern langnages [AngB0a). We demonstratle a polynomial-
time algorithm for learning these representations using some reasonable gueries. This
implies that there exists a larger class of formal languages than the class of context-free
languages that is efficiently learnable by using some reasonable queries. Our algorithm

may be viewed as a natural and powerful extension of Angluin’s algorithm [Ang87a).

4.1 Learning a Subclass of Context-Sensitive Lan-
guages

Recently there have been two approaches to the problem of learning context-free lan-
gnages from membership and equivalence queries: one is to show that some subclass of
context-free languages can be learned from membership and equivalence queries in poly-
nomial time, and the other is to show that the full class of context-free languages can
be learned from membership and equivalence queries plus some additional information
(such as nonterminal membership queries [Ang87a), or information on the grammatical
slructure in Chapter 3) in polynormial time.

There now seem to be two directions to investigate, The first is to study the problem

of an cfficient learning method for the full class of contexi-free languages simply from

7l
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membership and equivalence queries. The second is to study the problem of an efficient
learning method for a larger class of formal languages than context-free languages from
membership and equivalence queries plus some additional information. In this chapter, we
take the second direction and study the problem of learning a subclass of context-sensitive
languages from membership and equivalence queries plus some additional information. In
the course of this study, we claim the imporlance of representations of what is learned
and introduce a new class of representations for formal languages in the framework of
Smullyan’s elementary formal systems. Smullyan’s elementary formal system has recently

got much attention [ASY89, Shi90] as a unifying framework for formal language learning.

4.2 Smullyan’s Elementary Formal Systems

We explain the notion of Smullyan’s elementary formal systems [Smu61] and define their
languages. Let E be an alphabet of terminal symbols and let the elements in it be denoted
by a,b,c,.... Let V be a countable set of symbols and I be an alphabet, where £, V and D
are mutually disjoint. Elements in V' are called variables and denoted by =, y, 2, 24, 24, . . .,
and elements in D) are called predicates and denoted by p,r,py, p2y..., 71,720 .., each of

which is assigned a unigue positive integer called its degree.

Definition  An elementary formal system (EFS, for short) over an alphabet T is a
quadruple £ = (), X, M, p), where pis a predicale in D and M is a finite set of expressions

called (well-formed) formulas defined below:

1. Atermtof Eisastring in (EUV)*, and by V() we denote the set of variables that

occur in the term ¢ and by #{z;,...,z,) a term that exactly contains the variables
T1,..+1%q. (The variables are not necessarily distinct.)
2. An atemic formula of E is an expression of the form r(t;,ts,... t,), where r is a

predicate in I} with degree m and ¢,,t5,... ¢, are terms of E. If t;,t,,..., ¢, are

terminal strings in L*, then r(t,,15,...,1,) is said io be ground.
3. A (well-formed) formula of E is an expression of the form
R« B&R& - -&R, (n>0)

where R, Ry, Ry, ..., R, are atomic formulas of E, and By, Rs, ..., R, are called the

premises of the formula and R is called the conclusion of the formula.
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We call farmulas in M axioms of E.

Note that the definition of EFS allows a formula with an empty premise, that is, a
farmula of the form B —. In the following, we assume that all predicates are monadic,
that is, that the degrees of predicates are all one, because predicates with degree one are

sufficient for our purposes.

Let # be any homomorphism (with respect to concatenation) from terms to terms. We
denole the image of a term ¢ by t8. If a homomorphism # maps any terminal symbol a in
¥ to itsell, that is, if af = a for all a € X, then 8 is called a substitution. For a formula

F= P{” * pl(tl}& o '&Fn(iﬂ}'- we define F'l = p{ﬂﬂ} A Pl“lﬂj&'” &pn{tnﬂ)'

Definition We say that a formula F' = p(t) « py(t))& - - - &p,_1(ts_1) is provable from
E if F satisfies one of the following conditions:

1. Flisin M.
2. F = F'f for some formula F' provable [rom F and some substitution #.

3. There exists an atomic formula p(t, ) such that two formulas p(¢) « p;(£;)& - - - &p,(L,.)

and p,(t.) + are provable from E.

We say that a formula F is provable from E in n sleps il F is provable from £ by applying
any of the above three rules n times. We say that an atomie formula p(t) is provable from
E if the formula of the form p(t) « is provable from F. The language defined by an EFS
E = (D,5,M,p), denoted L(E), is the set {w | w is in £* and p{w) is provable from E}.
Two EFSs E and E' are said to be equivalent if and only if L(E) = L(E").

Theorem 4.1 (Arikawa [AriT0]) The languages generated by phrase-siructure gram-

mars (fype 0 grammars) are defined by elementary formal systems and vice versa.

4.3 Extended Simple Formal Systems

In this section, we introduce three restricted forms of EFSs, state their relations to other

classes of formal languages and show some of their closure and nonclosure properties.

4.3.1 Restrictions of EFS

We first define a class of restricted EFSs that preciscly define context-free languages.
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Definition An EFS E = (D, X, M, p) is called a contert-free form if
L. Each axiom of E is of the form
r(t) & r(z )& - - &rpz,),
where V(t) = {z,,..., .},
2, T1,...,Tp are distinct variables, and
3. In the term t, each of the variables x,,...,z, occurs precisely once.

As we will show later, the languages defined by context-free forms of EFSs are precisely
the context-free languages.

In the definition of context-frec forms of EFSs, the axioms are restricted to the form
plE(zr, .. 20)) & prlz )& - - &epa(z,), and there are two further syntactic restrictions 2
and 3 on the form. By relaxing condition 3, we get the following class of restricted EFSs.

Definition An EFS E = (D, 5, M.p) is called a simple formal system (SFS, for short)
if

. Each axiom of E is of the form
Tit) = ry (2 )& - Eerg(z,),
where V(t) = {x,,...,2,}, and
2. ry,...,x, are distincl variables.
By relaxing conditions 2 and 3, we get the following class of restricted EFSs.

Definition An EFS E = (1,3, M,p) is called an extended simple formal system (ESFS,
for short) if each axiom of E is of the form

rit) —rylx )& Lerg (),
where V(t) = {z,,...,z,}.

Note that from the definitions of context-free forms, SFSs, and ESFSs, the conclusion
of an axiom that has no premise becomes ground.

The class of simple formal systems has been introduced by Arikawa [Ari70]. The class
of languages defined by SFSs properly contains the class of context-free languages and is
properly contained in the class of context-scnsitive languages.

The size of the ESFS E = (D, 5, M, p), denoted size(E), is the sum of |D|, |E|, |M]|,
plus the sum of the lengths of the terms in the conclusions of all the axioms in M.
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Example 4.1 For example, the formula
plazbyc) — ri(z)&ra(y)
is in contexi-free form of EFS. The formula
p(zaz) — r(z)
is not allowed in context-free formn of EFS, while it is in SFSs. The formula

plz) « ri(z)&ra(z)
is not allowed in SFSs, while it is defined in ESFSa.

Example 4.2

1. Suppose ©; = {a,b,c} and Dy = {p, p1,ps, pss71,72,7a}. Let Ey = (D4, 5y, My, p)
be an ESFS such that M, is the set of the following axioms:

plz) « pufx)&era(z),
pi(zy) «— palz)&epa(y),
p2(azh) « pa(z),
palab) —,

palez) — pa(x),

pale)

ri(zy) e ra(x)dera(y),
rolaz) « ro(z),

ra(a) «—,

ra(bze) — ra(z),

ra(be) — .

Then L{(Ey) = {a"b"¢* | n = 1}, which cannot be generated by any context-free
Erammar.

2. Suppose By = {a,b,e} and Dy = {p,r}. Let M; be the set of axioms:
plzyz) — r(z)&r(y),

rlar) — r{z),
r{bz) — r(z),
r(cz) & r(z),
r(a) —,
r(b)

r(e) +— .
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Let Ey = (Dy, X3, My, p). Then L(E;) = {zyz | z,y € Et}, which is a pattern lan-
guage (the language generated by the pattern zyz) in the sense of Angluin [Ang80a].

3. Suppose s = {a} and Ds = {p}. Let M; be the set of axioms:

plzz} « p(z),
pla) +— .

Let E3 = (D3, X3, M3, p). Then L(E3) = {a*" | n > 0}.

4.3.2 Relations with Other Formal Languages

We first show that the class of languages defined by ESFSs contains some important

classes of formal languages.

Theorem 4.2 If L is a conlerl-free language, then there erists a contezt-free form of
EFS E such that L(E) = L. Conversely, if E is a context-free form of EFS, then L(E)

is @ context-free language.

Proof. Let G = (N, E, P, S} be any context-free grammar. We define the correspond-
ing context-free form F(G7) = (D, £, M, S) of EFS as follows:
D = N,
M = [Alvwzv - Tnln) = Dy )& - - LBu(zy) |
A — voByv, - - Bov, € P with Hy,. .. ,Bn € N and heuoaylly £ E-}
One can easily verify by induction that for any A € N and w € £, A(w) is provable from
E{G) if and only if A = w in G. Then clearly L(E(G)) = L(G).
Conversely, let £ = (D,X, M,p) be any contexi-free form of EFS. We define the
corresponding context-free grammar G(E) = (N, T, P, p) as follows:
N = D,
P = {r—=tlr,... r) | r(t(z, ... 20)) — rifz)&e - Lera(za) € M.

We omit the simple inductive proof of L(G(E)) = L(E). )

Thus the class of languages defined by ESFSs contains the class of context-free lan-
guages.

A pattern introduced by Angluin [Ang80a) is a non-empty finite string of terminal
and variable symbols. The language of a pattern is all strings obtained by substituting

non-empty terminal strings for the variables of the paltern.
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Theorem 4.3 Any pattern language s defined by an ESFS.

Proof. Let L be the language of any pattern over ¥. Any pattern is a term in the
terminology of this paper. Let ¢ be a pattern (term) that generates L. We construct the

carresponding ESFS E = (D, E, M, p) as follows:

D = {pr}

M = {p(t}) = rlz)& - &r(z,) [ V(E) = {z1,.. ., 7]}
{rlax) — r(z) |a € T}

{r(a) ~| a € T}.

L

Then L(E) = . a

Next, we show that languages defined by ESFSs are context-sensitive.
Assume that

De:S=o=Zay=oy- =a, =w

is a derivation in a grammar G. Then the workspace of w by the derivation De is defined

by
WSg(w, De) = max{|eg| |1 <1< m}
The workspace of w € L(G) is defined by
WSg(w) = min{WSgz(w, De) | De is a derivation of w}.

Lemma 4.4 (Salomaa [Sal73)) If G is a phrase-structure grammar and there is a nat-

ural number n such that
WSg(w) £ nfuwl
for all non-empty strings w € L(G), then L(G) is contert-sensitive.

Theorem 4.5 If L = L(F) for an ESFS E = (D,X, M,p), then L 1s a conlext-sensitive

langquage.

