ICOT Technical Report: TR-722

TR-722

Embedding Negation as Failure into

a4 Muodel Generation Theorem Prover

by
K. Inoue, M. Koshimura & R. Hasegawa

December, 194

1991, 1ICOT

Mita Kokusai Bldg. 21F (03)3456-319] ~5
" :D | 4-28 Mita |-Chome Telex 1COT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Embedding Negation as Failure into
a Model Generation Theorem Prover

Katsumi Inoue Miyuki Koshimura® Ryuzo Hasegawa

Institute for New Generation Cm‘npllter Technology

1-4-28 Mita, Minato-ku, Tokyo 108, Japan

phone: +81-3-3456-2514

email: inoue®icot.or.jp, koshi®icot.er.jp,
basegawalicet.or.jp

November 11, 1991

Abstract

Here, for the first time, we give an implementation which computes answer
sets of every class of logic program and deductive database. The proposal is
based on bottom-up, incremental, backtrack-free computation of the minimal
models of positive disjunctive programs, topether with integrity constraints
over beliels and disbeliefs. The procedure has been implemented on top of
a model generation theorem prover (MGTP} on a distributed-memeory mul-
tiprocessor machine (Mulli-PSI), and is currently being applied to a legal
reasoning system developed at ICOT.

1 Introduction

This paper presents & novel and simple procedure which computes the models
of logic programs containing negation-as-failure formulas. In traditional top-
down proof procedures such as SLDNF-resolution, not P succeeds if there
is no top-down proof of P; the meaning of negation as failure is only pro-
cedural. On the other hand, in recent theories of logic programming and
deductive databases, declarative semantics have been given to extensions of
logic programs, where the negation-as-failure operator is considered to be a
nonmonotonic modal operator [7, 8, 14]. In particular, logic programs or de-
ductive databases containing both negation as failure and classical negation
can be interpreted as Reiter's default theories [18] or disjunctive defaunlt the-
ories [10]. With these new semantics, logic programming can be used as a
powerful knowledge representation tool, whose applications contain reasoning
with incomplete knowledge [B, 4], expression of “don’t-care” nondeterminism
[19], exception handling [13], default reasoning and abduction [11].

However, for these extended classes of logic programs, the top-down ap-

*Presently at: Toshiba Information Systems

proach cannot be used for their computation because there is no local prop-
erty in evalnating programs. For example, there has been no top-down proof
procedure which is sound with respect to stable model semantics [7] for gen-
eral logic programs. Thus we need bottom-up computation for evaluation of
the nonmonotonic operator nef. This area is progressing, and there have
been some proposals for computing stable models of general logic programs
(19, 3, 21]. Unfortunately, these previous approaches are only applicable
to a simple class of programs so that it is difficult to deal with disjunctive
databases,

We show a bottom up computation of answer sets for any class of logic
programs, including the extended disjunctive databases proposed by Gelfond
and Lifschitz [9] the proof procedure of which has not been found. Bottom-up
computation reasons forwards, starting from unconditional literals, accumu-
lating proved literals, and outputting models of programs. In evaluating not P
in a bottom-up manner, it is necessary to interpret not P with respect to a
fixpoint of computation because even if P is not currently proved, P might
be proved in subsequent inferences. We thus come up with a completely dif-
ferent way of thinking for net: when we have to evaluate not P in a current
world, or a partial model, instead of computing “negation by failure to prove
P, we split the world into two: (1) the world where P is assumed not to
hold, and (2) the world where it is necessary that P holds. Each negation-
as-failure formula not P is thus translated into negative and positive literals
with a modality expressing belief, i.e., “disbelieve P™ and “believe P7.

The basic idea of bottom-up computation is thus to translate any logic
program (with negation as failure) to a positive digjunctive program (without
negation as failure) [16] of which a maodel generation thearem prover, like
SATCHMO [15) or the MGTP [6], can compute the minimal models. Some
pruning rules with respect to “believed™ or “disbelieved” literals are expressed
as integrity constraints that are dealt with by using object-level schemata on
the MGTP [12]. The MGTP then finds all answer sets incrementally, without
backtracking, and in parallel. The proposed method is surprisingly simple
and does not increase the computational complexity of the problem more
than computation of the minimal models of positive disjunctive programs.
The procedure has been implemented on top of the MGTP on a distributed-
memory multiprocessor machine (Multi-PSI), and is currently being applied
to a legal reasoning system. While we use the MGTP to generate models
in this paper, the proposed transformation method can be linked with any
method to compute models [5, 1] ar a fixpoint construction like [17].

2 Positive Disjunctive Programs

This section shows how the MGTP (6] computes the minimal models of a
positive disjunctive program, that is, a disjunctive database [9] which contains
neither negation as failure nor classical negation. The MGTP can deal with
this class of programs, and in later sections every other extended program
can be shown to be translated to a positive disjunctive program.

2.1 Minimal Models
A positive disjunctive program [16] is a set of rules of the form:
A]_I...l.n‘h"i—ﬂ;.l_l’,...,-“.m-, {l}

where m > | > 0 and each A; is an atom. According to [9], we use the
connective “|" mstead of “v" although each A; (I = { > 1) is a disjunct of the
consequedt of the rule. When ! = 0, a rule of the form

— Ay iy Ay {2]

is called an integrity constraint '.