Proof. Without loss of generality, we assume that each axiom of F is either of the
form r{t(z1,...,24)) — ri{z1)& - - - &r,(z,) where the variables x,, ..., z, are distinct or
of the form r(z) « ry(x)&ry(z). Let k be the maximmum number of premises of any axiom
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in M. We define the corresponding phrase-structure grammar GS(E) = (N, X, P, S) as

follows:
N = D
U {A;,|e€e L, 1<n<k}
U {A:]|ae X}
U {Xo, X, Xay oo, Ko, X, Xpp Y, Y0, Y 24, 2, Z3},
5 = p,
P = {r_"Xﬂrl)fl"'rn/‘:nil:yl:---w})::jx#J
rit{zy, o za)) = ()& &erg(2,) € M) (4.1)
U {aX,— X4, |aeX, 1<n<k) (4.2)
U {4, 8- BA, |lae X, 1 <n<kand
BeXU{Xon, .. X} ulV, . . Vet Yasr,.. ., Yi)) (4.3)
U {A, Y, - Yad, |a€E, 1 <n<k) (4.4)
U {A, Xy = XglacXE 1 <n<k) (4.5)
U XXy X, = Xy [0 n < k) (4.6)
U {Xgpa = aXypy |ae X} (4.7)
U {XgaYo = Xgp |1<n < k) (4.8)
U {XpaXe — ) (4.9)
U {r = Zyr1ZyryZ; | r(z) «— ri(z)&era(z) € M} (4.10)
U {Zwa— A7 |a€¥) (4.11)
U {bA, = A,b|a,be T} (4.12)
U {Z14,a —»aZ |a€ ¥} (4.13)
U {21225 — €}, (4.14)

where for ¢ € ¥ and 1 < n < k, the elements As,, As, X, and Y, are new nonter-
minals which are mutually distinct, and Xy, X, Xgg, Z1, 2, and Z, are additional
nonterminals.
We prove that L(GS(E)) = L(E) by induction on the step of the derivation of GS(E).
For r — Xori Xy ---ro Xot(¥y,..., ¥a) Xy, suppose that a string w; € £* is derived
from r; in the grammar GS(E) when r;(w;) is provable from E (1 €4 <n). Using (4.1),
all strings of the form
Xown Xy - w Xpt(Vi, ..., Ya) Xy (4.15)
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can be derived [rom r. By (4.2), (4.3), (4.4), and (4.5), the string
NoX; - Xot(Yiwg, .. Yo, ) Xy (4.16)

can be derived from (4.15). By (4.6), (4.7), (4.8), and {4.9), the terminal string t(wy, ..., w,)
can be derived from {4.16).
For r — Zy7ry Zar3Za, suppose that two strings wy, wy € £* are derived from r; and ry

in the grammar GS(E), respectively, when ri(w;) and r3(w;) are provable from E. Using
{4.10), all strings of the form
Zyrin Borry Zy {4.17]

can be derived from r. By (4.11), (4.12), and (4.13), the string
un £y Zy 2y (1.18)

can be derived from {4.17) if and only if w;, = w;. By (4.14), the terminal string w, can
be derived from (4.18).

Because these are the only cases where a denivation leads from r to a terminal string,
we conclude that L{GS(E)) = L(E).

Further WSg(w) < |w|4 (2k+3)|w|+(|w|+3) < (2k+8)|w|. Hence by the workspace
lemma 4.4, L{GS(E)) is context-sensitive. o

It is an open problem whether or nol there are e-free context-sensitive languages that
cannot be defined by any ESFS.

Between the three subclasses of EFSs, we know that CepGCspsSCrsrs holds where
Cer, Csps, Usps denote the class of lanpuages defined by context-free forms of FFSs,
SFSs, ESFSs, respectively. The inclusion € is hy the definitions and the properness of the
inclusion is established by Arikawa [Ari70] and the fact that the language {a"b"c" | n > 1}
cannot be defined by any SIS,

4.3.3 Closure Properties

We show some closure and nonclosure properties for the languages defined by ESFSs.

Theorem 4.6 The class of languages defined by ESFSs is closed under the operations of

union, nlerseclion, concalenation, Kleene closure, and reversal,

Proof. Let Ey = (D, E, My, ;) and E; = (D, X, My, p;) be E5F5s. We may assume
that Dy and D; arc disjoint. Let L; = L{E;) and L; = L({E;). Assume also that
predicates py, py, Ps, and ps are neither in ) nor ;.
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For L, U Ly, we construct the ESFS E; = (D, U Dy U {ps},E, M3, p3), where M, is
M, U M, plus the axioms
ps(z) «— pi(z),
ps(z) « pa(z).
Then L{E3) = LU L,.
For intersection, we construct the ESFS Ey = (D, U D, U {p,},X, My, ps), where M,
is M, U M, plus the axiom
palz) — pa(z)&epa(z).
Then L(Eq) = Iy N Ly.
For concatenation, we construct the ESFS E; = (DU DU {p;}, E, M, ps), where M
is My U M; plus the axiom
ps(zy) + pu(z)&epa(y).
Then L{Es) = {wyw; | wy € Ly, wy € Ly},
For Kleene closure, we construct the ESFS Ez = (I U {ps}, &, Ms, pg), where Mg is

M, plus the axioms
pe(zy) +— pr(z)&psly),
Pe(e).
Then L{Eg) = L3.
For a term %, let {® denote ¢ written backward. For reversal, we construct the ESFS
E; = (D, X, M7, py), where

rt(zy, ., 2B — ry(2) & - Eerg(z,) € My
if and only if  r(t(z1,..., Tn)) = ri(zy )& Eery(z,) € M.

Then L(E;) = {wR |we I,}. O

In order to obtain a nonclosure property, we quote an important result of a represen-

tation theorem in [Har78].

Theorem 4.7 (Harrison [Har78]) For each recursively enumerable set L € £*, there
erist deterministic context-free languages Ly and L; and a homomaorphism o such that
L = w'.p( Ll M lr.}}.

Using this result, we can show the following:

Theorem 4.8 The class of languages defined by ESFSs is not closed under homomor-

phism.
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Fischer [Fis68] generalized context-lree grammars by introducing macre grammars
based on programming macros, and studied two new classes of grammars, called [0 and
Of grammars, which differ only in the order in which nested terms may be expanded: 10 is
expansion from the inside-out and OI from the outside-in. Both the class of 10 languages
and that of Ol languages, which are generated by 10 and Ol grammars respectively, are
properly contained in the class of context-sensitive languages and closed under arbitrary
homomorphism. Further, the class of Ol languages is identical to the class of indered
languages studied by Aho [Aho68]. Thus we can at least conclude from Lemma 4.6 and
Theorem 4.7 that the class of languages defined by ESFSs is contained in neither the class
of IO languages nor the class of Ol languages (i.e., indexed languages).

We can also regard formulas in elementary formal systems as Horn formulas in logic
programming [I.1o84] over strings in which the only function used is the concatenation.
Hence it is interesting to compare ESFSs with Definite Clause Grammars [PWB80].

4.4 The Learning Algorithm for ESFSs

Now we present a polynomial-time algorithm for learning ESFSs using queries. The
learning algorithm may be viewed as a natural extension of Angluin’s algorithm [Ang87a].
The lemmas and theorems that follow are analogous to Angluin’s results.

Let k be any non-negative integer. An ESFS E is k-bounded if and only if every axiom
of E has at most k occurrences of variables in the term of the conclusion and at most k
premises. In this section, we show that there is a polynomial-time algorithm for learning
any k-bounded ESFS by making queries.

Suppose Ey = (D, %, My, p) is the unknown k-bounded ESFS to be learned (up to
equivalence) by the learning algorithm. We assume that k, 1), X, and p are known to the
learning algorithm, but that M, the set of axioms, is unknown. This assumption that
the predicate alphabet D is known to the learning algorithm is the same as Shapiro’s as-
sumption that theoretical predicates can be incorporated into the model inference problem
[ShaS1].

4.4.1 Types of Queries

A membership query (m-query, for short) proposes a terminal string w € £° and asks
whether it is in L{Ep). The reply is either yes or no.

A query for predicate provahility (pp-query, for short) proposes a ground atomic for-
mula r{w) of Ey and asks whether r(w) is provable from Ey. The reply is either yes or
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no. A membership query with w can be accomplished by a query for predicate provability
with p(w). Queries for predicate provability are analogous to nonterminal membership
queries [AngBTa)l.

An equivalence query {e-query, for short) proposes an ESFS E and asks whether
L(Egy) = L(E). The answer is either yes or no. If it is no, then it provides a counter-
ezample, that is, a terminal string w in the symmetric difference of L{Ey) and L(E). If
w € L{Ey) — L(E), w is called a positive counter-example, and if w € L{E) — L(Ey), it

is called a negative counter-example.

4.4.2 Proof-DAGs

We introduce a notion for ESFSs, called proof-DDAG, which is similar to a parse-DAG
[Ang8T7a]. Let the ESFS E = (D, Z, M, p) be fixed.

A proof DAG for E is a finite directed acyclic graph that has a number of special
properties. At each node there is a fixed linear ordering, called lefi-to-right, of the edges
directed out of that node. There is exactly one node with in-degree zero, called the root.
Each node with out-degree zero is called a leaf and the other nodes are called infernal
nodes, Every node has a label consisting of a ground atomic formula of E. For each
node d, a node d' such that there is an edge from d to d' is called a child of d. Finally,
for each internal node d, if its label is R and the labels of its children in left-to-right
order arc Ry,..., R,, then there is an axiom F in M and some substitution @ such that
F =R Ri&-- &R, and for each leaf node d, if its label is R, then there is an axiom
of the form R « in M.

The size of the proof-NAG T', denoted size(T'), is defined as the sum of the number
of nodes in T', the number of edges in 7', and the sum of the lengths of the labels on all
the nodes of T'. The depth of a proof-DAG T is the maximum number of nodes in any
directed path in T.

For any node of a prool-DAG T, the sub-DAG rooted at d is the induced subgraph
of T on all the nodes reachable from d by a directed path in 7. Note that this is also a
proof-DAG for the ESFS E.

4.4.3 The Learning Algorithm EFSQ

A formula r(t(z,,...,2,)) & ri(z;)& - &r,(z,) is said to be incorrect for an ESFS
E if and only if there are n terminal strings vy, ..., v, in £* such that for 1 < i < n, ()
is provable from E, but r(t{v1,...,v,)) is not provable from E. A formula is correct for
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ALGORITHM EF5Q

Input: Oracles that answer pp-queries and e-queries about My.

Output: An ESFS E.

Procedure:
%% Initialization

1 The set M of axioms is initialized to the empty set;

2 The algorithm then iterates the following loop;
%% Main loop

3 An e-query is made, proposing £ = (D, X, M, p);

4 I the reply is yes, the algorithm ontputs E and halts;

5 Otherwise, a counter-example w is returned, and there are two cases;
%% Case (a)  (a negative counter-example w is returned)

6 If wis in L{E), then a proof-DAG for £ is found with root label p(w);

7 The proof-DAG is then diagnosed to find an axiom that is incorrect for Ey;

8 This axiom is removed from M

%% Case (b) (a positive counter-example w is returned )

9 If wis not in L{ £},
then the set C(w) of all candidate axioms is computed from w;

11} All of them are added to M.

Figure 4.1: The learning algorithm EFSQ for ESFSs
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E if and only if it is not incorrect for E. Clearly, every axiom of E is correct for L.
The learning algorithm EFSQ for ESFSs is given in Figure 4.1.
The algcrithm relies on three sub-procedures: proof, diagnosis, and the computation

of candidate arioms. Thesc are described in the following three subsections.

4.4.4 Proof Procedure

The proof sub-procedure takes a terminal string w and the ESFS E = (D, £, M, p), and
determines whether p(w) is provable from E. If so, a proof-DAG for E with root node
labelled p(w) is also returned.

Let

H = {v|vis a substring of w},

where a string v is a substring of w if and only if there are strings u; and wuy such that

u

w = tvuy. There are at most (|w|+1)* elements of H, and H is easily computed in time

polynomial in |w|. Let
I'={r(v)|veH, re D, and r(v) is provable from E}.

There are at most |D|(Jw| + 1)* elements of I. Clearly, p(w) is provable from E if and
only if p(w) is in I. The procedure computes I as follows.

Initially let J = @, and for cach axiom of the form r(v) «— in M such that v is a
substring of w, the procedure puts r{v) in J. Then the following process is iterated until
the first itcration in which no new elements are added to J.

For each axiom of the form
rlt(zy,. . 2.)) — rlzy )& erp ()

and for every n-tuple
(ri(vn)y oy ralva))

of elements of J with v; = v; in case z; = z; for 1 < 4,5 < n, if t{v,,.. .y ¥n) is a substring
of w, then put r(t{vy,...,v,)) in J if it is not already there.