The meaning of a positive disjunctive program ¥ can be given by the
minimal models of ¥ [16]. We represent the semantics in a similar way to
the definition given by Gelfond & Lifschitz [9], as follows. A rule containing
variables stands for the set of its ground instances. We denote the set of
ground literals i the language with £. An answer set of £ is any minimal
subzet § of £ such that;

1. For any ground rule 4, | ... |4; — dggq, -, A (1 2 1) of K,
if 441,...,Am € 5, then for some 1 (1 <1< 1), A; € &;

2. For any ground integrity constraint — Aj, ..., Am of E,
if Ay,... A €8, then 5 = L.

We say I is contradictory if it has the answer set L. It is easy to see that
a contradictory program has the unique answer set £. Unless a program
is contradictory, any answer set of ¥ is a set of ground atoms, and the set of
answer sets of ¥ is equivalent to the set of minimal models of the program
when each rule of the form (1) in X is identified with a clause:

ﬁj?..."ﬂ'ﬂ;"#""ﬁ,!+1"u"u+v_h4mn

Also, ¥ is contradictory if and only if T is unsatisfiable in its clausal form.

"'We allow for inbegrity constraints, that is, rules with empty consequents, in every class
of logic programs and deductive databases. While this form of rules is not excluded by
'Gelfond & Lifschitz’s definitions [7, 8, 9], the corresponding semantics are not explicitly
described .

2.2 MGTP

The answer sets or the minimal models of positive disjunetive programs can be
computed by using the MGTP [6]. The MGTP is a parallel and refined version
of SATCHMO [15], which is a bottom-up model generation theorem prover
that uses hyperresolution and case-splitting on non-unit derived clanses. In
order to emphasize that the MGTP computes the models in a bottom-up
manner, we express each rule of the form (1) in a positive disjunctive program

ab
Atpts oy Am — Ay] ... | Ar. (3)

Given a positive disjunctive program I, the MGTP cxtends model candi-
dates & as follows. A model candidate is a subset of £ and the initial set Sy
of model candidates is given as {#}. Let & be a set of model candidates in
gome stage. The MGTP applies the fallowing two aperations to §.

1. For any § € § and any ground rule in £ of the form:
Aty ooy A — A1 o |4y (T2 1),

if Aiy10e...Am € 5 and Ay,...,A; ¢ 5, then remove S from &, and
add SU{A;}to Sforeveryi=1,...,1[;

2. For any S € § and any ground integrity constraint in ¥ of the form:
f'h, - Am —+

if A1,...,4An € 5, then remove § from S.

The above two operations correspond to two cases in the definition of answer
sets. If the MGTP cannot apply any operation, it stops and returns the model
candidates S in the last stage.

In the above two operations of the MGTP, we can deal with variables
more elegantly. Instead of using ground instances of the rules, for each rule
with variables in the form {3) we can obtain a substitution o such that
Aipo,..., Ao (I = 1) is satisfied in a model candidate §. We call the
process of obtaining such a substitution ¢ a conjunctive matching of the an-
tecedent literals against elements in 5. Note that this process does not need
full unification if the range-restrictedness condition [15] is imposed on the
rules. A rule is said to be range-restricted if every variable in the rule has
at least one occurrence in its antecedents. It is sufficient to consider one-way
unification, i.e., matching, instead of full unification with oceurs check since
every model candidate constructed by the extension operation should contain

only ground atoms. This is also a nice property for the implementation of the
MGTP in KL1 (the kernel langnage for parallel inference machine developed
in ICOT), because KL1 head unification is simply matching. The MGTP also
improves the efficiency by removing redundant conjunctive matching with a
ramified-stack algorithm [6].

When there are more than two rules whose antecedents are exactly the
same, we do nol want to perform the same conjunctive matching more than
once. For this purpose, the MGTP allows rules of the following form:

Arpr, ooy Ay = Aqg, oo Ay, | s f.»‘l,_l‘h...,..l‘iziy,l, {4}

where m > 1 > 0, k; 2 1 (1 < ¢ <), and each 4, or 4,; is an atom. Each
Ai1,-.., A, Tepresents a conjunction of atoms. We call 2 rule of this form
(4) an MGTP rule. In summary, the two MGTP operations are formally
defined as follows. Let & be a set of model candidates in some stage, and &
any element of §.

1. (Model candidate extension} If there is an MGTP rule of the form
Apgry s Am = Ay A | oo [Ay Ay (12 1)

and a substitution ¢ such that A;e,..., 4,0 € 5, and it does not
hold that 4;,0,...,4,3,0 € § for any i = 1,...,1, then remove § from
&, and add SU {Amv,-- . ,4‘1",;-.0'} toSforalli=1,...,15;

2. (Model candidate rejection) If there is an MGTP rule of the form
Ah ey -"lm —*

and a substitution o such that Aye, ..., Ape € 5, then remove 5 from

8.

The MGTP is defined as a fixpoint operator, whose inputs are a set ¥ of
MGTP rules and an initial set Sy of model candidates (usually Sp = {0}),
and whose output MGTP(X,S) is the set of model candidates closed under
the above two operations.

In the following, we assume that function symbols in the language are only
constants and that the number of constants is finite. When a sét £ of MGTP
rules satisfies these assumptions as well as the range-restrictedness, we say ¥
is finitely groundable [2]. It is easy to see that a finitely groundable program
is decidable. Let ns denote the set of minimal (in the sense of set inclusion
of literals) model candidates by min(&). For any finitely groundable set T of
MG'I'I? rules, the following properties can be shown to hold.

5

Proposition 2.1 If T is not contradictory, min(MGT P(X, {0})) is equiva-
lent to the answer sets of . O

Cbrollary 2.2 MGTP(Z,{0}) = 0 if and only if ¥ is contradictory. O

It is guaranteed that a finitely groundable set of rules has at least one
minimal model if it is satisfiable [2]. The next is the basic property of the
MGTP as a theorem prover.