The following modification of the procedure records information for a proof-DAG. The
nodes of the proof-DAG will be elements of 1. Suppose r(v) is added to .J because the

procedure finds an axiom of the form

rlt{xy,. . za)) o mlz )& Lerg(zy,)
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and the n-tuple of elements
{l"j[t"jj, ‘e ,rn[v"}}

of J such that » = #(vy,...,v,) is a substring of w. Then for the element r(v) the
procedure adds an ordered list of n edges from r(v) to the elements ry(v1), ..., mn(vs) of
J.

At the end of the procedure, if p(w) is in J, a proof-DAG is constructed as follows.
Discard from .J all elements not reachable from p{w) by a directed path of edges. The
label of each node r(y) is then just r(y). The root node is p(w). This completes the

description of the proof procedure.
Since [ is finite and the set M of axioms is also finite, this procedure terminates. One

can easily verify by induction that this procedure computes I.
We assume that F is k-bounded.

Lemma 4.9 There are a non-decreasing polynomial ny(z,y) such that the time used by
the proof procedure on inputs E, p, and w is bounded by ny(size(E), |w]), and a non-
decreasing pelynomial ny(x,y) such that the proof-DAG returned by the proof procedure
on inputs E, w, and p is of size bounded by ny(|D|, |w]).

Proof. Every iteration of the loop except the last adds at least one element to J, so
there are at most |D|(|w] + 1)? iterations of the loop. Each iteration of the loop considers
at most | M| axioms, and for each axiom with m premises, considers at most all m-tuples
of elements of 7. Since E is k-bounded, m < k. Hence the basic operation of applying
a substitution to the term in the argument of the conclusion of an axiom and testing

whether it is a substring of w is done no more than
M| D (] +1)7)"?

times in all. The time for proving is bounded by a polynomial in the length of w and the
size of E (but exponential in k).

Clearly the proof-DAG has at most |/| nodes, which is bounded by |D|(Jw|+1)*. Each
node has a label of length bounded by |w|+ 4, and each node has at most k edges directed
out of it. Thus the total size of the resulting proof DAG is bounded by

|D|(Jw| + 1)*(Jw| + k +5).

This proves Lemma 4.9. O
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4.4.5 Diagnosis Procedure

The diagnosis sub-procedure finds an axiom that is incorrect for Ey of the current ESFS
£ = (D,Z, M,p) rejected by an e-query with a negative counter-example. We can use
Shapiro’s diagnosis algorithm for Prolog programs [Sha82] for the purpose, because ESFSs
can be regarded as logic programs over strings. Thus the diagnosis procedure is essentially
a special case of his algorithm for diagnosing an incorrect output. The input to the
diagnosis procedure is a correct proof-DAG T for E such that p(v) is the label of the root
and p(v) is not provable from Ey. The output of the diagnasis procedure is an axiom of
F that is incorrect for Ey.

If the root of T has no child (that is, if T consists of one node), then the diagnosis
procedure returns the formula p(v) + . Otherwise the diagnosis procedure considers in
turn cach child of the root of T\ If the child is labelled with r(u), then the diagnosis
procedure makes a pp-query with r{u). If the reply is no, then it calls itself recursively
with the sub-DAG rooted at the child, and returns the resulting axiom. If the reply is
yes, then it goes on to the next child of the root of T,

If all the queries with py(wy), ..., pa(vy) that are labels of the children of the root of
T in left-to-right order are answered yes, then the diagnosis procedure finds an axiom F

of £ such that F8 = p(v) — pi(v)& - &p,(v,) for some substitution 8, and returns F.

Lemma 4.10 When the diagnosis procedure is given as input a proof-DAG T for E that
has the root labelled p(v) such that p(v) is not provable from Ey, it returns an ariom of F
that 1s incorrect for Eyy. Further, there is a non-decreasing polynomial na(z,y) such that

the time required by the diagnosis procedure on input T is bounded by na(size(T), |M]).

Proof. If the input conditions are met on the initial call, then each recursive call
preserves the input conditions. Since each recursive call is with a proper sub-DAG of its
input DAG, the procedure must eventually terminate, and since the original DAG is a
correct proof-DAG for F (as is every sub-DAG), the diagnosis procedure always finds an
axiom of E and returns it.

If the formula p(v) + is returned, then it is clearly an axiom of F and incorrect for
Ey. 1f the axiom of the form p{t(2y,...,2,)) « pi(x, & - - - &pn(z,) is returned, then the
queries have witnessed that there are n terminal strings vy,..., v, such that for 1 <i < n,
pi(v;) is provable from E, but p(t{vy,...,v.)) = p(v) is not provable from E, that is, the
axiom p(t(zy,...,2,)) — pi(z1 )& - &po(z,) is incorrect for Ey,

Next, the number of queries made by the diagnosis procedure is at most stize(T). The

diagnosis procedure considers at most |M| axioms to find the axiom F. It is clear that
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a straightforward implementation of the diagnosis procedure runs in time polynomial in

size(T) and |M|. This proves Lemma 4.10. O

4.4.6 Candidate Axioms

The input to the candidate axiom procedure is a terminal string w such that w is in L{Eyr)
but not in L{E), where E = (D, E, M,p) is the current ESFS rejected by an e-query with
a positive counter-example w, and the output is a set C{w) of axioms added to M such
that at least one element of C(w) i1s in My but not in M.

The procedure considers in turn every substring s of w. For every m < k and every

factorization of s into 2m + 1 substrings,
S = Ul Uy Pglig = - VU,

and for every 1 < n < k and every n + 1-tuple of predicates r,ry,...,r, from D, the
formula

FlUg@qlig Tatiy - - Tl ) — o2 ) - - - ery(2,,)

is added to C'(w), where 1, ..., r,, are variables that are not necessarily distinet, {zy,.. ., 7.}
= {z1,...,2n} and z;,..., 2, are not necessarily distinet, and the formula
rl(s) —

is added to Clw).

Example 4.3 Let k = 2, D = {p,r}, and the positive counter-example be aba. All

possible candidates of terms for conclusions of the candidate axioms are

ca b ab ba, abal,
Termy = {z,ra,az,zb bz, rab,azh abz, zba,bra,bazr, ara, zaba,exba, abra,abar},

Termy = e a,b

Terms = {ry,oz,rya,rxa, sy, razr,ary, ers,ryd, rrh, zby, rbx, bry, brx,
#yab, zrab, rayb, zazh, zaby,zabz, azyb, azzb, azby, azbr, abzy, abzz,
ryba, rrha, rhya. zbra, thay, rhax, bzya, brza,bray, bzaz, bazy, bazz,
Tuyu,fdrd,Qrya,arrd,aroy, arar,
ryaba, zraba, rayba, razba, rabya, rabza, rebay, rabaz azybe, azzba,
azrbya, arbra,arbay,arbaz,abrya, abrra, abray,abruz, abazy, abazz}.

Then

Claba) = {p(t) —, r(t) — |t € Termy}
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{p(t(z)) — plz), r(t(z)) — p(z) | t(z) € Termy)

{p(t(z)) — riz), r(t(z)) — r(z) | t(z) € Termy}

{p(t(z)) — pix)ler(z), r(t(z)) — p(z)&r(z) | t{z) € Termy}
{p(t(z,y)) — p(x)&r(y), r(t(z,y)) ~ p(x)her(y) | t(z,y) € Terms)
{p(t(=,y]) = p(y)&r(z), r(t(z,y)) ~ py)ier(z) | t(z,y) € Terms}
{p(t(z,v)) — p{z)&ply), r(t(z,y)) — p(z)&p(y) | t(z,y) € Terms}
{p(t(z,u)) = r(x)&r(y), r(t(z,y)) — r(z)&r(y) | t{z,y) € Terma).

CCcCcCccCc oo

Lemma 4.11 Let the candidale aziom procedure have input w € L{Ey) — L(E). Then
C(w) contains some axiom in My but not in M. Further, there are non-decreasing poly-
nomials ng(z,y) and ns(z,y) such that on input w the candidate aziom procedure runs in
time bounded by ny(| D, |w|) and produces an output set Clw) with at most ns(|D|, |w|)
elements. Moreover, every aziom in C(w) has a term of length at most |w| + k with a

most k occurrences of variables in the conclusion and at most k premises.

Proof. Since w is in L{Ey), there is a proof-DAG T for Ey with root labelled p(w).
We show that every axiom used in T is in C(w).

Consider any sub-DAG 1" of T rooted at a node with label r(s). Suppose the axiom
used at the root of T is

(T 2m)) — (T )& Lo (1),
There are m substrings sy, ..., s,, of s such that
s=1(dy,...,8m).
Since s is a substring of w and m < k, the axiom
T(HZ1y 2 )) — ()& Eer g (2 ).

will be generated from s using the above factorization and choices of predicates.

Thus every axiom used in 1" is in C(w). If every axiom in C(w) N My were in M,
T would be a proof-DAG for the ESFS £ witnessing w € L(E), a contradiction. Thus,
C'(w) contains some axiom in My — M.

Next, for each m < k, there are no more than (Jw| +1)*" factorizations of the string
w into 2m + 1 substrings, and no more than m™ choices of m variables for the term of
the conclusion and k(m|D|)* choices of atomic formulas for the premises. Thus, the total

number of axioms placed in C'(w) is at most

1+ k(lw| + 1)**2k*| DIk(k| D])".
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Computing these axioms takes time bounded by a polynomial in |D} and |w|. The term
in the conclusion of cach axiom consists of a subsequence of the terminals in w and at
most k variables, for a total length bounded by |w| + k, which completes the proof of
Lemima 4.11. 0

4.4.7 Correctness and Time Complexity

In the algorithm EFSQ, since M is initially empty and is only augmented by axioms
output by the candidate axioms procedure, £ = (D, X, M,p) is k-bounded at all times
by Lemma 4.11. Clearly if the algorithm EFSQ ever terminates, its output is an ESFS
E equivalent to Ey. This shows the partial correctness of the algorithm EFSQ. Now we

estimate the number of iterations of the main loop in EFSQ as follows.

Lemma 4.12 There are at most |My| iterations of case (b) of the main loop in EFSQ
with positive counter-eramples, and if maxy,, s the marimum length of positive counter-
eramples, then there are at most |My|ns(|D|, maz,.,) erations of case (a) of the main

loop in EFS5Q) with negative counter-examples.

Proof. By Lemma 4.11, each iteration of case (b) with a positive counter-example
must add to M at least one axiom in My — M. This axiom is correct for Fy and therefore
cannot be removed from M, because the only elements removed from M are incorrect for
Eyr, by Lemma 4.10. Hence there are at most |My/| iterations of case (b) with positive
counter-examples.

Thus there are at most | M| positive counter-examples, say
IU], u’ih- = 4 1”"‘1'&1

where m < |My|. Let max,,, be the maximum length of w; for ¢ =1,2,...,m.
The total number of axioms added te M iz bounded by

[Clwn)l + [Clwa)| + -+ + [Clwn ),
which by Lemma 4.11 iz bounded by
ns( D], [wi]) + ns(| D], [wa) + - -+ + ns(| D], fwm]).
Since ng(z,y) i1s non-decreasing we have a bound of

|My|ns(|D|, mazpo, )
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on the total number of axioms ever added to M.

Each iteration of case (a) with a negative counter-example removes one axiom from
M. Hence this can happen at most as many times as there are axioms ever added to M .
which 13 bounded by

| Mz |ns(| D], mazxp,, ).

This proves Lemma 4.12. 0

Thus the algorithm EFSQ must terminate after at most
[ M| + [Muns{| D], maz., )

iterations of the main loop.
Let mazr,., be the maximum length of negative counter-examples, and let mar be
the maximum of mazr,,, and MaTney. Mmar is the maximum length of counter-examples

encountered before termination.
We bound the time used by the algorithm EFSQ as follows.