Cbrollary 2.3 Suppose that ¥ can be identified with the corresponding set
of clanses. MGTP(L,{0}) =0 if and only if £ is unsatisfiable. O

3 General Logic Programs

This sectiord presents how to compute the answer sets of a general logic pro-
grarn [7], that is, a logic program which contains negation-as-failure formulas
but does not contain classical negation. While this class of logic programs
is an instardce of the more general class of disjunctive databases [9] intro
duced in the next section, we shall first explain the basic idea of bottom-up
computation of negation as failure in this section.

A genernl logic program is a set of rules of the form:

Ay = Appq, oo, A, not A, ..., not Ay (5)

where, n > m > 120,121 >0, and each A; is an atom. The meaning of a

general logic program is given by the stable model semantics [7]. We present
the semantics in a similar way to the definition of [10], instead of using the
program reduction given in [7]. Let II be any general logic program, and § a
subset of £. § is an answer set {or stable model) of 11 if it coincides with the
smallest subset 5' of £ such that:

1. For any ground instance of any rule of 11
Ay = Ay, oen, A, ot Apgy, ..., not Ay (T=1),
if Ajgpeeeey Ay € 58 and Apyry....4, € 5, then 4 € 57
2. For any ground instance of any integrity constraint of IT
— A A, ot Ay, ..., not Ay

if Ay, dm € S and .rlm+1-.---,AnES, then §' = L.

.#Lgain, unlesd II is contradictory, that is, if II does not have the answer set L,
every stable model of II is a set of ground atoms. Unlike positive disjunctive
programs, a general logic program may not have any answer set. We say 11
is fneoherent if it has no answer set. Thus, any program is either a consis-
tent program (which has consistent answer sets), contradictory program, or
ihcoherent program [11].

Notice that the above definition of stable models is not constructive; 5 is
defined by using itself so that a negation-as-failure formula not P is true if P
is not true in 5. This § can be considered as a guess of a possible answer
set. If S coincides with the smallest set of atoms deductively closed under the
rules of 11, then the guess is correct so that it is acceptable as an answer set,
Hence, the most direct way to compute the stable models of II is to generate
all possible puesses and then test if each guess is correct. This method is too
explosive to realize because we have to generate and test 2 sets of atoms,
where A is the set of ground atoms.

We thus make the number of guesses as few as possible. Let 1l be the
set of rules in 11 that do not contain not, and Iy the rest of the rules in H. If
Il has consistent stable models, then every stable model § should contain the
least model M of Ilp. To compute the rest of the atoms in §, we make guesses
as to whether each atom P appearing as not P in Iy is present. These guesses
are delayed as long as possible: if there is a rule in which all antecedents that
do not contain not are satisfied by a set 5 of atoms such that 5 2 M, then
we make a guess with respect to every not P in the antecedents, and extend
58" by its consequent together with the guess that all such P's will not be
present.

Now, we are ready to compute the stable models of II by using the MGTP.
Based on the above discussion, we translale each rule in IT of the form:

A] — AI'{']‘. Pray Am, ﬂﬂt;“.m+l1 s ny ﬂf}t:q.n_
to the following MGTP rule:
Apge vy A — KAdpgae o KA A KA o0 [KAy . {6}

The intuitive meaning of this MGTP rule is as follows. KA is a guess that
A should hold, or A is believed, and =K A is a guess that 4 should not hold,
or A is disbelieved. In other words, K4 (=K A) imposes the condition that
A must hold {A must not hold). For any MGTP rule of the form (6), if
a model candidate 5§ satisfies Aj4q1,..., Am, then §' is split into n — m + {
(n2>m=>10,0<1<1)model candidates. In the case of [= 1, one of the

split motel candidates is assumed that any of Am41,..., Ay is not satisfied so
that the consequent 4; is satisfied. Each of the rest of n—m model candidates
is assumed that one of 4; (m + 1 < 1 < n) is satisfied.

We might relate the symbol K introduced in literals K A, =K A with the
modal aperatar K in an epistemic logic. We call these literals K-literals,
and other literals without the symbol K objective literals. However, we avoid
defining the symbol K either as a new connective or as a modal operator since
we would like to remain within the MGTP calculus, or positive disjunctive
programs, so that both positive and negative K-literals can be dealt with as
atoms. To do so, we need to give the conditions which K-literals should satisfy.
The following two schemata are thus introduced to reject model candidates
when their guesses turn out to be wrong:

¢ If some ground instance of some atom A holds in 5" and is not believed
in §', then reject 5.

“KA, A— for every atom 4. (7]

o If some ground instance of some atom A 15 believed in 5' and is not
bélieved in &', then reject 5.

KA, KA — for every atom A. (8)

Given a general logic program II, we denote by #r (II) the set of rules con-
sisting df the two schemata (7) and (8), and the MGTP rules obtained by
replacing each rule (5) of IT with a rule (6).

The MGTP then computes the fixpoint MGT P(try(1T), {B}) of model can-
didates. Each model candidate output by the MGTP contains K-literals as
well as objective literals. Next is the condition that all of guesses made so far
in a model candidate are correct. Let be §' € MGT P(tr (11}, {0}).

o If any ground instance A of any atom is believed in §', then it must be
trie in 5"

For every ground atom A, if KA € &', then Ac & (9)

We call condition (®) the T-condition. It is named after axiom T in modal
logic. That is, in the fixpoint each K-literal satisfies the condition if the model
candidate corresponds to a stable model. Note that the T-condition is nsed

as a test and cannot be a schema. We cannot write the condition as

KA — 4 for every atom A

8

because our K-literals are merely gunesses and we should confirm that A is
actually derived from the program.

Now, for each model candidate 5 computed by the MGTP, we denote the
set of literals obtained from §' by removing all K-literals by objective(S").
The following four theorems guarantee that the above computation by the
MGTP is sound and complete with respect to the stable model semantics.