Lemma 4.13 The time required by the proof procedure at each iteration of the main loop
of the algorithm EFSQ is bounded by a polynomial in the size of Eyy and the length of the

longest counter-ezample.

Proof. By Lemma 4.9 the time required to prove p( w) for each counter-example w is
bounded by n,(size(E), |lw|). Clearly jw| < maz, but we need to establish a bound on
size( E).

1l'."l'rf_' h;"l.‘l.?ﬁ

size(E) = |D| + |Z| + M|+ L,
where L is the sum of the lengths of the terms in the conclusions of the axioms in M. By
Lemma 4.12,
M| < [Myins(| D], maz,,,).
Each axiom in M has a term of length at most MaTp,, + k in the conclusion, by Lemma
4.11.

Hence,
size(E) < |D| 4 |E] + [Myins(| D], maz,.,)(1 + maz,,, + k).

Therefore the size of E' can be bounded by a non-decreasing polynomial in the size of Ey

and the length of the longest positive counter-example,

size( B} < ng(size( Ey), mazp,,).
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Thus at each iteration the time to prove p(w) for a counter-example w is bounded by
ny(ns(stze( By ), mazy, ), maz),
which proves Lemma 4.1 U

Lemma 4.14 The time required by the diagnosis procedure at each iteration where it 1s
called is bounded by a polynomial in the size of By and the length of the longest counter-

example.

Proof. By Lemmas 4.9, 4.10 and 4.12, the time required by the diagnosis procedure

at each iteration where it is called is bounded by
na(na(| D], maz), | Mu|ns(| D], mazp, ),
which is bounded by
na(ngl(sizel By ), maz), size( Ey)ns(size( Fy ), mazry,,)).
O

Lemma 4.15 The time required by the candidate arioms procedure at each iteration where
it is called is bounded by a polynomial in the size of Ey and the length of the longest

counler-era ITIPIE.

Proof. By Lemma 4.11, the time required by the candidate axioms procedure with

input w is bounded by ny(|D|, |w|) = ny(size( By ), mnar). o
We now come to the main theorem of this chapter.

Theorem 4.16 There is an algorithm that learns an LSFS equivalent to any k-bounded
ESES Ey by making e-queries and pp-queries that runs in time polynomial in the size of

Frr und the length of the longest counter-example,
Froof. Putting the bounds from the above three lemmas together with the bound of
|ML-'i + |JMU'“'&{ID11 ﬂlﬂIF"J

on the number of iterations of the main loop of the algorithin EFSQ, we conclude that
the total time used by the algorithm EFSQ is bounded by a polynomial in the size of Ey
and the length of the longest counter-example. O
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Chapter 5

Probably Approximately Correct
Learning from Noisy Examples

Valiant [Val84] has introduced the distribution-independent model of concept learning
from randem examples. Angluin and Laird [AL88] have extended its model by introduc-
ing a noise process, called clussification noise process, to study how to compensate for
randomly introduced errors, or “noise”, in classifying the example data. In this chapter,
we give a briel outliue of the Valiant's learnability model and the notion of polynomial
learnability [BEHW89] for Boolean functions, and define the classification noise process
and the notion of polynomial learnability in the presence of classification noise for Boolean
functions. Then we develop a technique of building efficient robust learning algorithms,
called noise-tolerant Oceam algorithm, and show that using a noise-tolerant Occam algo-
rithm for a class of Hoolean functions, one can construct a polynomial-time algorithm for

learming the class in the presence of classihcation noise.

5.1 Probably Approximately Correct Learning for
Boolean Functions

We assume that there are n Boolean atiributes (or variables) to be considered, and we
denote the sel of such variables as V, = {z),z3,...,2,}. An assignment @ is a mapping
from V,, to the set {0,1}. Let X, denote the set of all such assignments mapping from V;
to {0,1}. We may also think X, denotes the set {0,1}" of all binary strings of length n.
Then a Boolean function is defined to be a mapping from X, to {0,1}.

Boolean formulae are often used as uselul representations for Boolean functions. The
simplest Boolean formula is just a single variable, Each variable z; {1 £ ¢+ < n) is

associated with two literals: z; itself and its negation Z;. A ferm is a conjunction of

95
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literals and a clause is a disjunction of literals. The size of a term or clause is the number
of its literals. Let true be the unique term of size 0, which always returns the value 1,
and false be the unique clause of size 0, which always returns the value 0. Let Cp denote
the set of all terms of size at most k over V,, and D} denote the set of all clauses of size

al most k over V,,. Thus
ICE| = |D| = O(n®) (< {2n +1)*).

For any fixed &k, C]' and D} have sizes polynomial in n.

A Boalean formula is in conjunctive normal form if it is the conjunction of clauses.
We define k-CNF to be the class of Boolean formulae in conjunctive normal form with at
most. k literals per clause. Similarly, a Boolean formula is in disjunctive normal form if
it is the disjunction of terms. We define k-DNF to be the class of Boolean formulae in
disjunctive normal form with at most k literals per term.

A Boolean formula can be interpreted as a mapping from assignments X,, into {0,1}.
Thus cach Boolean formula defines a correspunding Boolean function from X, to {0,1}
in a natural manner. We do not distinguish between Boolean formulae and the Boolean
functions they represent.

Now we describe the Valiant’s learnability model for Boolean functions. First fix a
class £+, of Boolean functions over V,, and a target Boolcan function fi in Fy, to be learned.

An example of fi; is a pair (d,1) where @ is an assignment in X, and / = fy(&). Thus
an example can be viewed as an assignment with the value of the target function fir at
the assignment. [ is called the label of the example. An example (&, 1) is called a positive
example of fy; if | = 1 and called a negative ezample of fry if I = 0. A sample 18 a finite
sequence of positive and negative examples of the target Boolean function fy. The size
of a sample 5 is the number of examples in it. A Boolean function g is said to agree with
an example {@,1) if ¢(d@) = {. A Boolean function is consistent with the given sample if it
agrees with all examples in the sample.

We assume that there is an unknown and arbitrary probability distribution D on X,
The probability of assignment @ € X,, with respect to D is denoted Prp(&). Random
samples are assumed to be drawn independently from the domain X, according to this
probability distribution D on X,. There is a sumpling oracle EX() for the target Boolean
function fy, which has no input. Whenever EX() is called, it draws an assignment @ € X,
according te the disiribution D, and returns {&@, fy(@)). We define a learning algorithm
for the class F), of Boolean function as an algorithm that has access to EX() and produces

as output a Boolean function in F,.
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A learning algorithm makes a number of calls to EX() and then conjectures some
Boolean function g € F,. The success of learning is measured by two parameters, the
accuracy parameter ¢ and the confidence parameter &, which are given as inputs to the
learning algorithm. We define a notion of the difference between two Boolean functions

f and g with respect to the probability distribution [ as

d(f,g) = 3 Prp(@).
fiE)#g(E)

The error of a Boolean function g with respect to the target Boolean function fir is
d(g, fu). A successful learning algorithm is one that with high probability finds a Boolean
function whose error is small. A Boolean [unction g is called an e-approrimation of fi; if
dlg, fy) < ¢ and called e-bad otherwise.

The notion of polynomial learnability in the Valiant’s learnability model is formally
defined as follows.

A class F,, of Boolean functions over V,, is polynomially (probably epprozimately
correctly (PAC for short)) learnable il there exists a learning algorithm A for
F. such that for any € and &, for any target Boolean function fy € F,, and for
any distribution D on X, when A is given as input parameters n, €, and é and
run with the sampling oracle EX() for frr, the algorithm outputs a Boolean
function g € F, such that d(g, f/) < € with probability at least 1 — §, and

runs in time polynomial in n, 1/¢, and 1/6.

The difficulty of learning a Boolean function that has been selected from F, will depend
on the size |F,] of F,. We say a class F), of Boolean [unctions is polynomial-sized if
In(|Fy|) = O(n*) for some constant {, that is, In(|F,|} is a polynomial in n. In(|F,|) may
be viewed as the number of bits nceded to write down an arbitrary element of Fy, using
an “optimal encoding”. Thus any representation for a polynomial-sized class of Boolean
functions has its size al most polynornial in n.

Several interesting classes of Boolean functions have been proved to be or not to be

polynomially learnable in this Valiant's learnability model [KLPVBT, PV8S].

5.2 Classification Noise Process

Many works making progress in the Valiant’s learnability model depend strongly on the

assumption of perfect, noise-less examples. This assumption is generally unrealistic and
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in many situations of the real world, we are not always so fortune, our observations will
often be afflicted by noise and hence there is always some chance that a noisy example
is given to the learning algorithm. Few works have suggested any way to make their
learning algorithms noise tolerant and two formal models of noise have been studied so
far in the Valiant’s learnability maodel for concept learning. One is the malicious error
maodel initiated by Valiant [Val85] and investigated by Kearns and Li [KL88);

Independently for each example, the example is replaced, with some small
probability, by an arbitrary example classified perhaps incorrectly.

The goal of this model is to capture the worst possible case of noise process by the
adversary. This model is also called adversarial noise process in [AL88]. The other is the
classification noise process introduced by Angluin and Laird [AL8S]:

Independently for each example, the label of the example is reversed with
some small probability.

The goal of this model is to study the question of how to compensate for randomly
introduced errors, or “noise, in classifying the example data. Tn this paper, we consider
the classification noise process to study the effect on the polynomial learnability of Boolean
functions.

This classification noise process introduced for concept learning can be interpreted to
be applicable to learning Boolean functions as follows:

The sampling oracle is able to draw assignments & from X, according to the
relevant distribution D without error, but that the process of reporting the
value of the target Boolean function fy at the assignment &, that is f (&), is
subject to independent random mistakes with some unknown probability #;
independently for each example (d, 1), (@,0) is returned when fy(@) = 1 and
(@,1) is returned when fi;(&) = 0 with probability 5.

It is assumed that the rate of noise 4 is less than 1/2. To indicate that the sampling
oracle is subject to errors of this type, we will denote it by EX ().

In [AL8E], the following argument is discussed: in the presence of classification noise,
we should assume that there is some information about the noise rate 5 available to the
learning algorithm, namely an upper bound 7, such that n < n, < 1/2, and just as
the running time for polynomial-time learning is permitted in the absence of noise to be
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polynomial in 1/¢ and 1/8, we should permit the polynomial to have 1/(1 — 2m;) as one
of its arguments.
Now we give the precise definition of pelynomial learnability in the presence of classi-

ﬁcﬂﬁnn nOLSE.

A class F, of Boolean functions over V,, is pelynomially learnable in the pres-
ence of classification noise if there exists a learning algorithm for Fy, such that
for any e, &, and 7 (< 1/2), for any target Boolean function fi; € F, and for
any distribution IJ on X, when A is given as input parameters n, ¢, §, and
(p < my < 1/2), and run with the sampling oracle EX () for fr, the algorithm
outputs a Boolean function g € F, such that d(g, fv') = ¢ with probability at

least 1 — &, and runs in time polynomial in n, 1/¢, 1/6, and 1/(1 = 2n;).

5.3 Previous Research Results

In the ahsence of noise, when given a sample of a target Boolean function fi;, the funda-
mental strategy that a learning algorithm takes is praducing a Boolean function consistent
with the sample. When the sample contains noise, this fundamental strategy may fail be-
cause there is no gnarantee that such consistent Hoolean functions will be found.

Angluin and Laird [ALS8] have proposed the simple strategy of finding a Boolean
function that minimizes the number of disagreements with the given sample and shown
that in the presence of classification noise, a learning algorithm for a class F,, of Hoolean
functions that outputs a Boolean function minimizing the number of disagreements PAC-
learns F,.