Theorem 3.1 If a model candidate & in MGT P(iry(I1),{0}) satisfies the
T-condition (9), then § = objective(5') is a stable model of II. O

Theorem 3.2 If § # £ is a stable model of II, then there is a model candi-
date 8§ in MGT P(try(11),{0}) such that § = objective(S’) and 5§ satisfies
the T-condition (9). O

Theorem 3.3 MGTP(try(I1),{@}) = 0 if and only if IT is contradictory. O

Theorem 3.4 II is incoherent if and only if MGT P(try(1),{0}) # @ and
there is no model candidate which satisfies the T-condition (9). O

In order that each MGTP rule of the form (6) may be range-restricted, in
the original rule of the farm (3) from which the MGTP rule is translated, every
variable has at least one occurrence in its antecedents that does nol contain
not. This restriction is as natural as the range-restrictedness in positive dis-
junctive programs, and can be satisfied in most Al applications. Af least, rules
can be easily converted in order to satisfy this kind of range-restrictedness.

Example 3.5 Let the general logic program II; consist of the following two

rules:
P not},

Q — not B.
These two rules are translated to the following MGTP rules:

— K@, P|KQ,
— KK Q|KE.

Then, try(II,) consists of these two rules and the two schemata (7) and (8).
Now, let us see how the MGTP computes the stable models of II;. We start
from the initial model candidates Sy = {0}.

1. & = {{-K@, '}, {KQ}} by extending Sy with the first MGTP rule.

2. Sz = {.5'11. 521 S&, 54 }, v_.rhere g = {‘IKQ,P,‘—!KH1Q}*
5 ={-K@,F KRL Sy = {KQ,-KR,Q}, and §4 = '[H-Q-rKR}-r
by extending Sy with the second MGTP rule.

9

3. .:9.3 = { §a, §3, 54 } by rejecting Sy with the schema (7).
4. No operation is applicable to S3. Hence, MGT P(tr(11;),5p) = 8a.

5. I &3, only §; satisfies the T-condition (9). Hence, objective(83) = {Q}
is the unique stable model of II; by Theorems 3.1 and 3.2.

Note that the above computation is independent of both orders of extensions
of model candidates and enumeration of the rules. Furthermore, computation
is tneremental. Consider, for example, that only the first rule is given at first.
In this case, & is the output of the MGTP, in which only {-K@, P} satisfies
the T-tondition (9), showing that {P} is the stable model of the program.
Then, suppose that the second rule is added to the program that contains
only the first rule. This time we can see that the MGTP outputs Sz (80 that
the stable model is again {Q}) by using) as the initial model candidates.

Example 3.6 Let the general logic program I, consist of the following four

rules:
R+~ not R,

R0,
FP—mnot,
G — not .

These rules are translated to the following MGTP rules:
— -KR,R|KR,
Q¢ — R,
= =K@, P K@,
—+ =KP,Q|KP.

In this example, the first MGTP rule can be further reduced to
— KR,

if we prune the first disjunct by the schema (7). Therefore, the rule has
computationally the same effect as the integrity constraint:

—not R .

This integrity constraint says that every answer set has to contain R: namely,
R should be derived. Now, it is easy to see that MGTP(trq(II3),{0}) =
{85, Ss, 57}, where §; = {KR,-KQ,P,KP}, § = {KR,KQ,-KPF,Q, R},
and S = {KR,KQ,KF}. The only model candidate that satisfies the T-
condition (9) is Ss, showing that {{, R} is the unique stable model of II;.
Note that the top-down procedure proposed by Eshghi and Kowalski is not
sound [4, pp.251] because it has a top-down proof of P. In our case, we
can easily check that objective(5s) = {F} is not a stable model becaunse 5
contains KR but does not contain K.

10

4 Extended Disjunctive Databases

An eztended disjunctive database [9] is a set of rules of the form:
Lll-'rFLf""Lf-|-11--*-fLm1nGth+tt---1“ﬂ‘£Ln {lﬂ}

where n > m > [2 0 and each L, is a literal, In particular, when an extended

disjunctive database i a set or rules each of whose consequent consists of at
nlost one literal:

Lf ‘-—LH_[, S Lm., ﬂﬂ\th{.], ---,MLH

fm2m>120,12>12>0),it is called an ertended logic program [E].

Bdth extended logic programs and extended disjunctive databases allow
for classical negation as well as negation as failure. By using these two kinds
of negation, we can easily represent incomplete knowledge [8], exceptions [13],
closed world assumptions [8, 11], defaults and hypotheses [11].

THe answer sets of extended disjunctive databases are defined as gener
alizations of hoth the minimal models of positive disjunctive programs and
the stable models of general logic programs. The following definition is again
based on [10]. Let II be any extended disjunctive database, and 5 a subset
of £. § is an answer sef of I if it is one of the minimal sets of literals 5'
satisfving the conditions:

1. For any ground instance of any rule of 11
Ly]... |LI = Lig1s ooy Lyny 0t Lingery oo oy not Ly, (1 = 1),

if Ljggyoooybpn € 8" and Lngq, ..., Ly € 5, then for some £ (1 <4 < 1),
Lie &

2. For any ground instance of any integrity constraint of Il
—Lyyooey Ly, not Lynyyy ooy mot Ly,
if Ly,....bm € 5 and Lygsqe-e., by € 5, then §' = £;
3. 1f for Some ground atom A4, A € §' and ~A4 € &', then §' = L.