Let § = {d@, L), (d:, L), ..., (@m, lm) be a sample drawn from an EX, () oracle. For a
Boolean function f, let F(f,S) denote the number of indices j for which f disagrees with

{EJ'P:J'}‘

Theorem 5.1 (Angluin & Laird [AL8B]} If we draw a sample S of

2 2| Fy|
e
2 Aoy ( s )

examples from EX,{) for the targel Boolean funclion fy and find any Boolean function
g € F,, that minimizes F(g,5), then with probability af least 1 — &, g 15 an e-approzimation

of Ju.
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Angluin and Laird [ALSE] have shown that k-CNF is polynomially learnable in the
presence of classification noise for any 5 < 1/2.

Kearns and Li [KL88] have given hardness results for learning with malicious errors.
Let us define a class F,, of Boolean functions to be distinct if there are Boolean functions
f,g € I, and assignments d,b € X, satisfying f(@) = f(b) = 1, g{@) =0, and g{g} = 1.

Theorem 5.2 (Kearns & Li [KL88]) Let F, be a distinet class of Boolean functions
and ¢ the accuracy parameler. Then the largest rate of malicious error that can be tolerated

by any learning algorithm for F, is less than €/(1 + ¢).

Laird [Lai88] has discussed about estimating the noise rate, other types of noise pro-
cess, etc., and shown several interesting results. Sloan [Slo88] have introduced two new
models between the malicious error model and the classification noise process to show

that they can be “pushed towards one another”.

5.4 Noise-tolerant Occam algorithm

In this section, we develop a technique of building efficient robust learning algorithms,
called noise-tolerant Occam algorithm, that is a generalizalion of Occam’s Razor in
[BEHWST] and show that using a noise-tolerant Oceam algorithin for a class of Boolean
functions, ene can construct a polynomial-time algorithm for learning the class in the pres-
ence of classification noise, which we will find useful in the following chapters to show the
polynomial learnability of decision lists and decision trees in the presence of classification
noise.

Angluin and Laird [AL88] have proposed the strategy of finding a Boolean function
that minimizes the number of disagreements with the given sample. In general, however, it
is a hard problein to find a Boolean function that minimizes the number of disagreements
with the sample. We weaken this criterion. The [ollowing noise-tolerant Occam algorithm
takes the strategy of, rather than finding a Boolean function that minimizes the number
of disagreements, finding a Boolean function consistent with a large fraction of the given

sample with high probability.

A neise-tolerant Occam algorithm, OCCAM,,.(S,e,8,m), for a class F, of
Boolean functions over V, is an algorithm that when given as input a sample
S of m examples drawn from EX, () for any target Boolean function fy, and

paramecters €, &, g,
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1. produces a Boolean function g € F,, such that

F(g,5) (1 — 2)
T St

with probability at least 1 — §/2, and

2. runs in time polynomial in n and m.

Now we present two theorems that give the reason why this can work. First we show
the following important theorem for OCCAM, (S, 6,8, n) that if n < 7 < 54 ¢(1 -
21)/2 and F), is polynomial-sized, the existence of OCCAM,,(5, ¢, &,7;) for F, implies the
polynomial learnability of F,, in the presence of classification noise.

We quote the following inequality which we shall require in the proof to follow. Let
p and ¢ be numbers between 0 and 1, and let m be a positive integer. Let GE(p,m,q)
denote the probability of getting at least gm successes in m independent Bernoulli trials
with probability p, and LE(p,m,q) denote the probability of at most gm successes in
m independent Bernoulli trials with probability p. The following lemma bounds these

guantities.

Lemma 5.3 (Hoeffding's Inequality [AL88]) [f0<p<1,0=<s <1, and m is any
positive inleger, then

LE(p$m:p_ S] S E_h!m

and
GE{pm,p+s) < g='m,

Theorem 5.4 Suppose that n < n, < n+¢(l —2n)/2. Supposec alse that F, is polynomial-
sized, If there exists a noise-tolerant Occam algorithm for F,, then F, is polynomially

learnable in the presence of classification noise. The sample size required s

m = 8 In glFﬂl .
el = 2my)? 6

Proof. First we consider the effect of classification noise on searching any Boolean

function in F,. We analyze the expected rate of disagreement between any Boolean
function ¢ and example sequences produced by the sampling oracle EX,() for the target
Boolean function fy. Let d, = d(g, fu). The probability that an example produced by
EX,{) disagrees with g is

1. the probability that an example is drawn from {@ € X, | fi:(@) # ¢(d)} and reported
carrectly (which is just d (1 — )}
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2. plus the probability that an example is drawn from {@ € X, | fu(d@) = g(&)} and
reported incorrectly (which is just (1 — d,)n).

Let p, denote the probability that an example from EX,() disagrees with g. Then we

have

Py = dg(l—75)+(1- dy )y
= 7 +dy(1 —2n).

For the target Boolean function fi; we have pj,, = ., and for any «-bad Boolean function
q we have
Pe 21 +¢(1-2q),

Thus any e-bad Boolean function has an expected rate of disagreement that is greater
than that of the target Boolean function by at least e(1 — 25).

We now show that with probability at least 1 — §, OCCAM,, (S, ¢, 6,ms) outputs an
t-approximation of fy. Let s = ¢(1 — 2n;). The probability that the target Boolean
function fi; has more than (s + s/4)m disagreements with a sample 5 of m examples
drawn from EX,() is

GE(mym,m +8/4) < GE(ny,m,m; + s/4)
< em2e/tm
by the Hoeffding's inequality lemma and the lower bound on m implies that this is less
than §/2. Hence with probability at least 1 —§/2, OCCAM,,(S, ¢, 6,7) can find a Boolean
function g € F;, such that F(g,S)/m < m,+3/4 to output. The probability that a Boolean

function with error greater than ¢ has at most (15 4 s/4)m disagreements is

LE(n+ (1 —2q),m,y; + sf4) < LE(m+s/2,m,m+ s/4),
by the assumption ny < 5 + (1 — 29)/2
& e-‘i{:fi}’m’

by the Hoeffding's Inequality lemma.

Since there are at most |F,| Boolean functions in F,, the probability of producing a

Boolean function with error grealer than ¢ is less than

“;:11 . E—?[a,f'i]’m
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and by the lower bound on m, it is less than §/2. Hence with probability at least 1 — &,
OCCAM,.(S, ¢, 6, 1) outputs an e-approximation of fr.

Further since F, is polynomial-sized, m is a polynomial in n, 1/¢, 1/6, and 1/(1 — 2m)
and hence OCCAM;, (S, ¢ 6,1,) runs in time polynomial in n, 1/, 1/8, and 1/(1 = 2n).
0

The above theorem indicates that OCCAM (S, ¢, 6, m) requires an accurate estimate
ms of the actual noise rate 7 for polynomial learnability. In the following, however, we
show that for any upper bound g, < 1/2, by iterating OCCAM;(S, €, 6,3 ) for successively
smaller values of n, (down to almost 0) and picking the best Boolean function among the
outputs of OCCAM, (S, €, 6,m), the existence of QOCCAM,;,(S, ¢, 8 my) for Fy, implies the

polynomial learnability of I, in the presence of classification noise.

Theorem 5.5 Suppose that n < 5, < 1/2. Suppose also that F, is polynomial-sized. If
there erists a noise-tolerant Occam algorithm for F,, then F, is polynomially learnable in

the presence of classificalion noise.

Proof. We will construct hy using QOCCAM,,.(5,¢,6,m) a learning algorithm for Fy
that with probability at least 1 — 4, outputs an e-approximation of fr from a sampling
oracle EX () with y < 1/2. The learning algorithm, POLY-LEARN, is illustrated in
Figure 5.1,

We will show that with probability at least 1 =&, POLY-LEARN outputs an e-approx-
imation of fi;. Among the successively smaller values . from 5, down to almest 0, there
will exist an 5, such that 7 < 5, < 1+ €{1 — 29)/2 because 1, is decreasing by 5{1—_.12-%1
and €1 — 2m) < ¢{1 — 25). Then the lower bound on m implies that with probability at
least 1 — &/2, there will be at least one Boolean function g; (1 < j < k) in the queue @
of POLY-LEARN such that

F(g;,S)/m < me+e(l—2n.)/4,
where p <, <0+ e(l — 2n)/2
<+ 3e(l — 2)/4.
Hence with probability at least 1 — /2, the Boolean function ¢; (1 < ¢ < k) in @ that
minimizes F(g;, S) must have F(g;, §)/m < 5+ 3¢(1 - 2n)/4.
The probability that a Boolean function g € F, with error greater than € has F(g, S)/m
< n+3e(l —2n) /41

LE(n+ e(1 — 2q),m,n + 3¢(1 —29)/1) < e 2t0=2/am,
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ALGORITHM POLY-LEARN
Input:

* OCCAM,;,(S,¢,6,m) for a class F, of Boolean functions,

* A sampling oracle EX,() subject to classification noise,

¢ A number n and positive fractions €, §, and 5, with 0 SnEm<l/2

Ouiput:

A Boolean function g € F,.

Procedure:

1.

Request a sample S of m examples, where

8

>
el —2n)?

e *— THhs

3. @+ emptyqueue;

(42

Repeat:

4.1. Call OCCAM,,(S, ¢, 1,);
4.2. Add the output to Q;

4.3. 1, —y, — Uml,
until 5. < 0;
Let @ = {a,..., ¢);

WELAY
n ; ;

Output a Boolean function g; (1 < ¢ < k) in @ that minimizes Fg:,S).

Figure 5.1: Polynomial learning with classification noise
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by the Hoeffding's Inequality lernma.

Since there are at most |F,] Doolean functions in Fy, the probability of producing a

Boolean function with error greater than e is less than

|F'ﬂ| . E-zqsn-in]h}?m

and by the lower bound on m, it is less than 6/2, Hence with probability at least 1 — 4,
POLY-LEARN outputs an e-approximation of fi.

Further there are at most ;=51 repetitions of calling OCCAM,;,.(S5,¢,6,7.) and
henee k is at most |'¢{1_—12"J-| in POLY-LEARN. These are executed in time polynomial
in 1/e, 1/{1 — 2m), and the running time of OCCAM, (S, ¢, ,7.) which is bounded by a
polynomial in n, 1/¢, 1/8, and 1/(1 — 2n;). Searching a Boolean function g in @ that
minimizes F(g;, ) is executed in time polynomial 1fe, In{1/#), and 1/(1 — 2n;), since
there are at most [—2 h'| Boolean functions in ). Therefore POLY-LEARN runs in

1="1n

time polynomial in n, 1/e, 1/6, and 1/{1 — 2n;). o

In contrast to Theorem 5.2 for the malicious error model, a noise rate is independent

of the desired accuracy € and a noise rate close to 1/2 is achievable in Theorem 5.5.
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Chapter 6

An Efficient Robust Algorithm for
Learning Decision Lists

Since it is common in the machine learning literalure to consider concepts defined on a set
of objects in which the objects are described in terms of a set of Boolean attribute-value
pairs, the problem of learning Boolean functions from examples have widely been studied
both theoretically and empirically. Learning decision trees is a typical example that can be
formulated as learning Boolean functions and also has the most successful counterpart of
practical applications. One of famons such practical systems is 1D3 by Quinlan [Qui86b].
Decision trees are often used for classification tasks and as the representation of acquired
knowledge in a learning system. 1D3 induces such decision trees from examples. Numerous
applications based on I1)3 have also been investigated.

Recently Rivest [RivB87] has introduced another useful way, called decision lists, to
represent Boolean functions and to perform classification tasks. In fact, decision lists
are an important class because k-DL (the class of decision lists with conjunctive clauses
of size at most k at each decision) properly includes other well-known techniques for
representing Boolean functions such as k-CNF, k-DNF, and decision trees of depth at
most k. Rivest [Riv87| has shown that k-DL is polynomially learnable in the Valiant's
learnahility model. However Rivest's learning algorithm for £-DL is not robust for noisy
data and he has left an open problem to study whether the Boolean functions in k-DL
can be learned efficiently when the classifications of the given examples may be erroneous
with some small probability.

In this chapter, we give the affirmative answer for this open problem. We present a
noise-tolerant Occam algorithm for k-DL and hence conclude that k-DL is polynomially
learnable in the presence of classification noise. This strictly increases the class of Boolean

functions that are known to be polynomially learnable in the presence of classification

107
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noise: the only example of a class of Boolean functions is k-CNF that has been shown to
be polynomially learnable in the presence of classification noise [AL88] and k-DL properly
includes k-CNF.

6.1 Decision Lists

Rivest [Riv87] has introduced a new representation for Boolean functions, called decision

lists. A decision list is a list L of pairs

{(!1,1‘)]}1 “g, 'I'.‘z}, vy {fh i.r,”

where cach {; is a term in C7, each v; is a value in {0,1}, and the last term {, is the unique
term true. A decision list L defines a Boolean function as follows: for any assignment
d € Xn, L(d) is defined to be equal to the value v; where i is the least index such that
ti(d@) = 1. (Such an item always exists, since the last term always true.) Let k-DL denote
the class of all Boolcan functions defined by decision lists, where each term in the list is
of size at most k. As k increases, the class k-DL becomes increasingly expressive, Note
that k-DL is closed under complementation (negation).

We may think of a decision list as an extended “if — then — elseif — ... else -

rule. Or we may think of decision lists as a “linearly ordered” set of production rules. For

"

example, the decision list
L = {(zyza,1), (Z2xax;,0), (z3z4, 1), (true,0)) (6.1)

may be diagrammed as in Figure 6.1. For example, L(1,0,1, 1,1} = 0; this value is
specified hy the second pair in the decision list.

For the matter of notations, when we wish to emphasize the number of variables upon
which a class of Boolean functions depends, we will indicate this in parentheses after the
class name, as in k-CNF(n), k-DNF{(n), or k-DL{(n).

Decision lists are a strict generalization of the representation techniques for Boolean

functions described before.

Theorem 6.1 (Rivest [Riv87]) For 0 < k < n, k-CNF(n) and k-DNF(n) are proper
subclasses of k-DL(n). For 0 < k < n and n > 2, (k-CNF(n) U k-DNF(n)) is a proper
subclass of k-DL{n).
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( T|T9 )J&. 1

false
{j ToTyXs )ﬂ— 0
false
G
false
0

Figure 6.1: Diagram of the decision list {(&yx2,1), (222375,0), (2324, 1), (true,0)).

6.2 Efficient Robust Learning of k-DL

Now we consider an efficient robust algorithm for learning decision lists in the presence of
classification noise. We show that there exists a noise-tolerant Occam algorithm for k-DL
and hence k-DL is polynomially learnable in the presence of classification noise.

Let Ly denote the target decision list in k-DL(n) over n variables to be learned. We
say a pair (t,v) disagrees with an example (&,0) if {(@) = 1 and v # I. We say a pair ({,v)
is correct w.r.f. a sample S drawn from EX, () for Ly if for every example (&, 1} in S such
that #{d@) = 1, v = Ly(d).

We begin with the trivial fact observed by Rivest [Riv87] in the absence of noise that
if a decision list is consistent with a sample S, then it is consistent with any subset of 5.
This can be restated in the presence of classification noise as follows: if a sample 5 15
drawn from EX,() for a decision list Ly, then for any subset 5 of S there exists a correct
pair w.r.t. 5.

Now we present an efficient robust learning algorithm for k-DL. Our noise-tolerant
Occam algorithm NODL for k-DL is shown in Figure 6.2. Here we try to give the intuitive

explanation of the algorithm NODL. We say a pair (t,v) erplain an example (a1} if
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t(d) = 1. Given the sample S, NODL proceeds by identifying the pairs of the decision list
in order. NODL sclects as the first pair of the decision list any pair (t,v) of C® x {0,1}
if it disagrees with a small fraction of the examples that are explained by it in § or the
number of examples explained by it is below a given threshold. NODL then proceeds
to delete from S any example explained by the chosen pair {{,v), and to construct the
remainder of the decision list in the same way using the remaining part of S.

Let § = (@, 4),{@,L),...,{@n.lm) be a sample drawn from an EX,() oracle. For
a decision list L, let F(L,S) denote the number of indices j for which L disagrees with
(@, ;). For a pair (,v) € C} x {0,1}, let F{(t,v), S) denote the number of indices j for
which (1,v) disagrees with (@;,[;) and let T((1,v), S) denote the number of indices § for
which #(d;) = 1.

Lemma 6.2 Suppose that NODL is given a sample S of m eramples drawn SJrom EX,()
and parameters n, k, €, and ny. If NODL halts and outputs a decision list L, then
F(L,5) < e(1 — 2n,)
m - 4 '

Proof. Let L = ((t;,v1),...,(t,,v.)}). For i-th item (;, v} of L, let Fo((tiy ), S5)
denote the number of examples (@,1) in & such that (L, v;) disagrees with (&@,1) and ¢ is
the least index such that ¢,(@) = 1, and let Tp((t;,v,), 5) denote the number of examples
(@1} in S for which 7 is the least index such that {;(&@) = 1. Any decision list L output
by NODL has the property that for any i (1 < < r,

Fal(ti, ), 8) e(1 ~ 2m)
To((t,0).8) — ™13

or .
Tol(ti,vi), S) < Q.

m
Therefore the total number of disagreements of L with 5, that is F(L,5), is at most the
suin of
> Fol(tiywi),S) £ Y(ms + €(1 = 2n5)/B) - To((ti, v,), 5)
i=1 =1
= (g + '5“- - th]'fﬂ] . Z TD[“l'\ UI':I! S}
=1
= {Tﬂ. + ﬁ“ - ‘Zm};’E]m
and
1 1e(1 = 2m)
R - . )
Q;m 2 ros 2 M mM

< (e{1 = 2mp)/8)m
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ALGORITIM NODL

Input:

e A sample S of m examples drawn from EX,() subject to classification noise,

¢ Numbers n, k and positive fractions ¢, and g, with 0 <5 <m < 1/2.

Output:

A decision list L in k-DL(n).

FProcedure:

1. Calculate the following:

Cr = {t|tisa term over n variables with at most k literals},
M = |C:|,

e(1 —2m)
Qr = pT;

2, 85 « 8; CC « CF x {0,1}; L + emptylist; i « 1;

3. Repeat:
3.1. If S5 is empty, then output L and halt;
3.2, Find a pair ({,v) in CC such that
F((t,v), SS) (1 — 2n)
L bl 'S Rl A b Sl LT
T((te),55) =" 8
3.3. If no such pair can be found, then find a pair (t,v) in CC such that
T{(t,v),55
59 ¢ g,
and v = 1if F((t,1),85) < F((t,0),55) and v = 0 otherwise;
3.4. Let T denote those examples in 55 which make ¢ true;
3.5. Add the pair (¢,v) to L as the i-th item of the decision list L;
36. S5 = 55-T;0C —CC = (t,v);i+—i+1;

until it halts.

Figure 6.2: Efficient robust learning of k-DL
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since r < M. Hence F(L,S)/m < s+ €[1 — 29) /4. o

Lemma 6.3 Suppose that n < my, < 1/2. Suppose also that

s 128M In oM+l pf
[} 4
- €3[1 — 21”,}3 )

Then with probability at lcast 1 — §/2, NODL halts and outputs a decision list L.

Proof. First we prove that with probability at least 1 — §/2, a sample $ is drawn such
that for all choices #;,13,...,¢, of terms in € and for all t € C?, whenever T((t,v),R) >
@rm, the number of occurrences of classification noise in {{@,) € R | t(@) = 1} is at most
(s + €(1 — 21)/8) - T((t,v), R), where R =S — {{G,1) € § | (@) =1} ~---— {{a,l)
S| t;(d@) = 1}. Let ty, g, .. -ty in Cf and t € C be fixed. By the Hoeffding’s inequality
lemma, whenever T'((t,v), R) > Q;m, the probability that classification noise ecenrs more
than (m + e(1 — 2m)/8) - T((t,v), R) times is at most

GE(n, T((t,v), R)ms + (1 — 20:)/8) < GE(mp, Qym,my + (1 — 23)/8)

< e—?[l“—?ﬂa}fﬂ]:ﬁ':m

and the lower bound on m implies that this is less than &/(2M+1M). Since there are at
most 2M choices of terms in CF and M terms in CP, the probability that for all choices
by, tyy...,1; of terms in C7 and for all { € C}, the number of occurrences of classification
noise in {{a@,l} € R | t(@) = 1} is at most (m+ (1= 2n,)/8). T((t, v), R) is at least 1-6&f2.
This completes the proof.

Next we assume that for all choices £, 1,,.., vt; of terms in CP and for all t € CP,
the number of ocenrrences of classification noise in {(d,l) € R | ¢(&) = 1} is at most
(ms+e(1—2n)/8)-T((t,v), R) whenever I'((t,v), R) = Q m. We show that this assumption
implies that NODL halts and outputs a decision list L. For any stage, say i, in the
repetition in NODL where 55 is not empty, there is al least one correct pair (£, v) w.rt. §§
in CC. I T((t,v),S5)/m < Qr, then NODL can select the pair (¢,v) as the i-th item of
L. IfT((t,v),$S)/m = Q,, by the above assumption, the correct pair (t,v) has at most
(m+e(l — 2m;)/8)-T((t,v), S5) disagreements with S5. Then NODL can select the pair
(t,v) as the é-th item of L. Hence eventnally NODL halts and outputs a decision list L.

Therefore with probability at least 1 — /2, NODL halts and outputs a decision list
L. ]
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Theorem 6.4 NODL is a noise-tolerant Occam algorithm for k-DL(n).

Proof. Since |CP| < (2n + 1), it is clear that NODL runs in time polynomial in n

and m. Then it is straightforward from Lemmas 6.2 and 6.3. =)
We quote the following important lemma by Rivest [Riv8T].
Lemma 6.5 (Rivest [Riv8T]) k-DL(n) is polynomial-sized.

Proof. |k-DL{n)| = O(3!(|CF|)!). This implies that In([k-DL(n)|) = O(n') for some

constant t. )
Now we have the main theorem.

Theorem 6.6 k-DL(n) is polynomially learnable in the presence of classification noise.
Proof. Tt is straightforward from Theorcms 6.4, 5.5, and Lemma 6.5. o

Schapire [Sch91] had independently achieved this result by using probabilistic decision
lists which are a probabilistic analog of {deterministic) decision lists. Schapire has shown
that a special class of probabilistic decision lists with conjunctive clauses of size at most k
at each decision can he learned efficiently and the result can be applied to learn ordinary

decision lists when the supplied examples are noisy.
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Chapter 7

An Efficient Robust Algorithm for
Learning Decision Trees

Recently Ehrenfeucht and Haussler [EH89] have introduced the notion of the rank of a
decision tree and shown that the class of all decision trees of rank at most r on n Boolean
variables is polynomially learnable in the Valiant’s learnability model and Rivest’s result
for decision lists can be interpreted as a special case of their result for rank 1. However
their learning algorithm is not robust for noisy data and hence an efficient robust learning
algorithm for decision trecs of rank at most r has been expected to be developed because
when we study the problem of learning decision trees concerned with a large amount of
learning data, it is practical to assume that the data contain some noise. Few empirical
works for decision trees have suggested any way to make their learning algorithms noise
tolerant and there has been no theoretical treatment for learning decision trees from noisy

examples so far.

In Chapter 5, we have developed a technique of building efficient robust learning al-
gorithms, neise-tolerant Occam algorithm, in the classification noise process and shown
that using a noise-tolerant Occam algorithm for a class of Boolean functions, ene can con-
struct a polynomial-time algorithm for learning the class in the presence of classification
noise. In Chapter 6, we have presented a noise-tolerant Occam algorithm for decision lists
and hence concluded that the decision lists is polynomially learnable in the presence of

classification noise.