In the same way as general or extended logic programs [11], an extended dis-
junctive database is classified as either a consistent, contradictory, or coherent
database,

We can see that the effect of introducing classical negation into programs
appears in the last condition of the above definition. Intuitively speaking,

each answer set is a possible set of beliefs: each literal in an answer set can be
considered to be true in the belief set. If neither an atom A nor its negation - A
is contained in an answer set, the truth value of A is unknown in the belief set.
Thus the answer set semantics can provide for indefinite answers in answering
queries, and such unknown information can be referred to in an extended
disjunctive database. In these semantics, positive and negative literals have
the same status so that the result of negation by failure to prove A does not
mean that —A is true. Therefore, unlike positive disjunctive programs, we
can no longer interpret extended disjunctive databases as clausal forms of

first-order predicate calculus ?.
To compute the answer sets ol an extended disjunctive database IT, we

translate each rule (10} in I of the form:
Ly| ...\ Lt + Ligry ooy Loy niot Ly o .., miot Ly,
to the following MGTP rule:

Li+‘[,a;-‘ Lm'—i‘

“Klmgprsere s KLn, Ly | oo | KLmgry ooy "KL, Ly |KLpiq [... [KL, .
(11)
The next five schemata are introduced to reject model candidates contain-
ing wrong guesses. Let 5§ be a model candidate.

o If some ground instance of some literal I holds in §' and is not believed
in 5, then reject S’

KL, L — for every literal L € £. (12)

e If some ground instance of some literal L is believed in 5 and is not
believed in 5, then reject §°.

-KL,KL — for every literal L € L. (13)

o If for some literal L and some substitution ¢, §' contains both L& and
Lo, then reject §', where Lo is the literal complementary to Lo: for

instance, when A is an atom, A = =A and =A = A:

L, L — foreveryliteral L € L. (14)

*Tecall that any set of clauses can be interpreted as a positive disjunctive program [16].

12

o If for some literal L and some substitution o, Lo holds in §' and Lo is
believed in &', then reject §°:

KL, L — forevery literal L € L. (15)

e If for some literal [and some substitution o, both Lo and Lo are
believed in &, then reject §";

KL, KL — for every literal L € L. (16)

We now denote by iry(Il) the set of rules consisting of the five schemata, (12},

(13), (14), (15) and (16), and the MGTP rules oblained by replacing each rule

(10) of IT with a rule (11}.
Finally, the T-condition is as follows. Let be §' € MGT P(tra(11), {0}).

¢ If any ground instance L of any literal is believed in 5§, then it must be
true in 8"

For every ground literal L € £, if KL € §, then L € 5. (17)

Theorem 4.1 Suppose that 11 i= consistent, Then,

min({ objective(5') | §' € MGT P(tra(I1), {#}),
5" satisfies the T-condition (17) })

is equivalent to the answer seis of II. O

When the given program II is not consistent, unlike general logic programs,
we cannot identify whether IT is contradictory or incoherent. Here, we have
the following weak results.

Proposition 4.2 (1) If IT is contradictory, then MGT P(iry(I1), {0}) = 0.
(2) If MGT P{try(11),{0}) # @ and there is no model candidate satisfying the
T-condition (17), then II is incoherent. O

From the above result, when MGT P(tr(II},{@}) = @, we can see that
11 is either contradictory or incoherent ®. Anyway, since Il is inconsistent,

*The reason why the MGTP cannot output any model candidate with respect to tra{I)
for an incoherent database T1 is that the fourth and fifth schemata (15), (16) force the
MGTP o prune model candidates that may either result in an inconsistent answer set
L or violate the T-condition {17). Therefore, if these two schemata could be removed
from the translated program, some model candidates wounld remain in the final output
for the incoherent database. However, such a translation would reduce the efficiency of
computation. See also the proof of Theorem 4.1 in the appendix.

13

if our goal is to compute consistent answer sets, this distinction is not very
important, Nevertheless, we could use the following property, which was first
given by [11].

Proposition 4.3 Let IIp be the set of rules in II not containing not. II is
contradictory if and only if Ip is contradictory. O

Since Ip is a positive disjunctive program, its answer sets can be easily
computed so that we can determine whether the whole database II is contra-

dictory or not.

Example 4.4 Let us verify Theorem 4.1 in the example of the extended
disjunctive database II3, which is a slightly modified version of “broken-hand”
example of Gelfond et al. [10]:

Lh-Usable — not Abl,
Rh-Usable «— not Ab2,

Abl — =~ Lh-Usable,

Ab2 — = Rh-Usable,
~Lh-Usable| = Rh-Usable — .

(Of thesk, the first two rules are translated to the following MGTP rules:

— =K Abl, Lh- Usable| K Ab1 ,
— =K Ab2, Bh-7sable | KAbZ .

It is easy to see that MGT P(try(ll3),{0}) contains the following two model
candidates that satisfy the T-condition (17):

Ss = { ~Lh-Usable, Ab1, KAb1, =K Ab2, Rh-Usable},
Sy = { ~Bh-Usable, Ab2, KAb2, ~K Ab1, Lh-Usable } .

Remaving all the K-literals from these model candidates, we can get the two

desired answer sets of Ils.

5 Implementation of Schemata
5.1 Schemata on the MGTP

So far, we have represented schemata to reject model candidates that contain
wrong guesses. To implement these schemata, we can simply use object-
level schemata on top of the MGTP in the same way as an implementation
of tableaux provers of modal logics by [12]. For an atom A, the negative
literal =A can be expresses as -A, and for a literal L, the K-literal KL can
be expressed as k(L) in KL1, where neither “-” nor “k" appears elsewhere in

14

the program as a predicate symbol. The following is an example of expression
of the five schbmata for extended disjunctive databases.

(12) -k(L), L --> false

(14) =&, A --> false

(15) k(A), -A --> false
k{-A), A --> false

(16) k(-A), k(A) --> falae

Note that the schema (13) for extended disjunctive databases can be omit-
ted because it is an instance of the formnla (14) above. Also, the two schemata
(7) and (8) for general logic programs can be expressed by the above formulas
{12) and [14).