In this chapter, we extend the noise-tolerant Occam algorithim for decision lists to the
one for decision trees and conclude that the class of all decision trees of rank at most r on
n Boolean variables is polynomially learnable in the presence of classification noise. This

result can hold at a noise rate even close to 1/2.
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Figure 7.1: A decision tree represeutalion for z,2, V 4.

7.1 Decision Trees

First we give formal definitions of decision trees and their rank introduced by Ehren-

feucht and Haussler [EI189].
A decision tree is a binary tree where each internal node is labelled with a variable

and cach leafl is labelled with 0 or 1. A decision tree is a useful way to represent a Boolean

function. The class T, of decision trees over V, is defined recursively as follows:

I. If T is the binary tree consisting of only a root node labelled either 0 or 1, then
T € 7,. (We will abbreviate this case by simply saying “T = 0” or “T = 1)

2. Il To, T3 € T, and 7 € V,,, then the binary tree with root labelled x, left subtree T,
and right subtree T, is in 7,,. (We will refer to the left subtree as the 0-subtree and

the right subtree as the 1-subtree.)
A decision tree T € T, defines a Boolean function fr as follows:;

1. If T = 0 then fr is the constant function 0 and if T = 1 then fr is the constant

function 1.
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2 Flse if x, is the variable labelled at the root node, Ty the O-subtree and T the
1-subtree, then for any assignment &@ = (ay,...,as), if @; = 0 then fr(@) = fr,(d@),
else fr(d) = fr,(a) .

A decision tree is reduced if each variable appears al most once in any path from the root

to a leaf.
The rank of a decision tree T, denoted r(T), is defined as follows:

1.UT=00r T =1 then r(T) = 0.
2. Else if rq is the rank of the 0-subtrec of T and 7y is the rank of the 1-subtree, then

max(rg, 7y ) if ro #m
TI:T =

ro+ 1(=r + 1) otherwise.

Let 7-DT(n) denoie the set of all Boolean functions on X, represented by decision trees

of rank at most r.
It is easily verified that every function in r-T(n) can be represcnted by a reduced

decision tree of rank at most r.
We quote the following important lemma by Ehrenfeucht and Haussler [EH89].

Lemma 7.1 (Ehrenfeucht & Haussler [EH89]) 1. Let L{n,r) denote the mazi-

mum number of leaves of any reduced decision trees over Vy, of rank v. Then

Lio,r) = 1 foralr =0,
Lin,0) 1 foralln =0,
Lin,r) = Lin—Lr)+Lin—=1,r=1) forallnr2z1l.

Further L(n.r) is bounded by (en/r)" for alln =z r = 1.

2, Ifr < n, then [r-DT(n)| < (8n)ten/7)",

7.2 Efficient Robust Learning of Decision Trees of
rank r

Now we present a noise-tolerant Occam algorithm for r-DT(n) and hence conclude that

r-DT(n) is polynomially learnable in the presence of classification noise.
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Let § = {{dy,h1),(ds, [z}, ..., {@m,Im)} be a sample drawn from an EX,() oracle. For
a decision tree T', let F(T, 5) denote the number of indices j for which T disagrees with

{Ejﬁ I.i}*
Let z be a variable in V. Assume z = x;, where 1 < i < n. Then 57 denotes the set
of all examples {d,} in a sample S such that @ = (a;,...,a,) and a; = 0, and 57 denotes

the set of all examples (4,1} in § such that @ = (ay,...,a,) and a; = 1. We say a variable
7 is informative (on S) if both 5% and 57 are nonempty.

We give a noise-tolerant Occam algorithm for »-DT(n) in Figures 7.2 and 7.3. The
subroutine RFINDT that finds a decision tree of rank at most r consistent with a large
fraction of the given sample is an extension of the algorithm NODL for k-DL and based
on the FIND procedure by Ehrenfeucht and Haussler [EH89] to find a decision tree of
rank at most r consistent with the given sample in the absence of noise.

Now we show that NODT is a noisc-ltolerant Occam algorithm for decision trees of
rank r and hence the class of decision trees of rank at most r is polynomially learnable in
the presence of classification noise for any n = r > 0. Throughout the following sequence

of lemmas and theorems, we assume that n = r >0,

Lemma 7.2 Suppose Qp = n; + L2 and @, = S=imliS|. If RFINDT(S,r, Qr, Q1)
outputs a decision tree T (not “none”), then T is a decision tree of rank at most r and
F(T, & e[l — 2uy
%—} = m+ {—4;1

Proaf. First it is clear that if RFINDT(S,r,Qp, @r) returns a decision tree (which
occirs either in step 1, 4b, or 4c), then by the definitions of reduced and rank it will be
a reduced decision tree over V;, of rank at most r.

Next any decision tree T output by RFINDT has the following property. For any leaf,
say j, of T, let 5(j) denote the set of all examples in § which reaches the leal j. Then
F(T,5GN/1S() £ Qr or |S(7)] < Q. Therefore the total number of disagreements of
T with 5, that is F(T, 5), 1s at most the sum of

> F(1LsG) £ X Qr-ISG)

all leaves 3 all leaves ;

Qe 3 ISG)

all leaves §

= (m +e(1 — 20,)/8)|S]

and

1 fenyT Le(l —2m)
Qi 2 (T) - 2 A{en/r) Hentry Slen/r)
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ALGORITHM NODT
Input:

s A sample S of mn examples drawn from EX,() subject to classification noise,

e Integers n,r = 0 and positive fractions ¢, and n;, with 0 <5 < m < 1/2.
Output:

A decision tree 1" of rank at most r such that F(T,S)/m < m 4+ (1 — 2m)/4
if one exists, else “none”.

Frocedure:
1. Calculate the following:

E{l — 21‘,‘5] .

_ el —2mp)
Qr = 4[en;’r Fengry b
2. Call REINDT(S, v, Qp, Q1);
3. Let T =RFINDT(S,r, Q¢ Q;);
4. Output T and halt.

Figure 7.2: Efficient robust learning of decision trees of rank r
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ALGORITHM RFINDT(S,r,Qr, Q;)
Input:

A sample S, intcgers r,@; > 0 and a positive fraction Q.

Oulput:

A decision tree T' of rank at most r or “none”.

Frocedure:
1. If F(1,5)/]S| £ Qp, stop and return the decision tree T = 1:
If F(0,5)/S] £ QF, stop and return the decision tree T = 0;

2. I[|S] = Qr and F(1,5) < F(0,5), stop and return the decision tree T = 1;
IT|5| < @ and F(0,5) < F(1,5), stop and return the decision tree T = 0:

3. lf r = 0, stop and return “none”;

4. For each informative variable z € V,

(a) Let T =RFINDT(S§,r —1,QF, Q) and Tf =RFINDT(S?,r —1,Qr, Q;);

(b) If both recursive calls are successful (i.e., neither Iy ="none”, nor
T =“none”), then stop and return the decision tree with root labelled
0-subtree T3 and l-subtree T77;

(c} If one recursive call is successful but the other is not, then

i. Reexecute the unsuccessful recursive call with rank bound r instead of
r—1; '

ii. If the reexecuted call is now successful, then let T be the decision tree with
root labelled r, 0-subtree T} and 1-subtree TF, else let T' =“none”;

iit. Stop and return T

5. Stop and return “none”.

Figure 7.3: Finding a decision tree of rank r
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< (e(1 — 2m)/B)|5]

since the maximum number of leaves of any reduced decision trees over V,, of rank r is

bounded by (en/r)” by Lemma 7.1. Hence F(T, S)/|S| < m + (1 — 2m) /4. O

Lemma 7.3 Let T be a reduced decision tree over V,, of rank r, 5 be a sample consistent
with T, and z be a variable which appears in T'. Let T§ (T) denote the decision iree
obtained by replacing cvery subtree with root labelled x of T by the 0-subtree (1-subtree)

of that subtree. Then 1 (17) is a reduced decision tree of rank at most r consistent with
S (S7)-

Proaf. Tt is straightforward from the definitions of “rank” and “reduced”, and the
observation that if a decision tree T is consistent with a sample S, then I is consistent with
any subset of S, and for every example (@, 1) in S} (57) and for z; = z and @ = (ay, ..., a,),

1’1,;=U(|'I,'=]]. O

For a term t over V,, let var(t) = {z € V, | z or its negation = appears in t}. For a
sample S and a term t, let Sy = {{d,l) € § | (&) = 1}.
We say a decision tree 1" is correct w.r.t. a sample § drawn from EX () for a decision

tree 1y if for every example (d,1) in S, fr(d) = fr,(d@).
Lemma 7.4 Suppose Qp = m_|_*_|f%tl and Q; = %f—;‘} |S]. Suppose also that S consists

of m examples drawn from EX, () for the target decision lree over V, of rank r and

- 128(enr)" I (2-3")1

TE AT e T\

Then with probability af least | — §/2, RFINDT(S,r,Qp, Q) outpuls a decision lree T,

Proof. Let Ty denote the target reduced decision tree over V, of rank r to be learned
and a sample S is drawn from EX,() for Ty

First we prove that with probability at least 1 —§/2, a sample 5 is drawn such that for
all terms ¢ over V,,, whenever |Sp| = @y, the number of occurrences of classification noise
in S| is at most Q- |Spy|. Let a term ¢ over V; be fixed. By the Hoeflding's inequality

lemma, whenever |Sg| = @y, the probability that classification noise occurs more than

Q- |5y times is at most

GE(ns, Qrym + (1 — 2my) /8)
o= Hell—2ms)/8)* Qs

|

GE(n,Qr,Qr)

14
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and the lower bound on m implies that this is less than /(2-3"). Since there are at most
3" terms aver Vg, the probability thal for all terms ¢ over V,, the number of oceurrences
of classification noise in Sy is at most Qr - |Syy| is at least 1 — §/2. This completes the
proof.

Second we assume that for all terms ¢ over V,, the number of occurrences of classifica-
tion noise in Sy is at most QF - |Spy| whenever |Sy| 2 Q. We show that this assumption
implies (*) that for a term ¢ over V), if there is a correct reduced decision tree T over
Vi —var(t} of rank at most v’ w.r.t. Sp)s then RFINDT(Sp, v, Qp, Q) outputs a decision
tree. We prove it by induction on r’ and the number i of variables in V, — var(t).

Ilr" =0ori=0,a correct reduced decision tree T of rank ' w.r.t. Sy consists of
only a root node labelled either 0 or 1 (L.e., T =0 or T = 1), By the above assumption,
|.‘?[r]| = Qr, F(0, Sy) < Qp - |5l or F(L,5) < Qp |5y Hence RFINDT outputs a
decision trec.

Next suppose that (*) holds for r' = 1 and i, and for #* and i — 1. In the case that a
correct decision tree ' w.r.t. Sy consists of only a root node (i.e., T =0 or T = 1), by
the above assumption, RFINDT outputs a decision tree T = 0 or T' = 1. In the case that
T has more than two internal nodes, we prove that RFINDT cannot return “none” in
step 5 and 4c. First we prove that RFINDT cannot reach step 5 and return “none”. Let
y be the variable labelled at the root node in a correct reduced decision tree T' of rank .
Since RFINDT will eventually find the variable y when both recursive calis for any other
informative variable z in step 4a are not successful, we assume that RFINDT chooses the
variable y as an informative variable in step 4. (In the case that the variable y is not
informative on Syq), either Sy or Sli|p 18 empty. We assume that Spg 18 empty. Then
Sy = Spj} = Sieay) and by Lemma 7.3, the 1-subtree of T' is a correct reduced decision
tree over V,, — var(t A y) of rank at most r* w.r.t. Sitayj- By the inductive hypothesis,
RFINDT(Sgay), ™', Qr, Q1) oulputs a decision tree, and so does RFJ'NDT[SI,I, . Qr, Q1))
By the definition of rank,

(1) both O-subtree and 1-subiree of T have the rank »' — 1 or

(2) either D-subtree or 1-subtrec of T has the rank at most + — 1 and the other

has the rank +'.