By using object-level schemata on the MGTP, we can use the MGTP
without any change. This has a great advantage thal the inference rules
(logic) and the inference engine (control) can be clearly separated. However,
to improve the efficiency, we can consider another method as shown next,

5.2 Restriction of Model Candidate Extensions

In Section 2.2, we have defined the model candidate extension operation for
a MGTP rule of the form (4). This operation doss not distinguish K-literals
fram ahjective literals. However, to improve the efficiency, we can incorpo-
rate the schemata into the operation so that extensions should be aveided if
the resultant model candidates are to be pruned immediately. For example,
consider the MGTP rule (11} obtained by translating from a rule (10) in an
extended disjunctive database:

LH-'Ij A
"KLm+l1n* "'KLTH Iy | e |_’KLM+11"'7_'KLH1 Lflﬁ-'{"m-i'll IKL'I‘H

where n > m 2 | > (. For this rule and a model candidate §7 £ 8, the model
candidate extension by the MGTT works as follows:

I’'1 If for some substitution o, Liyvo,... Lo € 5,

P2-1 for any ¢ (i == 1,...,[), it does not hold that
SKime1o.o o, Kige Lic € Sr?

P2-2 andforany j(j=m+1,...,n),Kl;m &5,

C1 then remove §' from &,

C2-1 foralli(i=1,...,1),
add §' U {-KLmy10,...,Klyo, Lo} to 5,

C2-2 andforall j (j=m+1,...,n),add 5 U {KLja} to &,

On the otHer hand, in a version that incorporates forward-checking of the
schemata, the above C2-1 and C2-2 can be replaced with the following:

15

C2-1" foralli(i=1,...,0) such that ~KL;o,Lig. KLz ¢ &'
and that Lijg # Ljo forany j (j =m+1,...,n),
add §' U {~KLps10,...,~KL,o, Lo} to S,

C2-2" andforall j(j=m+1,...,n)such that
-Ki;o Lo, KL;o ¢ §', add §'U{KL;e} to S.

The five schemata for extended disjunctive databases are completely incor-
porated into C2-1' and C2-2’ above. Since this new model candidate extension
operation checks whether each new objective or K literals can be safely added
or not to §°, all of the schemata shown in the previous subsection is unneces-
sary *. Al the expense of these extra checking, we can reduce the number of
model candidate extensions. In practice, the cost of generating or extending
model candidates and keeping them is much more expensive than the cost of
these extra checking. FPurthermore, we can dispense with conjunctive match-
ing of ahtecedents of the schemata, which is always tried against any model

candidate even if it is nol to be pruned.

8 Dideussion

In this section, we compare the proposed method to other approaches to
evaluate logic programs containing negation-as-failure formulas.

6.1 Computation

The proposed method has several computational advantages: in a word, it can
find all answer sets for every class of logic program or disjunctive database,
incrementally, without backiracking, and in paraliel. 'We shall examine these
characteristics as follows:

1. Finding all answer sets,
This fact means that the proposed method is complete with respect to
the answer set semantics. This is due to the fact that the MGTP [6] can
find every minimal model of a positive disjunctive program. For positive
disjunctive programs, bottom-up computation has recently been recog-
nized to be more useful than top-down computation, and there has been
some other methods to compute minimal models [5, 1] or to characterize
fixpoint computation [17]. Therefore, our translation method may be
linked with those methods as well as the bottom-up SATCHMO [15]
prover. Moreover, our method is sound with respect to the answer set
semantics, again due to bottom-up computation., Top-down computa-

YA forward-checking mechanism will work avtomatically by using a new version of the
MGTP (called the *lazy™ MGTT), which does not extend model candidates to be pruned
by some integrity constrainte.

16

tion, on the other hand, can never guarantee the soundness even for

general logic programs as shown by [4].

2. Applicable to every class of logic program or deductive database.
Several procedures have been proposed to compute the stable models
of general logic programs [19, 3, 21], but none of them can be extended
tb allow for disjunctive databases because they are based on TMS-like
algorithms. Note also that our proposed method does not increase the
computational complexity of the problem more than cromputation of
the minimal models of positive disjunctive programs; the size of the
translated MGTP rules is the same as the size of the original rules, and
the disjuncts introduced by the translation would be of the same size
of the positive literals in the heads of the positive disjunctive database
if each negation-asfailure formula not A were replaced with a negative
literal =4 in the sense of classical clausal logic.

3. Incremental, backtrack-free computation,

Since we keep K-literals in each model candidate, when new rules are
added to the database, the previous set of model candidates can be
used as the input to the next computation. Procedures given by [19, 21]
caunot be used incrementally. Fshghi’s [3] proposal may be used incre-
mentally, but it requires an exponential-time algorithm to convert its
data structures into the stable models, which is much more complicated
than our use of the T-condition (9). Furthermore, by means of case-
splitting of the MGTP, a model candidate is split into multiple model
candidates, without fulure backtracking, We thus need not ennmerate
rules for their applications to model candidate extensions.

4, Parallel implemeniation.
Qur method is also the first attempt to compute answer sets in parallel.
The procedure has been implemented on a distributed-memory multi-
processor machine, Multi-PSI, developed in ICOT. The transformation
is especially suitable for OR-parallelism because for each negation-as-

ple model candidates are thus taken as the source for exploiting OR-
parallelism of the MGTP.

6.2 Application to Legal Reasoning

The proposed method is currently being applied to a legal reasoning system
developed at ICOT. We can see some advantages of the proposed method

17

from the viewpoint of this application.