In both casces, by Lemma 7.3, the O-subtree of T is a correct reduced decision tree over
Va = var(t) — {y} w.rt. Sy¥ and the 1-subtree is a correct reduced decision tree over
Vi —var(t) — {y} w.r.t. 51q}- By the inductive hypothesis, both recursive calls RFINDT
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for Sgh and Sy} are successful, and hence RFINDT(Sy. 7', Q@r,@1) cutputs a decision
tree.

Next we prove that RFINDT cannot return “none” in step 4c. Assume thal in step
4a, RFINDT(Sg%,r" — 1,Qr, Q1) is snccessful for an informative variable x. Note that
any informative variable does not appear in the term ¢. 1f z does not appear in T,
then T is a correct reduced decision tree over V, — var(t) — {z} of rank r’ w.r.t. Sy =
Sitas). If = appears in T, then by Lemma 7.3, T is a correct reduced decision tree
over V, — var(t) — {z} of rank at most " w.rt. Spyi. By the inductive hypothesis,
RFINDT(Sg7,7',QF, Q1) returns a decision tree. This completes the proof of {(*).

Since Ty is a correct reduced decision tree over V, of rank r w.r.t. 8, RFINDT(S,r,QF, Q)
outputs a decision tree with probability at least 1 — 4/2. |

Lemma 7.5 For any nonempty sample S drawn from EX,() for a decision tree over V
and r > 0, the running time of RFINDT(S, v, Qg, Q) is O(|S]|(n + 1)*).

Proof. The proof is almost same as the one for the time analysis of the procedure
FIND by Ehrenfeucht and Haussler in [FH89].

Let t(z, ) be the maximum running time needed for RFINDT(S, r,QF, 1) when 5 18
drawn from EX,() for a decision tree over V, of rank at most r and at most i variables
are informative on §. Let m = |5].

If i = 0, then t(i,r) is O(1), since [S| = 1 in this case. If r = 0, then (i, r) is
clearly O(m). If r > 1, then the time required to test whether F(1,5)/|5| < Qg or
F(0,5)/]15] £ @Qr (step 1), to test whether |S| < @ (step 2), to determine which
variables are informative (step 4), and to perform the other miscellaneous tests is O(mn).
Each of the two recursive calls for an informative variable z in step 4a takes time at most
t(i — 1,7 — 1) since the variable r is no longer informative in either 57 or S7. Since there
are at most 7 informative variables on §, these calls are made at most ¢ times in the
course of the loop of step 4, which gives a total time for all executions of step 4a of at
most 2it(i — 1,r — 1). The only remaining step is 4(c)i, where a recursive call is made
either to RFINDT(S5Z, v, QF. @) or RFINDT{ST,r,Qr, Q) for some informative variable
z. This takes time at most t(i — 1,7). Since this step terminates the loop, this call is
made at most once. It follows that for r = 1,

ti,r) < Olmn)+20-t(i—Lr—1)+ i —1,r),

which is bounded by O(mn(i+1)* ' +m(i+1)*") (see Ehrenfeucht and Haussler [EH89]).
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Since 1 < n and m = |5, this implies that the running time for RFINDT(S, r, Qr, Q1)
is O(|S)(n+1)). O

Theorem 7.6 NODT is a noise-tolerant Occam algorithm for decision trees of rank r.
Proof. Tt is straightforward from Lemmas 7.2, 7.4, and 7.5. O
Now we have the main theorem.

Theorem 7.7 r-DT(n) is polynomially learnable in the presence of classification noise.
Proof. It is straightforward from Theorems 5.5, 7.6, and Lemma 7.1. m

Elomaa and Kivinen [EK91] had independently achieved this result based on our result
(Theorem 5.5) for noise-tolerant Occam algorithms and by using the same technique as
ours shown in Chapter 6 for proving the polynomial learnability of k-DL in the presence
of noise,

Recently Blum [Blu81] has shown that every decision tree of rank r can be represented
as a decision list in r-DL, that is, r-DT(n) is a subclass of r-DL(n). The idea to construct
a decision list in r-DL corresponding to an arbitrary decision tree of rank r is as follows:
Find a leaf that is closest to the root in the decision tree. Form a term that corresponds
to the path from the root to the leaf. Add a pair of the term and the label of the leaf to
the decision list. Delete the leaf and the node closest to the leaf from the tree. Repeat
the above procedure until no leal exists,

Combined with this result, it is straightforward to show that r-DT(n) is polynomially
learnable in the presence of classification noise in terms of r-DL(n) by using NODL. Now
it is interesting for us to compare the sample size needed by NODT with the one by
NODL. By Lemma 7.4, NOD'T' gives the sample size m > :31:-:: < In (1‘}:) By Lemma
6.3, NODL gives the sample size m > ;g%ln (2”%"-’), where M = O(n"). Thus
NODT might give a better bound than NODL.



Chapter 8

Conclusions

We briefly summarize the results presented in this thesis with some future problems. The
material of this thesis focuses on two topies. The first topic is the study of learning formal
languages from queries. Two learning algorithms, RCFG and CFGQ, for context-free
grammars presented in Chapters 2 and 3 use information on the grammatical structure
of the unknown language, and it has been shown that such an additional information is
quite useful to break inherent difficultics in learning formal languages (e.g., the weakness of
learning from positive presentations and the computational hardness of learning context-
free grammars from queries).

In Chapter 2, we have introduced a new normal form for context-free grammars, re-
versible context-free grammars, and shown that the class of reversible context-free gram-
mars can be identified in the limit from positive structural presentations. We have demon-
strated the algorithm RCFG for learning reversible context-free grammars that runs in
time polynomial in the sum of the sizes of the input skeletons. However this result does
not imply “polynomial-time identification in the limit” in some sense. Pitt [Pit89] has
recently discussed and analyzed various definitions for polynomial-time identification in
the limit to find natural formal definitions that capture the notion of “efficient” identi-
fication in the limit. In the course of his study, he has proposed two important notions
that seem to be needed for natural definitions, pelynomial update time and implicit er-
ror of prediction. His work is notable here, so we describe these notions by using our
terminology in the case of identification of tree automata. (See [Pit89] for the general
definition.) The algorithm implemented so as to have polynomial update time is allowed
at most p(n,m; + my + --- 4+ m;) running time to output it's i-th output, where p is
any polynomial function of two variables, n is the number of states of the unknown tree

automaton A, and m; (1 < j < i) is the size of j-th input skeleton in a presentation of
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A. The algorithm is said to make implicit error of prediction at stage i if it's i-th output
of tree automata does not accept (7 + 1)-st input skeleton. Ultimately, he has arrived at
what he believes to be one of few possible natural defiritions for polynomial-time iden-
tification in the limit: Tree automala can be identified in the limit in polynomial time
if and only if there exists an algorithm M such that for any tree automaton A, M has
polynomial update time and the number of implicit errors of prediction made by M is at
most g(n), where ¢ is a polynomial and n is the number of states of A. By Theorem 2.20,
the algorithm RTA.. has polynomial update time. However according to the result of
Angluin [Ang90], no algorithm for learning reversible skeletal tree automata can achieve
the polynomial number of implicit errars of prediction. Thus the number of implicit errors
of prediction made by RTA,, is not bounded by any polynomial in n. Theorem 2.22 only
shows that the number of implicit errors of prediction made by RTA., is finite. An inter-
esting future work concerned with this problem is to find a class of context-free grammars
which is a normal form [or context-free grammars and can be identified in the limit from
positive structural presentalions in polynomial time in the sense of Pitt.

In Chapter 3, we have considered the problem of learning the whole class of context-
free grammars using queries and shown that the whole class of coniext-free grammars
can be exactly learned from structural membership queries and structural equivalence
qucrics in a polynomial computation time. By an easy argumenl based on the result in
[Ang81], it can be shown that there is no polynomial-time algorithm using only structural
membership queries for this problem even if we are given a bound on the size of an skeletal
tree automaton for the structural deseriptions of derivation trees of the unknown Eralnmar.
The result of Angluin [Ang90] implies that there is no polynomial-time algorithm using
only structural equivalence queries for learning the whole class of context-free grammars.
Recently Angluin and Kharitonov [AK91] have shown that assuming the intractability
of quadratic residues modulo a composite, inverting RSA encryption, or factoring Blum
integers, there is no polynomial-time algorithm for learning context-free grammars from
membership and equivalence queries. Thus the problem of learning the whole class of
context-free grammars from membership and equivalence queries is computationally as
hard as those cryptographic problems, for which there is currently no known polynomial-
time algorithm. These observations of negative results indicate that membership queries
and information on the grammatical structure are essential to our positive result.

An important future work based on our theoretical results is to find their practical
applications. As Crespi-Reghizzi et al. [CRML73] have suggested, the grammatical in-

ference may be useful in specilying programming languages. A practical application of
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our algorithm is designing programming languages or synthesis of compilers, because the
syntax of a programming language constitutes a context-free language in principle and
the structure or syntax of programming languages is defined by means of a context-free
grammar. As stated in [CRML73], the definition of grammatical structure and the def-
inition of meaning should be interconnected since structural information is an aid for
interpreting a sentence. Hence in an application of formal language learning to design-
ing a programming language, the learned grammar should be constructed so that it not
only generates sentences correctly but also assigns to each sentence the structure required
by the designer. Then our approach will provide an effective melhod for the process of
programming language design. We [TSO91] are also investigating an application of our
learning algorithms to the improvement of usability of a syntax-directed editor. We are

constructing a “syntax-directed editor customizable from examples and queries”.

The second topic of this thesis is the design and analysis of algorithms for learning
decision trees from large data in noisy environment. We have focused on the problem
of learning Boolean functions represented by decision trees from large data and assumed
that the data contain some noise. In Chapter 5, we have developed a technique of building
efficient robust learning algorithms, called nofse-tolerant Occam algorithm, in the pres-
ence of classification noise, and shown that using a noise-tolerant Occam algorithm for
a class of Boolean functions, one can construct a polynomial-time algorithm for PAC
learning the class in the presence of classification noise. In Chapter 6, we have presented
a noise-tolerant Occam algorithm for kDL and hence conclude that k-DL is polynomi-
ally learnable in the presence of classification noise. This strictly increases the class of
Boolean functions that are known to be polynomially learnable in the presence of classi-
fication noise: the only example of a class of Boolean functions is k-CNF that has been
shown to be polynomially learnable in the presence of classification noise [AL88] and k-
DL properly includes k-CNF. In Chapter 7, we have extended the noise-tolerant Occam
algorithm for decision lists to the one for decision trees and conclude that the class of
decision trees of rank at most r is polynomially learnable in the presence of classification

noise.

Sloan [S1o&9] have introduced two new models between the classification noise process
and the malicious error model to show that they can be “pushed towards one another”.
He has exhibited a more severe model of noise than classification noise process where
we can still tolerate the noise rate n less than 1/2. The noise model, called malicious

misclassification model, is the following:
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Independently for each example (@,1), with probability 1 — 5, the correct
example (d,1) is returned and with probability n, the example (&, I') is returned
where !" is a label about which no assumption whatsorver may be made.

He has argued that this model is a very strong model of classification noise and could be
used to well model the case where “borderline” examples from the domain are misclassified
much more than “obvious” examples, which is a case appealing to intuition. By a simple
argument similar to the one presented by Sloan [S1089], we can strengthen our algorithms,
POLY-LEARN, NODL, and NODT, to work in the malicious misclassification model and
tolerate the noise rate i less than 1/2.

It is also important for us to have empirical studics and to see how well our algorithms
work in a practical situation. Quinlan’s research [QuiS6a) is a good empirical study of
the effects of different sorts of noise on learning decision trees. It is an important future

problem to evaluate our algorithms empirically and compare its result with Quinlan’s one.
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