It has been recognized that to use two kinds of negation, negation as fail-
ure and classical negation, are very powerful in order to represent knowledge
of legislation in logic programs [13, 20]. In [20], a primary fact (whose proof
has to be dembnstrated) can be represented by a literal, while a secondary
fact L (for which proof to the contrary must not be given) as a negation-as-
failure formula not L. The question is how we should use logic programming
in legal reasoning. Usually, in a legal reasoning system, a set of ground
facts and a set or general rules ar norms are given, and the goal is to obtain
the possible inlerpretations containing judicial precedents. However, such an
inference is plausible as it is often necessary to reason with incomplete in-
formation. Therefore, the system should create explanations or justifications
why the conchisions have been derived under some legal concept. This kind
of processes sometimes reflects antagonistic arguments by a jury in a court.

For the abdve purposes, our computation is extremely desirable. Bottom-
up computation constructs the model candidates, each of which corresponds
to a possible interpretation. In each model candidate, a negative K-literal
~K L represents an absence of the contrary to a secondary fact L. Thus, if
a proof for L could be given against —K L, then the corresponding argument
would be rebuted. On the other hand, since the objective literals in a model
candidate that does not satisfy the T-condition is not an answer set, the model
candidate can be understood as a weak argument. In this case, though, we
can see that if only a literal L could be established for each positive K-literal
K L that has dot been justified in the model candidate, such an argument
might become valid. Hence, those extra information represented hy K-literals
in model candidates can play an important role in legal reasoning.

7 Conclusion

In this paper, we have presented a novel technique to compute answer sets
of logic programe or disjunctive databases. The technique is simply based
on a hottom-up model generation method for positive disjunctive databases,
together with integrity constrainis over K-literals expressed by object-level
schemata on the MGTP. The proposed transformation is also very simple
and does not increasc the program size. Moreover, the method has been
implemented on a parallel inference machine.

We should comment, though, that while our results have a useful appli-
cation to legal reasoning, the general question of how to aveid combinato-
rial explosion in constructing model candidates still needs to be investigated.
From our experience in testing our procedure for some kinds of nonmonotonic

18

reasoning and planning, it is necessary for some applications to have a query-
answering mechanism in addition to eomputation of the model eandidates.
We also expect that for different semantics of logic programs or disjunctive
databases from answer set semantics, it may be possible to have different
transformations into MGTP rules containing K-literals together with differ-
ent integrity constraints, These issues will be discussed in a separate paper.

Acknow ledgment

We were motivated to work on this topic by the request of the legal reasoning
group in ICOT. We are grateful to Katsumi Nitta and Hiroshi Ohsaki for
their cooperation.

References

[1} C. Bell, A. Nerode, R.T. Ng and V.5. Subrahmanian, Implementing de-
ductive databases by linear programming, Technical Report UMIACS-
TR-91-122, Department of Computer Science, University of Maryland,
College Park, MD, August 1901,

[2] G. Bossn and P. Siegel, Saturation, nonmonotonic reasoning, and the
tlosed-world assumption, Artificial Intelligence 25 (1985) 23-67.

[3] K. E.Ehg!li, Computing stable models by using the ATMS, in: Proceedings
of AAATL-90, Boston, MA (1990) 272-277.

[4] K. Eshghi and R.A. Kowalski, Abduction compared with negation by
failure, in: Proceedings of the Sizth International Conference on Logic
Programming, Lisbon, Portugal (1989) 234-254.

[5] J.A. Fernandez and J. Minker, Bottom-up evaluation of hierarchical dis-
junctive deductive databases, in: Proceedings of the Eighth International
Conference on Logic Programming, Paris, France (1991) 660-675.

6] H. Fujita and R. Hasegawa, A model generation theorem prover in KL1
using a ramified-stack algorithm, in: Proceedings of the Eighth Interna-
tional Conference on Logic Programming, Paris, France (1991) 535-548.

[7] M. Gelfond and V. Lifschitz, The stable model semanties for logic pro-
gramming, in: FProceedings of the Fifth International Conference and
Symposium on Logic Programming, Seattle, WA (1988) 1070-1080.

[8] M. Gelfond and V. Lifschitz, Logic programs with classical negation, in:
Proceedings of the Seventh International Conference on Logic Program-
ming, Jerusalem, Israel (1990) 579-597.

[6] M. Gelfond and V. Lifschitz, Classical negation in logic programs and
disjunctive databases, New Generation Computing (1991) to appear.

[10] M. Gelfond, V. Lifschitz, H. Przymusiriska and M. Truszezynski, Dis-

19

junctive defaults, in: Proceedings of the Second International Conference
on Principles of Knowledge Hepresentation and Reasoning, Cambridge,
MA (1991) 230-237.

[11] K. Inoue, Extended logic programs with default assumptions, in: Pro-
ceedings of the Eighth International Conference on Logic Programming,
Paris, France (1991) 490 504.

[12] M. Koshimura and R. Hasegawa, Modal propositional tableaux in a
model generation theorem prover, in: Proceedings of the Logic Program-
ming Conference 91, Tokyo, Japan (1991) 43-52 (in Japanese).

{13] R.A. Kowalski and F. Sadri, Logic programs with exceptions, in: Pro-
ceedings of the Seventh International Conference on Logic Programming,
Jerusalem, lsrael (1990) 598-613.

{14] V. Lifschitz, Nonmonotonic databases and epistemic queries, in: Pro-
ceedings of the Twelfth International Joint Conference on Artificial In-
telligence, Sydney, Australia (1991) 381 386.

(15] R. Manthey and F. Bry, SATCHMO: a theorem prover implemented in
Prolog, in: Proceedings of the Ninth International Conference on Au-
tomated Deduction, Lecture Notes in Computer Science 301, Springer-
Verlag (1988).

[16] J. Migker, On indefinite databases and the closed world assumption, in:
Froceedings of the Sizth International Conference on Automated Dedue-
tion, Lecture Notes in Computer Science 138, Springer-Verlag (1982)
202-308.

[17] D.W. Reed, D.W. Loveland and B.T. Smith, An alternative characteriza-
tion of disjunctive logic programs, Technical Report C5-1991-11, Depart-
ment of Computer Science, Duke University, Durham, NC, July 1991.

[18] R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980)
81-132.

[19] D. Sacca and C. Zaniolo, Stable models and non-determinism in
logic programs with negation, in: Proceedings of the Ninth ACM
SIFACT-SIGMOILSIGA BT Symposium on Prineiples of Database Sys-
temns, Nashville, TN (1990) 205-229,

[20} G. Sartor, The structure of norm conditions and nonmonotonic reasoning
in law, in: Proceedings of the Third International Conference on Artificial
Intelligence and Law, Oxford, England (1991) 155-164.

[21] K. Satch and N. Iwayama, Computing abduction by using the TMS, in:
Proceedings of the Eighth International Conference on Logic Program-
ming, Paris, France (1991) 505-518.

20

A Appendix: Proof of Theorem 4.1

Here, we give a sketch of the proof of Theorem 4.1. Since Theorems 3.1
and 3.2 are instances of Theorem 4.1, these proofs are omitted, We will also
omit proofs of other theorems and propositions as they can be proved more
easily. In the following, we assume without loss of generality that II is a
finitely groundable extended disjunctive database. Therefore, we can further
assume that II is a set of ground rule of the form (10). We use the following
notations throughout this appendix. If R is a rule in II of the form (10}):

" E Lll---!Lr‘_LH—l.---?Lm;nm'ir"mHi'“!nGanl

we define the following:

tr(R) = Lisp, ooy Len = -KLpmsy, ..., KL, Ly] ...
A-KLpgryeeo oKLy Ly |KLiga | - .. KLy,
red(R) = Lyb .o Ly — Ljp1y ooy Lim s
dis() = {L1y. .- I},
pos(R) = {Liv1s ooy L},
neg(R) = {lmsr.e...ln},
Kneg(R) = {KLyt1s--- KLa},
=Kneg(R) = {-KLmy1s--. " KLg}.

Given Il and a set of literals 5 C £, we define:
reduct(1,5) = { red(R} | R € I, neg(R)N5=01}.
The next is a well-known property of answer sets.

Lemma A.1 § is an answer set of Il if and only if § is an answer set of
reduct(Il, §). O

The next two lemmas are the main parts in the proof of Theorem 4.1.

Lemma A.2 Letbe §" € MGT P(try(11),{@}). If 5 satisfies the T-condition
(17), then § = objective(S') is contained in MGT P(reduct(II, 5), {0}).

Proof: For every rule tr(&) in tre(Il), it holds that, if pes(R) C 5, then
either Kneg(R)NS' # @, or dis{ R)NS’ # 0 and ~Kneg(R) C 5'. By the schema
(12) and the T-condition (17), for every mule tr{R) in tra(11), if pos(R) € &',
then either neg{R)N 5" # 0, or dis(R)N 5" £ @ and neg(R) N 5" = 0. Now,

21

for each rule tr(R) in tr2(Il), there is a rule R in 1. Therefore, for every rule
R in I, if pos(R) € 5, then either neg(R)N S # @, or dis(R)N S # @ and
neg(R) NS = 0. Becanse of the closedness of the MGTP operations, this 5
is contained in MGT P(reduct(Il, 5),{0}). O

Note that by the above proof, only the schema (12) and the T-condition
(17) are necessary to guarantee the soundness of computation; other schemata
are used for obtaining the efficiency of computation.

Lemma A.3 Let be § € MGTP(reduct(Il,5),{0}). If Il is consistent,
then there is a model candidate § in MGT P(tro(I1},{Q}) such that § =
objective(5"} and §' satisfies the T-condition {17).

Proof: For every rule R in reduct(I1, 5), it holds that, if pos(R) C §, then
dis(R)N 5 # . We then see that for every rule R in II, if pos(R) C 5, then
either neg(H)N S # @, or dis(R) NS # @ and neg(R) NS = . Now, for each
rule R in II, there is a rule {r{ K) in try(II). Since MGT P(reduct(Il,S), {0})
is closed under the operations of the MGTPF, there exists a model candidate
§' in MGTP(try(10),{®}) such that § = objective(5") and that for any rule
tr{R) in try(II), it holds that, if pos{R) C §’, then either Kneg(R) N 5 # 0,
or dis(R)N 5" # 0 and -Kneg{R) C 5", Tt is easy to check that this 5" is not
pruned by the schemata, and that 5§’ satisfies the T-condition (17). O

Now, we prove the Theorem.
Theorem 4.1 Suppose that Il is consistent. Then,
man({ objective(5') | §' € MGTP(tro(1T),{0}),
5" satisfies the T-condition (17) })
is equivalent to the answer sets of IL
Proof: A set § of literals is an answer set of Il if and only if § is an answer
set of reduct(Il,5) (by Lemma A.1) if and only if
5 € min{ M GT P(reduct(I, 5), {0}))

by Proposition 2.1. By Lemma A3, if S is contained in the above set of
model candidates, then there is a model candidate 5! in MGT P(tra(11), {0})
gnch that 5' satisfies the T-condition (17), and that § = objective(S")
is a minimal set satisfying these conditions. Conversely, by Lemma A.2,
if a model ecandidate S’ in MGTP(try(I1),{0}) satisfies the T-condition
(17), and § = objective(S') is such a minimal set, then § is contained in
min(MGT P(reduct(II, 5),{8})). Hence, the theorem holds. O

22

